1
|
Arai H, Herran B, Sugimoto TN, Miyata M, Sasaki T, Kageyama D. Cell-based assays and comparative genomics revealed the conserved and hidden effects of Wolbachia on insect sex determination. PNAS NEXUS 2024; 3:pgae348. [PMID: 39228812 PMCID: PMC11370894 DOI: 10.1093/pnasnexus/pgae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
It is advantageous for maternally transmitted endosymbionts to skew the sex ratio of their hosts toward females. Some endosymbiotic bacteria, such as Wolbachia, cause their insect hosts to exclusively produce female offspring through male killing (MK) or feminization. In some lepidopteran insects, MK is achieved by affecting the sex-determining process in males, and a unique mechanism of MK and its functional link with feminization have been implicated. However, comparative analysis of these phenotypes is often difficult because they have been analyzed in different host-symbiont systems, and transinfection of Wolbachia across different hosts is often challenging. In this study, we demonstrated the effects of nine Wolbachia strains on the splicing of sex-determining genes in Lepidoptera by fixing the host genetic background using a cell culture system. Cell transinfection assays confirmed that three MK-inducing Wolbachia strains and one feminization-inducing Wolbachia strain increased the female-type splicing products of the core sex-determining genes doublesex, masculinizer, and zinc finger protein 2. Regarding Wolbachia strains that do not induce MK/feminization, three had no effect on these sex-determining genes, whereas two strains induced female-type splicing of masculinizer and doublesex but not zinc finger protein 2. Comparative genomics confirmed that homologs of oscar, the Wolbachia gene responsible for MK in Ostrinia, were encoded by four MK/feminizing Wolbachia strains, but not by five non-MK/nonfeminizing strains. These results support the conserved effects underlying MK and feminization induced by oscar-bearing Wolbachia and suggested other potential mechanisms that Wolbachia might employ to manipulate host sex.
Collapse
Affiliation(s)
- Hiroshi Arai
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0851, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Benjamin Herran
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0851, Japan
| | - Takafumi N Sugimoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0851, Japan
| | - Mai Miyata
- Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
| | - Tetsuhiko Sasaki
- Graduate School of Agriculture, Honeybee Science Research Center, Research Institute, Tamagawa University, Tokyo 194-8610, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-0851, Japan
| |
Collapse
|
2
|
Holt JR, Cavichiolli de Oliveira N, Medina RF, Malacrinò A, Lindsey ARI. Insect-microbe interactions and their influence on organisms and ecosystems. Ecol Evol 2024; 14:e11699. [PMID: 39041011 PMCID: PMC11260886 DOI: 10.1002/ece3.11699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Microorganisms are important associates of insect and arthropod species. Insect-associated microbes, including bacteria, fungi, and viruses, can drastically impact host physiology, ecology, and fitness, while many microbes still have no known role. Over the past decade, we have increased our knowledge of the taxonomic composition and functional roles of insect-associated microbiomes and viromes. There has been a more recent shift toward examining the complexity of microbial communities, including how they vary in response to different factors (e.g., host genome, microbial strain, environment, and time), and the consequences of this variation for the host and the wider ecological community. We provide an overview of insect-microbe interactions, the variety of associated microbial functions, and the evolutionary ecology of these relationships. We explore the influence of the environment and the interactive effects of insects and their microbiomes across trophic levels. Additionally, we discuss the potential for subsequent synergistic and reciprocal impacts on the associated microbiomes, ecological interactions, and communities. Lastly, we discuss some potential avenues for the future of insect-microbe interactions that include the modification of existing microbial symbionts as well as the construction of synthetic microbial communities.
Collapse
Affiliation(s)
| | | | - Raul F. Medina
- Department of EntomologyTexas A&M University, Minnie Bell Heep CenterCollege StationTexasUSA
| | - Antonino Malacrinò
- Department of AgricultureUniversità Degli Studi Mediterranea di Reggio CalabriaReggio CalabriaItaly
| | | |
Collapse
|
3
|
Bálint Z, Katona G, Kertész K, Piszter G, Tóth B, Biró LP. Not all apparently gynandromorphic butterflies are gynandrous: The case of Polyommatus icarus and its relatives (Lepidoptera: Lycaenidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 80:101359. [PMID: 38688173 DOI: 10.1016/j.asd.2024.101359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
Beside the more than two thousand normal specimens of Polyommatus icarus (Rottemburg, 1775) yielded by rearing experiments, there was one perfectly bilateral dichromatic individual first considered to be gynandrous. On the basis of analysing genitalia traits, wing surface covering scale micromorphology, and the spectral characteristics of the blue colour generated by the cover scales, the gender of the specimen has been identified as female. This exemplar was investigated in comparison with gynandrous specimens from the collections of the Hungarian Natural History Museum exhibiting various degrees of intermixing of blue and brown coloration. Focus stacking microscopy for detailed scale morphology and UV-visible reflectance spectroscopy was used for the characterization of the optical properties. Inspecting literature references and the Lycaenidae collection of the museum, further examples have been found for female bilateral dichromatism in the closely related polyommatine lycaenid species Lysandra bellargus (Rottemburg, 1775) and Lysandra coridon (Poda, 1761) what suggests that polyommatine female dichromaticity may be displayed by the manner of bilaterality and mosaicism, phenomena hitherto solely connected to gynandromorphy.
Collapse
Affiliation(s)
- Zsolt Bálint
- Department of Zoology, Hungarian Natural History Museum, Baross utca 13, Budapest, H-1088, Hungary; Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P. O. Box 49, Budapest, H-1525, Hungary
| | - Gergely Katona
- Department of Zoology, Hungarian Natural History Museum, Baross utca 13, Budapest, H-1088, Hungary
| | - Krisztián Kertész
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P. O. Box 49, Budapest, H-1525, Hungary
| | - Gábor Piszter
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P. O. Box 49, Budapest, H-1525, Hungary.
| | - Balázs Tóth
- Department of Zoology, Hungarian Natural History Museum, Baross utca 13, Budapest, H-1088, Hungary
| | - László Péter Biró
- Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P. O. Box 49, Budapest, H-1525, Hungary
| |
Collapse
|
4
|
Wierz JC, Dirksen P, Kirsch R, Krüsemer R, Weiss B, Pauchet Y, Engl T, Kaltenpoth M. Intracellular symbiont Symbiodolus is vertically transmitted and widespread across insect orders. THE ISME JOURNAL 2024; 18:wrae099. [PMID: 38874172 PMCID: PMC11322605 DOI: 10.1093/ismejo/wrae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/05/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Insects engage in manifold interactions with bacteria that can shift along the parasitism-mutualism continuum. However, only a small number of bacterial taxa managed to successfully colonize a wide diversity of insects, by evolving mechanisms for host-cell entry, immune evasion, germline tropism, reproductive manipulation, and/or by providing benefits to the host that stabilize the symbiotic association. Here, we report on the discovery of an Enterobacterales endosymbiont (Symbiodolus, type species Symbiodolus clandestinus) that is widespread across at least six insect orders and occurs at high prevalence within host populations. Fluorescence in situ hybridization in several Coleopteran and one Dipteran species revealed Symbiodolus' intracellular presence in all host life stages and across tissues, with a high abundance in female ovaries, indicating transovarial vertical transmission. Symbiont genome sequencing across 16 host taxa revealed a high degree of functional conservation in the eroding and transposon-rich genomes. All sequenced Symbiodolus genomes encode for multiple secretion systems, alongside effectors and toxin-antitoxin systems, which likely facilitate host-cell entry and interactions with the host. However, Symbiodolus-infected insects show no obvious signs of disease, and biosynthetic pathways for several amino acids and cofactors encoded by the bacterial genomes suggest that the symbionts may also be able to provide benefits to the hosts. A lack of host-symbiont cospeciation provides evidence for occasional horizontal transmission, so Symbiodolus' success is likely based on a mixed transmission mode. Our findings uncover a hitherto undescribed and widespread insect endosymbiont that may present valuable opportunities to unravel the molecular underpinnings of symbiosis establishment and maintenance.
Collapse
Affiliation(s)
- Jürgen C Wierz
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Philipp Dirksen
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Roy Kirsch
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ronja Krüsemer
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Benjamin Weiss
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Yannick Pauchet
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Tobias Engl
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Martin Kaltenpoth
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
5
|
Fricke LC, Lindsey ARI. Examining Wolbachia-Induced Parthenogenesis in Hymenoptera. Methods Mol Biol 2024; 2739:55-68. [PMID: 38006545 PMCID: PMC11216367 DOI: 10.1007/978-1-0716-3553-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The maternally transmitted reproductive manipulator Wolbachia can impact sex ratios of its arthropod host by different mechanisms, ultimately promoting the spread of infection across a population. One of these reproductive phenotypes, parthenogenesis induction (PI), is characterized by the asexual production of female offspring, which in many cases results in an entirely female population. Cases of Wolbachia-mediated PI are most common in the order Hymenoptera, specifically in parasitoid wasps. The complex sex determination pathways of hymenopterans, their diverse life histories, the multiple cytogenetic mechanisms of PI, and the lack of males make functional studies of parthenogenesis induction challenging. Here, we describe the mechanisms of PI, outline methods to recognize and cure PI-Wolbachia infection, and note possible complications when working with PI-Wolbachia strains and their parthenogenetic hosts.
Collapse
Affiliation(s)
- Laura C Fricke
- Department of Entomology, University of Minnesota, Saint Paul, MN, USA
| | | |
Collapse
|
6
|
Beliavskaia A, Tan KK, Sinha A, Husin NA, Lim FS, Loong SK, Bell-Sakyi L, Carlow CKS, AbuBakar S, Darby AC, Makepeace BL, Khoo JJ. Metagenomics of culture isolates and insect tissue illuminate the evolution of Wolbachia, Rickettsia and Bartonella symbionts in Ctenocephalides spp. fleas. Microb Genom 2023; 9:mgen001045. [PMID: 37399133 PMCID: PMC10438800 DOI: 10.1099/mgen.0.001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 07/05/2023] Open
Abstract
While fleas are often perceived simply as a biting nuisance and a cause of allergic dermatitis, they represent important disease vectors worldwide, especially for bacterial zoonoses such as plague (transmitted by rodent fleas) and some of the rickettsioses and bartonelloses. The cosmopolitan cat (Ctenocephalides felis ) and dog (Ctenocephalides canis ) fleas, as well as Ctenocephalides orientis (restricted to tropical and subtropical Asia), breed in human dwellings and are vectors of cat-scratch fever (caused by Bartonella spp.) and Rickettsia spp., including Rickettsia felis (agent of flea-borne spotted fever) and Rickettsia asembonensis , a suspected pathogen. These Rickettsia spp. are members of a phylogenetic clade known as the ‘transitional group’, which includes both human pathogens and arthropod-specific endosymbionts. The relatively depauperate flea microbiome can also contain other endosymbionts, including a diverse range of Wolbachia strains. Here, we present circularized genome assemblies for two C. orientis -derived pathogens (Bartonella clarridgeiae and R. asembonensis ) from Malaysia, a novel Wolbachia strain (w Cori), and the C. orientis mitochondrion; all were obtained by direct metagenomic sequencing of flea tissues. Moreover, we isolated two Wolbachia strains from Malaysian C. felis into tick cell culture and recovered circularized genome assemblies for both, one of which (w CfeF) is newly sequenced. We demonstrate that the three Wolbachia strains are representatives of different major clades (‘supergroups’), two of which appear to be flea-specific. These Wolbachia genomes exhibit unique combinations of features associated with reproductive parasitism or mutualism, including prophage WO, cytoplasmic incompatibility factors and the biotin operon of obligate intracellular microbes. The first circularized assembly for R. asembonensis includes a plasmid with a markedly different structure and gene content compared to the published plasmid; moreover, this novel plasmid was also detected in cat flea metagenomes from the USA. Analysis of loci under positive selection in the transitional group revealed genes involved in host–pathogen interactions that may facilitate host switching. Finally, the first B. clarridgeiae genome from Asia exhibited large-scale genome stability compared to isolates from other continents, except for SNPs in regions predicted to mediate interactions with the vertebrate host. These findings highlight the paucity of data on the genomic diversity of Ctenocephalides -associated bacteria and raise questions regarding how interactions between members of the flea microbiome might influence vector competence.
Collapse
Affiliation(s)
- Alexandra Beliavskaia
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kim-Kee Tan
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, 01938, USA
| | - Nurul Aini Husin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Fang Shiang Lim
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shih Keng Loong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | | | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Higher Institution Centre of Excellence (HICoE), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Alistair C. Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Benjamin L. Makepeace
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Jing Jing Khoo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| |
Collapse
|
7
|
Merlin BL, Moraes GJ, Cônsoli FL. The Microbiota of a Mite Prey-Predator System on Different Host Plants Are Characterized by Dysbiosis and Potential Functional Redundancy. MICROBIAL ECOLOGY 2023; 85:1590-1607. [PMID: 35543735 DOI: 10.1007/s00248-022-02032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/02/2022] [Indexed: 05/10/2023]
Abstract
Microbiota has diverse roles in the life cycles of their hosts, affecting their growth, development, behavior, and reproduction. Changes in physiological conditions of the host can also impact the assemblage of host-associated microorganisms. However, little is known of the effects of host plant-prey-predatory mite interactions on mite microbiota. We compared the microbial communities of eggs and adult females of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), and of adult females of the predatory mite Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) on four different host plants (cotton, maize, pinto bean, and tomato) by metabarcoding sequencing of the V3-V4 region of the 16S ribosomal RNA gene (16S rRNA), using the Illumina MiSeq platform. Only the egg microbiota of T. urticae was affected by the host plant. The microbiota of the predatory mite N. californicus was very different from that of its prey, and the predator microbiota was unaffected by the different host plant-prey systems tested. Only the microbiota of the eggs of T. urticae carried Serratia as a high fidelity-biomarker, but their low abundance in T. urticae adult females suggests that the association between Serratia and T. urticae is accidental. Biomarker bacteria were also detected in the microbiota of adult females of T. urticae and N. californicus, with different biomarkers in each host plant species. The microbiota associated with eggs and adult females of T. urticae and adult females of N. californicus differed in their functional potential contributions to the host mite.
Collapse
Affiliation(s)
- Bruna Laís Merlin
- Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, SP, Brazil.
| | - Gilberto J Moraes
- Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, SP, Brazil
- CNPq, Federal District, Brazil
| | - Fernando L Cônsoli
- Department of Entomology and Acarology, College of Agriculture Luiz de Queiroz, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
8
|
Vihinen M. Individual Genetic Heterogeneity. Genes (Basel) 2022; 13:1626. [PMID: 36140794 PMCID: PMC9498725 DOI: 10.3390/genes13091626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22184 Lund, Sweden
| |
Collapse
|
9
|
Schultz DL, Selberherr E, Stouthamer CM, Doremus MR, Kelly SE, Hunter MS, Schmitz-Esser S. Sex-based de novo transcriptome assemblies of the parasitoid wasp Encarsia suzannae, a host of the manipulative heritable symbiont Cardinium hertigii. GIGABYTE 2022; 2022:gigabyte68. [PMID: 36824530 PMCID: PMC9693781 DOI: 10.46471/gigabyte.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
Parasitoid wasps in the genus Encarsia are commonly used as biological pest control agents of whiteflies and armored scale insects in greenhouses or the field. They are also hosts of the bacterial endosymbiont Cardinium hertigii, which can cause reproductive manipulation phenotypes, including parthenogenesis, feminization, and cytoplasmic incompatibility (the last is mainly studied in Encarsia suzannae). Despite their biological and economic importance, there are no published Encarsia genomes and only one public transcriptome. Here, we applied a mapping-and-removal approach to eliminate known contaminants from previously-obtained Illumina sequencing data. We generated de novo transcriptome assemblies for both female and male E. suzannae which contain 45,986 and 54,762 final coding sequences, respectively. Benchmarking Single-Copy Orthologs results indicate both assemblies are highly complete. Preliminary analyses revealed the presence of homologs of sex-determination genes characterized in other insects and putative venom proteins. Our male and female transcriptomes will be valuable tools to better understand the biology of Encarsia and their evolutionary relatives, particularly in studies involving insects of only one sex.
Collapse
Affiliation(s)
- Dylan L. Schultz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| | - Evelyne Selberherr
- Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | - Matthew R. Doremus
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Suzanne E. Kelly
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Martha S. Hunter
- Department of Entomology, The University of Arizona, Tucson, AZ 85721, USA
| | - Stephan Schmitz-Esser
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Abstract
Insects have evolved highly diverse genetic sex-determination mechanisms and a relatively balanced male to female sex ratio is generally expected. However, selection may shift the optimal sex ratio while meiotic drive and endosymbiont manipulation can result in sex ratio distortion (SRD). Recent advances in sex chromosome genomics and CRISPR/Cas9-mediated genome editing brought significant insights into the molecular regulators of sex determination in an increasing number of insects and provided new ways to engineer SRD. We review these advances and discuss both naturally occurring and engineered SRD in the context of the Anthropocene. We emphasize SRD-mediated biological control of insects to help improve One Health, sustain agriculture, and conserve endangered species.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Ma WJ, Pannebakker BA, Li X, Geuverink E, Anvar SY, Veltsos P, Schwander T, van de Zande L, Beukeboom LW. A single QTL with large effect is associated with female functional virginity in an asexual parasitoid wasp. Mol Ecol 2021; 30:1979-1992. [PMID: 33638236 PMCID: PMC8252104 DOI: 10.1111/mec.15863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
During the transition from sexual to asexual reproduction, a suite of reproduction-related sexual traits become superfluous, and may be selected against if costly. Female functional virginity refers to asexual females resisting to mate or not fertilizing eggs after mating. These traits appear to be among the first that evolve during transitions from sexual to asexual reproduction. The genetic basis of female functional virginity remains elusive. Previously, we reported that female functional virginity segregates as expected for a single recessive locus in the asexual parasitoid wasp Asobara japonica. Here, we investigate the genetic basis of this trait by quantitative trait loci (QTL) mapping and candidate gene analyses. Consistent with the segregation of phenotypes, we found a single QTL of large effect, spanning over 4.23 Mb and comprising at least 131 protein-coding genes, of which 15 featured sex-biased expression in the related sexual species Asobara tabida. Two of the 15 sex-biased genes were previously identified to differ between related sexual and asexual population/species: CD151 antigen and nuclear pore complex protein Nup50. A third gene, hormone receptor 4, is involved in steroid hormone mediated mating behaviour. Overall, our results are consistent with a single locus, or a cluster of closely linked loci, underlying rapid evolution of female functional virginity in the transition to asexuality. Once this variant, causing rejection to mate, has swept through a population, the flanking region does not get smaller owing to lack of recombination in asexuals.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | - Bart A Pannebakker
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
| | - Xuan Li
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Paris Veltsos
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Wedell N. Selfish genes and sexual selection: the impact of genomic parasites on host reproduction. J Zool (1987) 2020. [DOI: 10.1111/jzo.12780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- N. Wedell
- Biosciences University of Exeter, Penryn Campus Penryn UK
| |
Collapse
|
13
|
Amterat Abu Abayed F, Manor R, Aflalo ED, Sagi A. Screening for Dmrt genes from embryo to mature Macrobrachium rosenbergii prawns. Gen Comp Endocrinol 2019; 282:113205. [PMID: 31201800 DOI: 10.1016/j.ygcen.2019.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 01/19/2023]
Abstract
The doublesex and mab-3 related transcription factor (Dmrt) gene family is known to be related to the sexual regulators doublesex of arthropods and mab-3 of annelids and to hold highly conserved functions in sexual determination and differentiation across phyla. Here, we report a study of the Dmrt gene family in the freshwater prawn Macrobrachium rosenbergii, a crustacean whose sexual differentiation has been widely researched. A wide transcriptomic screen, from the embryo to the adult M. rosenbergii, identified five novel Dmrt genes (MroDmrts) and confirmed two known MroDmrts. The seven MroDmrts encode proteins of 275-855 amino acids; each protein contained at least one conserved DNA-binding DM domain, which is typical of Dmrt proteins, and five proteins contained 1-4 transactivation domains (TADs). Importantly, in the embryonic, larval and post-larval stages, MroDmrt genes exhibited time-dependent expression patterns rather than sex-specific expression. In-silico screening of the expression of the MroDmrt genes in adult males revealed the enrichment of MroiDmrt1b and MroiDmrt1c in the androgenic gland (AG) as compared to the eyestalks. In vivo silencing of the androgenic gland insulin-like (IAG) encoding gene significantly decreased the expression of the above two Dmrt genes, while not affecting the expression of control genes, thereby suggesting the possible role of these two genes in the IAG-switch and in sex-differentiation processes.
Collapse
Affiliation(s)
- Faiza Amterat Abu Abayed
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-5 Sheva 84105, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-5 Sheva 84105, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
| | - Eliahu D Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-5 Sheva 84105, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-5 Sheva 84105, Israel; National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel.
| |
Collapse
|
14
|
El-Deeb O. Digest: Fitness costs of Spiroplasma infection in pea aphids. Evolution 2019; 73:1490-1491. [PMID: 31124129 DOI: 10.1111/evo.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 12/01/2022]
Abstract
Endosymbionts sometimes help their hosts resist parasites, but does infection of pea aphids (Acyrthosiphon pisum) with different strains of the endosymbiont Spiroplasma confer fitness benefits that offset the costs? Mathé-Hubert et al. found that across four life-history traits, Spiroplasma infection induced negative effects on host fitness when compared to controls. Only two of 12 strains of Spiroplasma showed a marginal protective effect against host parasitism by Aphidius ervi, implying Spiroplasma infection is almost entirely detrimental to pea aphid host fitness.
Collapse
Affiliation(s)
- Omar El-Deeb
- Department of Biology, Western University, London, Ontario, Canada
| |
Collapse
|
15
|
Gonadal transcriptomic analysis and identification of candidate sex-related genes in Mesocentrotus nudus. Gene 2019; 698:72-81. [DOI: 10.1016/j.gene.2019.02.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/14/2022]
|
16
|
Brinker P, Fontaine MC, Beukeboom LW, Falcao Salles J. Host, Symbionts, and the Microbiome: The Missing Tripartite Interaction. Trends Microbiol 2019; 27:480-488. [PMID: 30857919 DOI: 10.1016/j.tim.2019.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 01/30/2023]
Abstract
Symbiosis between microbial associates and a host is a ubiquitous feature of life on earth, modulating host phenotypes. In addition to endosymbionts, organisms harbour a collection of host-associated microbes, the microbiome that can impact important host traits. In this opinion article we argue that the mutual influences of the microbiome and endosymbionts, as well as their combined influence on the host, are still understudied. Focusing on the endosymbiont Wolbachia, we present growing evidence indicating that host phenotypic effects are exerted in interaction with the remainder microbiome and the host. We thus advocate that only through an integrated approach that considers multiple interacting partners and environmental influences will we be able to gain a better understanding of host-microbe associations.
Collapse
Affiliation(s)
- Pina Brinker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands.
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands; MIVEGEC, UMR IRD, CNRS, University of Montpellier, Montpellier, France
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands.
| |
Collapse
|
17
|
Treanor D, Pamminger T, Hughes WOH. The evolution of caste-biasing symbionts in the social hymenoptera. INSECTES SOCIAUX 2018; 65:513-519. [PMID: 30416203 PMCID: PMC6208631 DOI: 10.1007/s00040-018-0638-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/27/2018] [Accepted: 06/15/2018] [Indexed: 06/09/2023]
Abstract
The separation of individuals into reproductive and worker castes is the defining feature of insect societies. However, caste determination is itself a complex phenomenon, dependent on interacting genetic and environmental factors. It has been suggested by some authors that widespread maternally transmitted symbionts such as Wolbachia may be selected to interfere with caste determination, whilst others have discounted this possibility on theoretical grounds. We argue that there are in fact three distinct evolutionary scenarios in which maternally transmitted symbionts might be selected to influence the process of caste determination in a social hymenopteran host. Each of these scenarios generate testable predictions which we outline here. Given the increasing recognition of the complexity and multi-faceted nature of caste determination in social insects, we argue that maternally transmitted symbionts should also be considered as possible factors influencing the development of social hymenopterans.
Collapse
Affiliation(s)
- D. Treanor
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - T. Pamminger
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - W. O. H. Hughes
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| |
Collapse
|
18
|
Duplouy A, Hornett EA. Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ 2018; 6:e4629. [PMID: 29761037 PMCID: PMC5947162 DOI: 10.7717/peerj.4629] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/27/2018] [Indexed: 12/18/2022] Open
Abstract
The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host’s body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed by heritable endosymbionts, with the mechanisms underlying male-killing and feminisation currently being elucidated in moths and butterflies. We also reveal that the vast majority of research undertaken of Lepidopteran endosymbionts concerns Wolbachia. While this highly prevalent bacterium is undoubtedly important, studies should move towards investigating the presence of other, and interacting endosymbionts, and we discuss the merits of examining the microbiome of Lepidoptera to this end. We finally consider the importance of understanding the influence of endosymbionts under global environmental change and when planning conservation management of endangered Lepidoptera species.
Collapse
Affiliation(s)
- Anne Duplouy
- Organismal and Evolutionary Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Emily A Hornett
- Department of Zoology, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Zhang Y, Yang K, Zhu Y, Hong X. Symbiont-conferred reproduction and fitness benefits can favour their host occurrence. Ecol Evol 2018; 8:1626-1633. [PMID: 29435238 PMCID: PMC5792590 DOI: 10.1002/ece3.3784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022] Open
Abstract
Double infections of Wolbachia and Spiroplasma are frequent in natural populations of Tetranychus truncatus, a polyphagous mite species that has been a dominant species in China since 2009. However, little is known about the causes and ecological importance of such coexistences. In this study, we established T. truncatus strains with different infection types and then inferred the impact of the two endosymbionts on host reproduction and fitness. Double infection induced cytoplasmic incompatibility, which was demonstrated by reduction in egg hatchability of incompatible crosses. However, doubly infected females produced more eggs relative to other strains. Wolbachia and Spiroplasma did not affect host survival, whereas doubly infected females and males developed faster than other strains. Such reproduction and fitness benefits provided by double infections may be associated with the lower densities of each symbiont, and the quantitative results also confirmed competition between Wolbachia and Spiroplasma in doubly infected females. These symbiont-conferred beneficial effects maintain stable prevalence of the symbionts and also help drive T. truncatus outbreaks in combination with other environmental factors.
Collapse
Affiliation(s)
- Yan‐Kai Zhang
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
- College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Kun Yang
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Yu‐Xi Zhu
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| | - Xiao‐Yue Hong
- Department of EntomologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
20
|
Zélé F, Weill M, Magalhães S. Identification of spider-mite species and their endosymbionts using multiplex PCR. EXPERIMENTAL & APPLIED ACAROLOGY 2018; 74:123-138. [PMID: 29435771 DOI: 10.1007/s10493-018-0224-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.
Collapse
Affiliation(s)
- Flore Zélé
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal.
| | - Mylène Weill
- Institut des Sciences de l'Evolution, CNRS-Université de Montpellier-IRD-EPHE, 34095, Montpellier, Cedex 5, France
| | - Sara Magalhães
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Edificio C2, Piso-3 Campo Grande, 1749016, Lisbon, Portugal
| |
Collapse
|
21
|
Eleftherianos I, Yadav S, Kenney E, Cooper D, Ozakman Y, Patrnogic J. Role of Endosymbionts in Insect-Parasitic Nematode Interactions. Trends Parasitol 2017; 34:430-444. [PMID: 29150386 DOI: 10.1016/j.pt.2017.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/12/2017] [Accepted: 10/19/2017] [Indexed: 12/12/2022]
Abstract
Endosymbiotic bacteria exist in many animals where they develop relationships that affect certain physiological processes in the host. Insects and their nematode parasites form great models for understanding the genetic and molecular basis of immune and parasitic processes. Both organisms contain endosymbionts that possess the ability to interfere with certain mechanisms of immune function and pathogenicity. This review summarizes recent information on the involvement of insect endosymbionts in the response to parasitic nematode infections, and the influence of nematode endosymbionts on specific aspects of the insect immune system. Analyzing this information will be particularly useful for devising endosymbiont-based strategies to intervene in insect immunity or nematode parasitism for the efficient management of noxious insects in the field.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| | - Shruti Yadav
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Eric Kenney
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Dustin Cooper
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Yaprak Ozakman
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Jelena Patrnogic
- Insect Infection and Immunity Laboratory, Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| |
Collapse
|
22
|
Drezen JM, Josse T, Bézier A, Gauthier J, Huguet E, Herniou EA. Impact of Lateral Transfers on the Genomes of Lepidoptera. Genes (Basel) 2017; 8:E315. [PMID: 29120392 PMCID: PMC5704228 DOI: 10.3390/genes8110315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022] Open
Abstract
Transfer of DNA sequences between species regardless of their evolutionary distance is very common in bacteria, but evidence that horizontal gene transfer (HGT) also occurs in multicellular organisms has been accumulating in the past few years. The actual extent of this phenomenon is underestimated due to frequent sequence filtering of "alien" DNA before genome assembly. However, recent studies based on genome sequencing have revealed, and experimentally verified, the presence of foreign DNA sequences in the genetic material of several species of Lepidoptera. Large DNA viruses, such as baculoviruses and the symbiotic viruses of parasitic wasps (bracoviruses), have the potential to mediate these transfers in Lepidoptera. In particular, using ultra-deep sequencing, newly integrated transposons have been identified within baculovirus genomes. Bacterial genes have also been acquired by genomes of Lepidoptera, as in other insects and nematodes. In addition, insertions of bracovirus sequences were present in the genomes of certain moth and butterfly lineages, that were likely corresponding to rearrangements of ancient integrations. The viral genes present in these sequences, sometimes of hymenopteran origin, have been co-opted by lepidopteran species to confer some protection against pathogens.
Collapse
Affiliation(s)
- Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Jérémy Gauthier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Elisabeth Anne Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| |
Collapse
|
23
|
Hubert J, Erban T, Kopecky J, Sopko B, Nesvorna M, Lichovnikova M, Schicht S, Strube C, Sparagano O. Comparison of Microbiomes between Red Poultry Mite Populations (Dermanyssus gallinae): Predominance of Bartonella-like Bacteria. MICROBIAL ECOLOGY 2017; 74:947-960. [PMID: 28534089 DOI: 10.1007/s00248-017-0993-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/01/2017] [Indexed: 05/09/2023]
Abstract
Blood feeding red poultry mites (RPM) serve as vectors of pathogenic bacteria and viruses among vertebrate hosts including wild birds, poultry hens, mammals, and humans. The microbiome of RPM has not yet been studied by high-throughput sequencing. RPM eggs, larvae, and engorged adult/nymph samples obtained in four poultry houses in Czechia were used for microbiome analyses by Illumina amplicon sequencing of the 16S ribosomal RNA (rRNA) gene V4 region. A laboratory RPM population was used as positive control for transcriptome analysis by pyrosequencing with identification of sequences originating from bacteria. The samples of engorged adult/nymph stages had 100-fold more copies of 16S rRNA gene copies than the samples of eggs and larvae. The microbiome composition showed differences among the four poultry houses and among observed developmental stadia. In the adults' microbiome 10 OTUs comprised 90 to 99% of all sequences. Bartonella-like bacteria covered between 30 and 70% of sequences in RPM microbiome and 25% bacterial sequences in transcriptome. The phylogenetic analyses of 16S rRNA gene sequences revealed two distinct groups of Bartonella-like bacteria forming sister groups: (i) symbionts of ants; (ii) Bartonella genus. Cardinium, Wolbachia, and Rickettsiella sp. were found in the microbiomes of all tested stadia, while Spiroplasma eriocheiris and Wolbachia were identified in the laboratory RPM transcriptome. The microbiomes from eggs, larvae, and engorged adults/nymphs differed. Bartonella-like symbionts were found in all stadia and sampling sites. Bartonella-like bacteria was the most diversified group within the RPM microbiome. The presence of identified putative pathogenic bacteria is relevant with respect to human and animal health issues while the identification of symbiontic bacteria can lead to new control methods targeting them to destabilize the arthropod host.
Collapse
Affiliation(s)
- Jan Hubert
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, 161 06, Czechia.
| | - Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, 161 06, Czechia
| | - Jan Kopecky
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, 161 06, Czechia
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, 161 06, Czechia
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84/1, Prague, 5150 06, Czechia
| | - Marta Nesvorna
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, 161 06, Czechia
| | - Martina Lichovnikova
- Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1665/1, Brno, 61 300, Czechia
| | - Sabine Schicht
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Olivier Sparagano
- Vice-Chancellor Office, Centre for Applied Biological and Exercise Sciences, Coventry University, Priory Street, Coventry, CV1 5FB, UK
| |
Collapse
|
24
|
Amat I, van Alphen JJ, Kacelnik A, Desouhant E, Bernstein C. Adaptations to different habitats in sexual and asexual populations of parasitoid wasps: a meta-analysis. PeerJ 2017; 5:e3699. [PMID: 28924495 PMCID: PMC5600175 DOI: 10.7717/peerj.3699] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Coexistence of sexual and asexual populations remains a key question in evolutionary ecology. We address the question how an asexual and a sexual form of the parasitoid Venturia canescens can coexist in southern Europe. We test the hypothesis that both forms are adapted to different habitats within their area of distribution. Sexuals inhabit natural environments that are highly unpredictable, and where density of wasps and their hosts is low and patchily distributed. Asexuals instead are common in anthropic environments (e.g., grain stores) where host outbreaks offer periods when egg-load is the main constraint on reproductive output. METHODS We present a meta-analysis of known adaptations to these habitats. Differences in behavior, physiology and life-history traits between sexual and asexual wasps were standardized in term of effect size (Cohen's d value; Cohen, 1988). RESULTS Seeking consilience from the differences between multiple traits, we found that sexuals invest more in longevity at the expense of egg-load, are more mobile, and display higher plasticity in response to thermal variability than asexual counterparts. DISCUSSION Thus, each form has consistent multiple adaptations to the ecological circumstances in the contrasting environments.
Collapse
Affiliation(s)
- Isabelle Amat
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| | | | - Alex Kacelnik
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Desouhant
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| | - Carlos Bernstein
- UMR CNRS 5558 Biométrie et Biologie Evolutive, Univ Lyon; Université Claude Bernard (Lyon I), Villeurbanne, France
| |
Collapse
|
25
|
Ma WJ, Schwander T. Patterns and mechanisms in instances of endosymbiont-induced parthenogenesis. J Evol Biol 2017; 30:868-888. [PMID: 28299861 DOI: 10.1111/jeb.13069] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/05/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Female-producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont-induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56-75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo-diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont-induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one-third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont-induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont-induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont-induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont-induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis.
Collapse
Affiliation(s)
- W-J Ma
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - T Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Nguyen DT, Morrow JL, Spooner-Hart RN, Riegler M. Independent cytoplasmic incompatibility induced byCardiniumandWolbachiamaintains endosymbiont coinfections in haplodiploid thrips populations. Evolution 2017; 71:995-1008. [DOI: 10.1111/evo.13197] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Duong T. Nguyen
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Jennifer L. Morrow
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Robert N. Spooner-Hart
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
- School of Science and Health; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| | - Markus Riegler
- Hawkesbury Institute for the Environment; Western Sydney University; Locked Bag 1797 Penrith NSW 2751 Australia
| |
Collapse
|
27
|
Johnson KN. The Impact of Wolbachia on Virus Infection in Mosquitoes. Viruses 2015; 7:5705-17. [PMID: 26556361 PMCID: PMC4664976 DOI: 10.3390/v7112903] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/07/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022] Open
Abstract
Mosquito-borne viruses such as dengue, West Nile and chikungunya viruses cause significant morbidity and mortality in human populations. Since current methods are not sufficient to control disease occurrence, novel methods to control transmission of arboviruses would be beneficial. Recent studies have shown that virus infection and transmission in insects can be impeded by co-infection with the bacterium Wolbachia pipientis. Wolbachia is a maternally inherited endosymbiont that is commonly found in insects, including a number of mosquito vector species. In Drosophila, Wolbachia mediates antiviral protection against a broad range of RNA viruses. This discovery pointed to a potential strategy to interfere with mosquito transmission of arboviruses by artificially infecting mosquitoes with Wolbachia. This review outlines research on the prevalence of Wolbachia in mosquito vector species and the impact of antiviral effects in both naturally and artificially Wolbachia-infected mosquitoes.
Collapse
Affiliation(s)
- Karyn N Johnson
- School of Biological Sciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
28
|
Sugimoto TN, Kayukawa T, Shinoda T, Ishikawa Y, Tsuchida T. Misdirection of dosage compensation underlies bidirectional sex-specific death in Wolbachia-infected Ostrinia scapulalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:72-76. [PMID: 26453817 DOI: 10.1016/j.ibmb.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Endosymbiotic bacteria of the genus Wolbachia often manipulate the reproductive system of their hosts to propagate themselves in host populations. Ostrinia scapulalis moths infected with Wolbachia (wSca) produce female-only progeny (sex chromosomes: ZW), whereas females cured of the infection by antibiotic treatment produce male-only progeny (ZZ). The occurrence of female- and male-only progeny has been attributed to the specific death of the opposite sex during embryonic and larval development. In this bidirectional sex-specific lethality, embryos destined to die express a phenotypic sex opposite to their genotypic sex. On the basis of these findings, we suggested that wSca carries a genetic factor that feminizes the male host, the W chromosome of the host has lost its feminizing function, and discordance between the genotypic and phenotypic sexes underlies this sex-specific death. In the present study, we examined whether the failure of dosage compensation was responsible for this sex-specific mortality. Quantitative PCRs showed that Z-linked gene expression levels in embryos destined to die were not properly dosage compensated; they were approximately two-fold higher in the male progeny of wSca-infected females and approximately two-fold lower in the female progeny of infected-and-cured females. These results support our hypothesis that misdirection of dosage compensation underlies the sex-specific death.
Collapse
Affiliation(s)
- Takafumi N Sugimoto
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan.
| | - Takumi Kayukawa
- National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Ohwashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Yukio Ishikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tsutomu Tsuchida
- Graduate School of Science and Engineering, University of Toyama, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
29
|
Abstract
Groundbreaking research on the universality and diversity of microorganisms is now challenging the life sciences to upgrade fundamental theories that once seemed untouchable. To fully appreciate the change that the field is now undergoing, one has to place the epochs and foundational principles of Darwin, Mendel, and the modern synthesis in light of the current advances that are enabling a new vision for the central importance of microbiology. Animals and plants are no longer heralded as autonomous entities but rather as biomolecular networks composed of the host plus its associated microbes, i.e., "holobionts." As such, their collective genomes forge a "hologenome," and models of animal and plant biology that do not account for these intergenomic associations are incomplete. Here, we integrate these concepts into historical and contemporary visions of biology and summarize a predictive and refutable framework for their evaluation. Specifically, we present ten principles that clarify and append what these concepts are and are not, explain how they both support and extend existing theory in the life sciences, and discuss their potential ramifications for the multifaceted approaches of zoology and botany. We anticipate that the conceptual and evidence-based foundation provided in this essay will serve as a roadmap for hypothesis-driven, experimentally validated research on holobionts and their hologenomes, thereby catalyzing the continued fusion of biology's subdisciplines. At a time when symbiotic microbes are recognized as fundamental to all aspects of animal and plant biology, the holobiont and hologenome concepts afford a holistic view of biological complexity that is consistent with the generally reductionist approaches of biology.
Collapse
Affiliation(s)
- Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin R. Theis
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
30
|
Ma WJ, Pannebakker BA, van de Zande L, Schwander T, Wertheim B, Beukeboom LW. Diploid males support a two-step mechanism of endosymbiont-induced thelytoky in a parasitoid wasp. BMC Evol Biol 2015; 15:84. [PMID: 25963738 PMCID: PMC4456809 DOI: 10.1186/s12862-015-0370-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. Results We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7–1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutations in the host genome but that diploid males are most likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development. Conclusions Our new model of endosymbiont-induced thelytoky overthrows the view that certain sex determination mechanisms constrain the evolution of endosymbiont-induced thelytoky in hymenopteran insects. Endosymbionts can cause parthenogenesis through feminization, even in groups in which endosymbiont-diploidized eggs would develop into males following the hosts’ sex determination mechanism. In addition, our model broadens our understanding of the mechanisms by which endosymbionts induce thelytoky to enhance their transmission to the next generation. Importantly, it also provides a novel window to study the yet-poorly known haplodiploid sex determination mechanisms in haplodiploid insects. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0370-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands. .,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Bart A Pannebakker
- Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands.
| | - Louis van de Zande
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Tanja Schwander
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands. .,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Bregje Wertheim
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Leo W Beukeboom
- Evolutionary Genetics, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
31
|
Hornett EA, Moran B, Reynolds LA, Charlat S, Tazzyman S, Wedell N, Jiggins CD, Hurst GDD. The evolution of sex ratio distorter suppression affects a 25 cM genomic region in the butterfly Hypolimnas bolina. PLoS Genet 2014; 10:e1004822. [PMID: 25474676 PMCID: PMC4256269 DOI: 10.1371/journal.pgen.1004822] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022] Open
Abstract
Symbionts that distort their host's sex ratio by favouring the production and survival of females are common in arthropods. Their presence produces intense Fisherian selection to return the sex ratio to parity, typified by the rapid spread of host ‘suppressor’ loci that restore male survival/development. In this study, we investigated the genomic impact of a selective event of this kind in the butterfly Hypolimnas bolina. Through linkage mapping, we first identified a genomic region that was necessary for males to survive Wolbachia-induced male-killing. We then investigated the genomic impact of the rapid spread of suppression, which converted the Samoan population of this butterfly from a 100∶1 female-biased sex ratio in 2001 to a 1∶1 sex ratio by 2006. Models of this process revealed the potential for a chromosome-wide effect. To measure the impact of this episode of selection directly, the pattern of genetic variation before and after the spread of suppression was compared. Changes in allele frequencies were observed over a 25 cM region surrounding the suppressor locus, with a reduction in overall diversity observed at loci that co-segregate with the suppressor. These changes exceeded those expected from drift and occurred alongside the generation of linkage disequilibrium. The presence of novel allelic variants in 2006 suggests that the suppressor was likely to have been introduced via immigration rather than through de novo mutation. In addition, further sampling in 2010 indicated that many of the introduced variants were lost or had declined in frequency since 2006. We hypothesize that this loss may have resulted from a period of purifying selection, removing deleterious material that introgressed during the initial sweep. Our observations of the impact of suppression of sex ratio distorting activity reveal a very wide genomic imprint, reflecting its status as one of the strongest selective forces in nature. The sex ratio of the offspring produced by an individual can be an evolutionary battleground. In many arthropod species, maternally inherited microbes selectively kill male hosts, and the host may in turn evolve strategies to restore the production or survival of males. When males are rare, the intensity of selection on the host may be extreme. We recently observed one such episode, in which the population sex ratio of the butterfly Hypolimnas bolina shifted from 100 females per male to near parity, through the evolution of a suppressor gene. In our current study, we investigate the hypothesis that the strength of selection in this case was so strong that the genomic impact would go well beyond the suppressor gene itself. After mapping the location of the suppressor within the genome of H. bolina, we examined changes in genetic variation at sites on the same chromosome as the suppressor. We show that a broad region of the genome was affected by the spread of the suppressor. Our data also suggest that the selection may have been sufficiently strong to introduce deleterious material into the population, which was later purged by selection.
Collapse
Affiliation(s)
- Emily A. Hornett
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Bruce Moran
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Louise A. Reynolds
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sylvain Charlat
- Laboratory of Biometry and Evolutionary Biology, CNRS - University Lyon, Villeurbanne, France
| | - Samuel Tazzyman
- Faculty of Life Sciences, University College London, London, United Kingdom
- Theoretical Biology, ETH Zürich, Zürich, Switzerland
| | - Nina Wedell
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Chris D. Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Greg D. D. Hurst
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
32
|
Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses. Viruses 2014; 6:4294-313. [PMID: 25393895 PMCID: PMC4246223 DOI: 10.3390/v6114294] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 01/05/2023] Open
Abstract
Diseases caused by arthropod-borne viruses (arboviruses), such as Dengue, West Nile, and Chikungunya, constitute a major global health burden and are increasing in incidence and geographic range. The natural microbiota of insect vectors influences various aspects of host biology, such as nutrition, reproduction, metabolism, and immunity, and recent studies have highlighted the ability of insect-associated bacteria to reduce vector competence for arboviruses and other pathogens. This reduction can occur through mechanisms, such as immune response activation, resource competition, or the production of anti-viral molecules. Studying the interactions between insect vectors and their microbiota is an important step toward developing alternative strategies for arbovirus transmission control.
Collapse
Affiliation(s)
- Natapong Jupatanakul
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Shuzhen Sim
- Genome Institute of Singapore, 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore.
| | - George Dimopoulos
- Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
33
|
Asgharian H, Chang PL, Mazzoglio PJ, Negri I. Wolbachia is not all about sex: male-feminizing Wolbachia alters the leafhopper Zyginidia pullula transcriptome in a mainly sex-independent manner. Front Microbiol 2014; 5:430. [PMID: 25225494 PMCID: PMC4150536 DOI: 10.3389/fmicb.2014.00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022] Open
Abstract
Wolbachia causes the feminization of chromosomally male embryos in several species of crustaceans and insects, including the leafhopper Zyginidia pullula. In contrast to the relatively well-established ecological aspects of male feminization (e.g., sex ratio distortion and its consequences), the underlying molecular mechanisms remain understudied and unclear. We embarked on an exploratory study to investigate the extent and nature of Wolbachia's effect on gene expression pattern in Z. pullula. We sequenced whole transcriptomes from Wolbachia-infected and uninfected adults. 18147 loci were assembled de novo, including homologs of several Drosophila sex determination genes. A number of transcripts were flagged as candidate Wolbachia sequences. Despite the resemblance of Wolbachia-infected chromosomal males to uninfected and infected chromosomal females in terms of sexual morphology and behavior, principal component analysis revealed that gene expression patterns did not follow these sexual phenotype categories. The principal components generated by differentially expressed genes specified a strong sex-independent Wolbachia effect, followed by a weaker Wolbachia-sexual karyotype interaction effect. Approaches to further examine the molecular mechanism of Wolbachia-host interactions have been suggested based on the presented findings.
Collapse
Affiliation(s)
- Hosseinali Asgharian
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Peter J Mazzoglio
- DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino Grugliasco (TO), Italy
| | - Ilaria Negri
- DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino Grugliasco (TO), Italy
| |
Collapse
|
34
|
Genetics of decayed sexual traits in a parasitoid wasp with endosymbiont-induced asexuality. Heredity (Edinb) 2014; 113:424-31. [PMID: 24781809 PMCID: PMC4220718 DOI: 10.1038/hdy.2014.43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/23/2014] [Accepted: 03/27/2014] [Indexed: 12/02/2022] Open
Abstract
Trait decay may occur when selective pressures shift, owing to changes in environment or life style, rendering formerly adaptive traits non-functional or even maladaptive. It remains largely unknown if such decay would stem from multiple mutations with small effects or rather involve few loci with major phenotypic effects. Here, we investigate the decay of female sexual traits, and the genetic causes thereof, in a transition from haplodiploid sexual reproduction to endosymbiont-induced asexual reproduction in the parasitoid wasp Asobara japonica. We take advantage of the fact that asexual females cured of their endosymbionts produce sons instead of daughters, and that these sons can be crossed with sexual females. By combining behavioral experiments with crosses designed to introgress alleles from the asexual into the sexual genome, we found that sexual attractiveness, mating, egg fertilization and plastic adjustment of offspring sex ratio (in response to variation in local mate competition) are decayed in asexual A. japonica females. Furthermore, introgression experiments revealed that the propensity for cured asexual females to produce only sons (because of decayed sexual attractiveness, mating behavior and/or egg fertilization) is likely caused by recessive genetic effects at a single locus. Recessive effects were also found to cause decay of plastic sex-ratio adjustment under variable levels of local mate competition. Our results suggest that few recessive mutations drive decay of female sexual traits, at least in asexual species deriving from haplodiploid sexual ancestors.
Collapse
|