1
|
Prajapati P, Kumar A, Mangrulkar S, Chaple DR, Saraf SA, Kushwaha S. Azilsartan prevents muscle loss and fast- to slow-twitch muscle fiber shift in natural ageing sarcopenic rats. Can J Physiol Pharmacol 2024; 102:342-360. [PMID: 38118126 DOI: 10.1139/cjpp-2023-0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Sarcopenia is a musculoskeletal disease that reduces muscle mass and strength in older individuals. The study investigates the effects of azilsartan (AZL) on skeletal muscle loss in natural sarcopenic rats. Male Sprague-Dawley rats aged 4-6 months and 18-21 months were selected as young-matched control and natural-aged (sarcopenic) rats, respectively. Rats were allocated into young and old control (YC and OC) and young and old AZL treatment (YT and OT) groups, which received vehicles and AZL (8 mg/kg, orally) for 6 weeks. Rats were then sacrificed after muscle function analysis. Serum and gastrocnemius (GN) muscles were isolated for further endpoints. AZL significantly improved muscle grip strength and antioxidant levels in sarcopenic rats. AZL also restored the levels of insulin, testosterone, and muscle biomarkers such as myostatin and creatinine kinase in sarcopenic rats. Furthermore, AZL treatment improved the cellular and ultrastructure of GN muscle and prevented the shift of type II (glycolytic) myofibers to type I (oxidative) myofibers. The results showed that AZL intervention restored protein synthesis in natural sarcopenic rats by increasing p-Akt-1 and decreasing muscle RING-finger protein-1 and tumor necrosis factor alpha immunoexpressions. In conclusion, the present findings showed that AZL could be an effective intervention in treating age-related muscle impairments.
Collapse
MESH Headings
- Animals
- Sarcopenia/prevention & control
- Sarcopenia/metabolism
- Sarcopenia/drug therapy
- Sarcopenia/pathology
- Male
- Oxadiazoles/pharmacology
- Oxadiazoles/therapeutic use
- Aging/drug effects
- Rats, Sprague-Dawley
- Rats
- Benzimidazoles/pharmacology
- Benzimidazoles/therapeutic use
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/pathology
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Proto-Oncogene Proteins c-akt/metabolism
- Myostatin/metabolism
- Antioxidants/pharmacology
Collapse
Affiliation(s)
- Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Shubhada Mangrulkar
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - D R Chaple
- Priyadarshini J.L. College of Pharmacy, Electronic Zone Building, MIDC Hingna Road, Nagpur 440016, India
| | - Shubhini A Saraf
- National Institute of Pharmaceutical Education & Research, Raebareli (NIPER-R), Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education & Research, Raebareli (NIPER-R), Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| |
Collapse
|
2
|
Prajapati P, Kumar A, Singh J, Saraf SA, Kushwaha S. Azilsartan Ameliorates Skeletal Muscle Wasting in High Fat Diet (HFD)-induced Sarcopenic Obesity in Rats via Activating Akt Signalling Pathway. Arch Gerontol Geriatr 2023; 112:105025. [PMID: 37062187 DOI: 10.1016/j.archger.2023.105025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/26/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
An association between the loss of skeletal muscle mass and obesity in the geriatric population has been identified as a disease known as sarcopenic obesity. Therefore, therapeutic/preventive interventions are needed to ameliorate sarcopenia. The present study investigates the effect of azilsartan (AZL) on skeletal muscle loss in High-Fat Diet (HFD)-induced sarcopenic obese (SO) rats. Four- and fourteen-months male Sprague Dawley rats were used and randomized in control and azilsartan treatment. 14 months animals were fed with HFD for four months and labeled as HFD-fed SO rats. Young & old rats received 0.5% carboxymethyl cellulose as a vehicle/AZL (8 mg/kg, per oral) treatment for six weeks. Grip strength and body composition analysis were performed after the last dose of AZL. Serum and gastrocnemius (GN)muscles were collected after animal sacrifice. AZL treatment significantly increased lean muscle mass, grip strength, myofibrillar protein, and antioxidant (superoxide dismutase & nitric oxide) levels in SO rats. AZL also restored the muscle biomarkers (creatine kinase, myostatin & testosterone), and insulin levels. AZL improves cellular, and ultracellular muscle structure and prevents type I to type II myofiber transitions in SO rats. Further, immunohistochemistry results showed increased expressions of pAkt and reduced expression of MuRF-1 and TNF-α exhibiting that AZL intervention could decrease protein degradation in SO rats. In conclusion, present results showed that AZL significantly increased lean mass, and restored muscle biomarkers, and muscle architecture. Taken together, the aforementioned findings suggest that azilsartan could be a possible therapeutic approach to reduce muscle wasting in sarcopenic obesity.
Collapse
Affiliation(s)
- Priyanka Prajapati
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Jiten Singh
- Department of Pharmaceutical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Sapana Kushwaha
- National Institute of Pharmaceutical Education & Research, Raebareli (NIPER-R), New Transit campus, Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India.
| |
Collapse
|
3
|
Liu J, Li X, Lu Q, Ren D, Sun X, Rousselle T, Li J, Leng J. AMPK: a balancer of the renin-angiotensin system. Biosci Rep 2019; 39:BSR20181994. [PMID: 31413168 PMCID: PMC6722492 DOI: 10.1042/bsr20181994] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS) is undisputedly well-studied as one of the oldest and most critical regulators for arterial blood pressure, fluid volume, as well as renal function. In recent studies, RAS has also been implicated in the development of obesity, diabetes, hyperlipidemia, and other diseases, and also involved in the regulation of several signaling pathways such as proliferation, apoptosis and autophagy, and insulin resistance. AMP-activated protein kinase (AMPK), an essential cellular energy sensor, has also been discovered to be involved in these diseases and cellular pathways. This would imply a connection between the RAS and AMPK. Therefore, this review serves to draw attention to the cross-talk between RAS and AMPK, then summering the most recent literature which highlights AMPK as a point of balance between physiological and pathological functions of the RAS.
Collapse
Affiliation(s)
- Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xuan Li
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Qingguo Lu
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Di Ren
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Xiaodong Sun
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Thomas Rousselle
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, U.S.A
| | - Ji Li
- Department of Surgery, University of South Florida, Tampa, FL 33612, U.S.A
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Surapongchai J, Rattanavichit Y, Buniam J, Saengsirisuwan V. Exercise Protects Against Defective Insulin Signaling and Insulin Resistance of Glucose Transport in Skeletal Muscle of Angiotensin II-Infused Rat. Front Physiol 2018; 9:358. [PMID: 29695972 PMCID: PMC5904253 DOI: 10.3389/fphys.2018.00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives: The present study investigated the impact of voluntary exercise on insulin-stimulated glucose transport and the protein expression and phosphorylation status of the signaling molecules known to be involved in the glucose transport process in the soleus muscle as well as other cardiometabolic risks in a rat model with insulin resistance syndrome induced by chronic angiotensin II (ANGII) infusion. Materials and Methods: Male Sprague-Dawley rats were assigned to sedentary or voluntary wheel running (VWR) groups. Following a 6-week period, rats in each group were subdivided and subcutaneously administered either normal saline or ANGII at 100 ng/kg/min for 14 days. Blood pressure, glucose tolerance, insulin-stimulated glucose transport and signaling proteins, including insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Akt, Akt substrate of 160 kDa (AS160), AMPKα, c-Jun NH2-terminal kinase (JNK), p38 MAPK, angiotensin converting enzyme (ACE), ANGII type 1 receptor (AT1R), ACE2, Mas receptor (MasR) and oxidative stress marker in the soleus muscle, were evaluated. Results: Exercise protected against the insulin resistance of glucose transport and defective insulin signaling molecules in the soleus muscle; this effect was associated with a significant increase in AMPK Thr172 (43%) and decreases in oxidative stress marker (31%) and insulin-induced p38 MAPK Thr180/Tyr182 (45%) and SAPK/JNK Thr183/Tyr185 (25%), without significant changes in expression of AT1R, AT2R, ACE, ACE2, and MasR when compared to the sedentary rats given ANGII infusion. At the systemic level, VWR significantly decreased body weight, fat weight, and systolic blood pressure as well as improved serum lipid profiles. Conclusion: Voluntary exercise can alleviate insulin resistance of glucose transport and impaired insulin signaling molecules in the soleus muscle and improve whole-body insulin sensitivity in rats chronically administered with ANGII.
Collapse
Affiliation(s)
- Juthamard Surapongchai
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yupaporn Rattanavichit
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jariya Buniam
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vitoon Saengsirisuwan
- Exercise Physiology Laboratory, Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Wang Y, Wei RB, Yang Y, Su TY, Huang MJ, Li P, Chen XM. Valsartan Alleviates Insulin Resistance in Skeletal Muscle of Chronic Renal Failure Rats. Med Sci Monit 2018; 24:2413-2419. [PMID: 29679000 PMCID: PMC5933205 DOI: 10.12659/msm.909910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/10/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Studies on insulin resistance (IR) in chronic kidney disease (CKD) patients are rare, and its exact mechanism remains unclear. In this study, we explored the molecular mechanism of IR with chronic renal failure (CRF) and interventions to alleviate IR in patients with CRF. MATERIAL AND METHODS In vivo and in vitro models of CRF were established by 5/6 nephrectomy and urea stimulation C2C12 cells, respectively. Based on the CRF model, angiotensin II (Ang II) and valsartan groups were established to observe the effect of drug intervention on IR. Western blot assays were performed to detect the expression and phosphorylation of IRS-1 and Akt, which are 2 critical proteins in the insulin signaling pathway. RESULTS Both urea stimulation and 5/6 nephrectomy induced glucose uptake disorder in skeletal muscle cells (P<0.01). Skeletal muscle IR was aggravated in the Ang II group (P<0.05) but alleviated in the valsartan group (P<0.01). Regardless of the experimental method (in vivo or in vitro), tyrosine phosphorylation of IRS-1 and Akt were significantly lower (P<0.01) and serine phosphorylation was significantly higher (P<0.01) in the model group than in the sham/control group. Compared to the model group, additional Ang II aggravated abnormal phosphorylation (P<0.05); conversely, additional valsartan alleviated abnormal phosphorylation to some extent (P<0.05). CONCLUSIONS There is skeletal muscle insulin resistance in the presence of CRF. This phenomenon can be aggravated by Ang II and partially relieved by valsartan. One of the mechanisms of IR in CRF patients may be associated with the critical proteins in the IRS-PI3k-Akt pathway by changing their phosphorylation levels.
Collapse
Affiliation(s)
- Yang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Ri-Bao Wei
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Yue Yang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
- Renal Division of China-Japan Friendship Hospital, Beijing, P.R. China
| | - Ting-Yu Su
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Meng-Jie Huang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Ping Li
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| | - Xiang-Mei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, P.R. China
| |
Collapse
|
6
|
Biased G protein-coupled receptor agonism mediates Neu1 sialidase and matrix metalloproteinase-9 crosstalk to induce transactivation of insulin receptor signaling. Cell Signal 2018; 43:71-84. [DOI: 10.1016/j.cellsig.2017.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/26/2017] [Accepted: 12/21/2017] [Indexed: 11/19/2022]
|
7
|
Ohki K, Wakui H, Kishio N, Azushima K, Uneda K, Haku S, Kobayashi R, Haruhara K, Kinguchi S, Yamaji T, Yamada T, Minegishi S, Ishigami T, Toya Y, Yamashita A, Imajo K, Nakajima A, Kato I, Ohashi K, Tamura K. Angiotensin II Type 1 Receptor-associated Protein Inhibits Angiotensin II-induced Insulin Resistance with Suppression of Oxidative Stress in Skeletal Muscle Tissue. Sci Rep 2018; 8:2846. [PMID: 29434287 PMCID: PMC5809432 DOI: 10.1038/s41598-018-21270-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 02/01/2018] [Indexed: 01/19/2023] Open
Abstract
Enhancement of AT1 receptor-associated protein (ATRAP) in adipose tissue improves high fat diet (HFD)-induced visceral obesity and insulin resistance, and suppresses adipose oxidative stress. However, HFD loading is not a direct stimulatory factor for AT1 receptor. In the present study, we investigated the effect of chronic, low-dose angiotensin II (Ang II) stimulation on glucose and lipid metabolism in mice and functional role of ATRAP. ATRAP expression was higher in adipose tissue (5–10-fold) and skeletal muscle tissue (approximately 1.6-fold) in ATRAP transgenic (TG) mice compared with wild-type (WT) mice. After Ang II infusion, insulin sensitivity was impaired in WT mice, but this response was suppressed in TG mice. Unexpectedly, Ang II infusion did not affect the adipose tissue profile in WT or TG mice. However, in skeletal muscle tissue, Ang II stimulus caused an increase in oxidative stress and activation of p38 MAPK, resulting in a decrease in glucose transporter type 4 expression in WT mice. These responses were suppressed in TG mice. Our study suggests that Ang II-induced insulin resistance is suppressed by increased ATRAP expression in skeletal muscle tissue. Hyperactivity of AT1 receptor could be related to formation of insulin resistance related to metabolic syndrome.
Collapse
Affiliation(s)
- Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Nozomu Kishio
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan. .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sona Haku
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takayuki Yamada
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ikuma Kato
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Ohashi
- Department of Molecular Pathology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
8
|
Surapongchai J, Prasannarong M, Bupha-Intr T, Saengsirisuwan V. Angiotensin II induces differential insulin action in rat skeletal muscle. J Endocrinol 2017; 232:547-560. [PMID: 28096436 DOI: 10.1530/joe-16-0579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 02/05/2023]
Abstract
Angiotensin II (ANGII) is reportedly involved in the development of skeletal muscle insulin resistance. The present investigation evaluated the effects of two ANGII doses on the phenotypic characteristics of insulin resistance syndrome and insulin action and signaling in rat skeletal muscle. Male Sprague-Dawley rats were infused with either saline (SHAM) or ANGII at a commonly used pressor dose (100 ng/kg/min; ANGII-100) or a higher pressor dose (500 ng/kg/min; ANGII-500) via osmotic minipumps for 14 days. We demonstrated that ANGII-100-infused rats exhibited the phenotypic features of non-obese insulin resistance syndrome, including hypertension, impaired glucose tolerance and insulin resistance of glucose uptake in the soleus muscle, whereas ANGII-500-treated rats exhibited diabetes-like symptoms, such as post-prandial hyperglycemia, impaired insulin secretion and hypertriglyceridemia. At the cellular level, insulin-stimulated glucose uptake in the soleus muscle of the ANGII-100 group was 33% lower (P < 0.05) than that in the SHAM group and was associated with increased insulin-stimulated IRS-1 Ser307 and decreased Akt Ser473 and AS160 Thr642 phosphorylation and GLUT-4 expression. However, ANGII-500 infusion did not induce skeletal muscle insulin resistance or impair insulin signaling elements as initially anticipated. Moreover, we found that insulin-stimulated glucose uptake in the ANGII-500 group was accompanied by the enhanced expression of ACE2 and MasR proteins, which are the key elements in the non-classical pathway of the renin-angiotensin system. Collectively, this study demonstrates for the first time that chronic infusion with these two pressor doses of ANGII induced differential metabolic responses at both the systemic and skeletal muscle levels.
Collapse
Affiliation(s)
- Juthamard Surapongchai
- Exercise Physiology LaboratoryDepartment of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Mujalin Prasannarong
- Department of Physical TherapyFaculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Tepmanas Bupha-Intr
- Exercise Physiology LaboratoryDepartment of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vitoon Saengsirisuwan
- Exercise Physiology LaboratoryDepartment of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Georgiopoulos G, Katsi V, Oikonomou D, Vamvakou G, Koutli E, Laina A, Tsioufis C, Nihoyannopoulos P, Tousoulis D. Azilsartan as a Potent Antihypertensive Drug with Possible Pleiotropic Cardiometabolic Effects: A Review Study. Front Pharmacol 2016; 7:235. [PMID: 27536242 PMCID: PMC4971108 DOI: 10.3389/fphar.2016.00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/20/2016] [Indexed: 12/14/2022] Open
Abstract
Background: Hypertension related cardiovascular (CV) complications could be amplified by the presence of metabolic co-morbidities. Azilsartan medoxomil (AZL-M) is the eighth approved member of angiotensin II receptor blockers (ARBs), a drug class of high priority in the management of hypertensive subjects with diabetes mellitus type II (DMII). Methods: Under this prism, we performed a systematic review of the literature for all relevant articles in order to evaluate the efficacy, safety, and possible clinical role of AZL-M in hypertensive diabetic patients. Results: AZL-M was found to be more effective in terms of reducing indices of blood pressure over alternative ARBs or angiotensin-converting enzyme (ACE) inhibitors with minimal side effects. Preclinical studies have established pleiotropic effects for AZL-M beyond its primary antihypertensive role through differential gene expression, up-regulation of membrane receptors and favorable effect on selective intracellular biochemical and pro-atherosclerotic pathways. Conclusion: Indirect but accumulating evidence from recent literature supports the efficacy and safety of AZL-M among diabetic patients. However, no clinical data exist to date that evince a beneficial role of AZL-M in patients with metabolic disorders on top of its antihypertensive effect. Further clinical studies are warranted to assess the pleiotropic cardiometabolic benefits of AZL-M that are derived from preclinical research.
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, University of Athens Medical School Athens, Greece
| | - Vasiliki Katsi
- 1st Department of Cardiology, 'Hippokration' Hospital, University of Athens Medical School Athens, Greece
| | - Dimitrios Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, University of Athens Medical School Athens, Greece
| | - Georgia Vamvakou
- 1st Department of Cardiology, 'Hippokration' Hospital, University of Athens Medical School Athens, Greece
| | - Evangelia Koutli
- Department of Internal Medicine, 'Hippokration' Hospital, University of Athens Medical School Athens, Greece
| | - Aggeliki Laina
- 1st Department of Cardiology, 'Hippokration' Hospital, University of Athens Medical School Athens, Greece
| | - Constantinos Tsioufis
- 1st Department of Cardiology, 'Hippokration' Hospital, University of Athens Medical School Athens, Greece
| | - Petros Nihoyannopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, University of Athens Medical SchoolAthens, Greece; Department of Cardiology, Imperial College London, Hammersmith HospitalLondon, UK
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, University of Athens Medical School Athens, Greece
| |
Collapse
|
10
|
Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther 2016; 164:1-81. [PMID: 27130806 DOI: 10.1016/j.pharmthera.2016.03.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
We have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin-angiotensin system; blood pressure lowering even persists for a considerable time after discontinuation of treatment. This translates into a reduced mortality, particularly in models exhibiting marked hypertension. The retrieved data on vascular, cardiac and renal function and morphology as well as on glucose and lipid metabolism are discussed to address three main questions: 1. Can ARB effects on blood vessels, heart, kidney and metabolic function be explained by blood pressure lowering alone or are they additionally directly related to blockade of the renin-angiotensin system? 2. Are they shared by other inhibitors of the renin-angiotensin system, e.g. angiotensin converting enzyme inhibitors? 3. Are some effects specific for one or more compounds within the ARB class? Taken together these data profile ARBs as a drug class with unique properties that have beneficial effects far beyond those on blood pressure reduction and, in some cases distinct from those of angiotensin converting enzyme inhibitors. The clinical relevance of angiotensin receptor-independent effects of some ARBs remains to be determined.
Collapse
Affiliation(s)
- Martin C Michel
- Dept. Pharmacology, Johannes Gutenberg University, Mainz, Germany; Dept. Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim, Ingelheim, Germany.
| | | | - Carolyn Foster
- Retiree from Dept. of Research Networking, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, CT, USA
| | - Yong Huo
- Dept. Cardiology & Heart Center, Peking University First Hospital, Beijing, PR China
| |
Collapse
|
11
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|
12
|
Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II. PLoS One 2015; 10:e0127172. [PMID: 25993470 PMCID: PMC4437781 DOI: 10.1371/journal.pone.0127172] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/13/2015] [Indexed: 12/29/2022] Open
Abstract
Background Angiotensin II promotes insulin resistance. The mechanism underlying this abnormality, however, is still poorly defined. In a different setting, skeletal muscle metabolism and insulin signaling are regulated by Sirtuin3. Objective Here, we investigate whether angiotensin II-induced insulin resistance in skeletal muscle is associated with Sirtuin3 dysregulation and whether pharmacological manipulation of Sirtuin3 confers protection. Study Design Parental and GLUT4-myc L6 rat skeletal muscle cells exposed to angiotensin II are used as in vitro models of insulin resistance. GLUT4 translocation, glucose uptake, intracellular molecular signals such as mitochondrial reactive oxygen species, Sirtuin3 protein expression and activity, along with its downstream targets and upstream regulators, are analyzed both in the absence and presence of acetyl-L-carnitine. The role of Sirtuin3 in GLUT4 translocation and intracellular molecular signaling is also studied in Sirtuin3-silenced as well as over-expressing cells. Results Angiotensin II promotes insulin resistance in skeletal muscle cells via mitochondrial oxidative stress, resulting in a two-fold increase in superoxide generation. In this context, reactive oxygen species open the mitochondrial permeability transition pore and significantly lower Sirtuin3 levels and activity impairing the cell antioxidant defense. Angiotensin II-induced Sirtuin3 dysfunction leads to the impairment of AMP-activated protein kinase/nicotinamide phosphoribosyltransferase signaling. Acetyl-L-carnitine, by lowering angiotensin II-induced mitochondrial superoxide formation, prevents Sirtuin3 dysfunction. This phenomenon implies the restoration of manganese superoxide dismutase antioxidant activity and AMP-activated protein kinase activation. Acetyl-L-carnitine protection is abrogated by specific Sirtuin3 siRNA. Conclusions Our data demonstrate that angiotensin II-induced insulin resistance fosters mitochondrial superoxide generation, in turn leading to Sirtuin3 dysfunction. The present results also highlight Sirtuin3 as a therapeutic target for the insulin-sensitizing effects of acetyl-L-carnitine.
Collapse
|
13
|
Abdelsaid M, Coucha M, Ergul A. Cerebrovasculoprotective effects of azilsartan medoxomil in diabetes. Transl Res 2014; 164:424-32. [PMID: 24999268 PMCID: PMC4250409 DOI: 10.1016/j.trsl.2014.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/11/2014] [Indexed: 01/13/2023]
Abstract
We have shown that Goto-Kakizaki (GK) rats, a lean model of type 2 diabetes, develop significant cerebrovascular remodeling by the age of 18 weeks, which is characterized by increased media thickness and matrix deposition. Although early glycemic control prevents diabetes-mediated remodeling of the cerebrovasculature, whether the remodeling can be reversed is unknown. Given that angiotensin II type 1 receptor blockers reverse pathologic vascular remodeling and function independent of changes in blood pressure in other vascular beds, we hypothesized that azilsartan medoxomil, a new angiotensin II type 1 receptor blocker, is vasculoprotective by preventing and reversing cerebrovascular remodeling in diabetes. Control Wistar and diabetic GK rats (n = 6-8 per group) were treated with vehicle (water) or azilsartan medoxomil (3 mg/kg/d) from the age of 14 to 18 or 18 to 22 weeks before or after vascular remodeling is established, respectively. Blood glucose and blood pressure were monitored and middle cerebral artery structure and function were evaluated using pressurized arteriography. Blood glucose was higher in GK rats compared with Wistar rats. Azilsartan treatment lowered blood glucose in diabetic animals with no effect on blood pressure. Diabetic animals exhibited lower myogenic tone, increased wall thickness, and cross-sectional area compared with control group animals, which were corrected by azilsartan treatment when started at the onset of diabetes or later after vascular remodeling is established. Azilsartan medoxomil offers preventive and therapeutic vasculoprotection in diabetes-induced cerebrovascular remodeling and myogenic dysfunction and this is independent of blood pressure.
Collapse
Affiliation(s)
- Mohammed Abdelsaid
- Charlie Norwood Veterans Administration Medical Center, Georgia Regents University, Augusta, GA; Department of Physiology, Georgia Regents University, Augusta, GA
| | - Maha Coucha
- Department of Physiology, Georgia Regents University, Augusta, GA
| | - Adviye Ergul
- Charlie Norwood Veterans Administration Medical Center, Georgia Regents University, Augusta, GA; Department of Physiology, Georgia Regents University, Augusta, GA.
| |
Collapse
|
14
|
Habibi J, Hayden MR, Ferrario CM, Sowers JR, Whaley-Connell AT. Salt Loading Promotes Kidney Injury via Fibrosis in Young Female Ren2 Rats. Cardiorenal Med 2014; 4:43-52. [PMID: 24847333 DOI: 10.1159/000360866] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/AIMS It is increasingly recognized that there is sexual dimorphism in kidney disease progression; however, this disparity is lost in the presence of diabetes where women progress at a similar rate to men. The renin-angiotensin-aldosterone system (RAAS) is known to regulate diabetes-induced kidney injury, and recent literature would suggest that gender differences exist in RAAS-dependent responses in the kidney. In this regard, these gender differences may be overcome by excessive salt intake. Thereby, we hypothesized that salt would promote proteinuria in transgenic female rats under conditions of excess tissue angiotensin (Ang) II and circulating aldosterone. MATERIALS AND METHODS We utilized young female transgenic (mRen2)27 (Ren2) rats and Sprague-Dawley (SD) littermates and fed a high-salt diet (4%) over 3 weeks. RESULTS Compared to SD and Ren2 controls, female Ren2 rats fed a high-salt diet displayed increases in proteinuria, periarterial and interstitial fibrosis as well as ultrastructural evidence of basement membrane thickening, loss of mitochondrial elongation, mitochondrial fragmentation and attenuation of basilar canalicular infoldings. These findings occurred temporally with increases in transforming growth factor-β but not indices of oxidant stress. CONCLUSIONS Our current data suggest that a diet high in salt promotes progressive kidney injury as measured by proteinuria and fibrosis associated with transforming growth factor-β under conditions of excess tissue Ang II and circulating aldosterone.
Collapse
Affiliation(s)
- Javad Habibi
- Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Division of Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Mo., USA
| | - Melvin R Hayden
- Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA
| | - Carlos M Ferrario
- Division of Wake Forest University School of Medicine, Winston-Salem, N.C., USA
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Department of Medical Pharmacology and Physiology, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Division of Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Mo., USA
| | - Adam T Whaley-Connell
- Diabetes and Cardiovascular Center, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Department of Medicine, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Division of Endocrinology and Metabolism, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Division of Nephrology and Hypertension, University of Missouri-Columbia School of Medicine, Columbia, Mo., USA ; Division of Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Mo., USA
| |
Collapse
|
15
|
Barrios V, Escobar C. Azilsartan medoxomil in the treatment of hypertension: the definitive angiotensin receptor blocker? Expert Opin Pharmacother 2013; 14:2249-61. [PMID: 24070321 DOI: 10.1517/14656566.2013.834887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Azilsartan medoxomil is the newest angiotensin receptor blocker marketed for the treatment of arterial hypertension. The aim of this article was to review the available evidence about this drug alone or combined with other antihypertensive agents in the treatment of hypertensive population. AREAS COVERED For this purpose, a search on MEDLINE and EMBASE databases was performed. The MEDLINE and EMBASE search included both medical subject headings (MeSHs) and keywords including azilsartan or azilsartan medoxomil or angiotensin receptor blockers or renin angiotensin system or chlorthalidone and hypertension. References of the retrieved articles were also screened for additional studies. There were no language restrictions. EXPERT OPINION Azilsartan medoxomil has a potent and persistent ability to inhibit binding of angiotensin II to AT1 receptors, which may play a role in its superior blood pressure (BP) -lowering efficacy compared with other drugs, including ramipril, candesartan, valsartan or olmesartan, without an increase of side effects. Chlortalidone is a diuretic which significantly differs from other classic thiazides and has largely demonstrated clinical benefits in outcome trials. The fixed-dose combination of azilsartan and chlorthalidone has been shown to be more effective than other potent combinations of angiotensin receptor blockers plus hydrochlorothiazide, with a good tolerability profile.
Collapse
Affiliation(s)
- Vivencio Barrios
- Hospital Ramon y Cajal, Department of Cardiology , Madrid 28034 , Spain +34 91 336 8665 ;
| | | |
Collapse
|