1
|
Dai S, Luo M, Jiang T, Lu M, Zhou X, Zhu S, Han X, Yang F, Wang H, Xu D. Dexamethasone as an emerging environmental pollutant: Disruption of cholesterol-dependent synaptogenesis in the hippocampus and subsequent neurobehavioral impacts in offspring. ENVIRONMENT INTERNATIONAL 2024; 192:109064. [PMID: 39413532 DOI: 10.1016/j.envint.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
When fetuses are exposed to abnormally high levels of glucocorticoids in utero, irreversible damage to neuronal synaptogenesis occurs, leading to long-term cognitive and emotional behavioral abnormalities after birth. In this study, we investigated how maternal exposure to a novel environmental pollutant-synthetic glucocorticoid dexamethasone-affects offspring cognitive and emotional behaviors enduringly. We noted that offspring subjected to maternal dexamethasone exposure (MDE) displayed cognitive and emotional neurobehavioral deficits beginning in infancy, and these impairments persisted into adulthood. The principal mechanism involves MDE-induced damage to hippocampal neuronal synapse formation in the offspring, primarily due to a cholesterol deficiency which destabilizes neuronal membranes, thereby affecting normal synapse formation and ultimately leading to cognitive and emotional deficiencies. Specifically, we demonstrated abnormal activation of glucocorticoid receptors in hippocampal astroglial cells of MDE offspring, which triggers changes in the miR-450a-3p/HAT1/ABCG1 signaling axis, causing impaired cholesterol efflux in astroglial cells and insufficient cholesterol supply to neurons, further impairing synaptogenesis. This research not only underscores the significant impact of prenatal environmental pollutants on long-term health outcomes in offspring but also broadens our understanding of how prenatal exposure to glucocorticoids affects brain development in the progeny, providing new insights for interventions in neurodevelopmental and psychiatric disorders of fetal origin.
Collapse
Affiliation(s)
- Shiyun Dai
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; National Health Commission Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tao Jiang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxi Lu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Sen Zhu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoyi Han
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fang Yang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
2
|
Moloney RA, Palliser HK, Dyson RM, Pavy CL, Berry M, Hirst JJ, Shaw JC. Ongoing effects of preterm birth on the dopaminergic and noradrenergic pathways in the frontal cortex and hippocampus of guinea pigs. Dev Neurobiol 2024; 84:93-110. [PMID: 38526217 DOI: 10.1002/dneu.22937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
Children born preterm have an increased likelihood of developing neurobehavioral disorders such as attention-deficit hyperactivity disorder (ADHD) and anxiety. These disorders have a sex bias, with males having a higher incidence of ADHD, whereas anxiety disorder tends to be more prevalent in females. Both disorders are underpinned by imbalances to key neurotransmitter systems, with dopamine and noradrenaline in particular having major roles in attention regulation and stress modulation. Preterm birth disturbances to neurodevelopment may affect this neurotransmission in a sexually dimorphic manner. Time-mated guinea pig dams were allocated to deliver by preterm induction of labor (gestational age 62 [GA62]) or spontaneously at term (GA69). The resultant offspring were randomized to endpoints as neonates (24 h after term-equivalence age) or juveniles (corrected postnatal day 40, childhood equivalence). Relative mRNA expressions of key dopamine and noradrenaline pathway genes were examined in the frontal cortex and hippocampus and quantified with real-time PCR. Myelin basic protein and neuronal nuclei immunostaining were performed to characterize the impact of preterm birth. Within the frontal cortex, there were persisting reductions in the expression of dopaminergic pathway components that occurred in preterm males only. Conversely, preterm-born females had increased expression of key noradrenergic receptors and a reduction of the noradrenergic transporter within the hippocampus. This study demonstrated that preterm birth results in major changes in dopaminergic and noradrenergic receptor, transporter, and synthesis enzyme gene expression in a sex- and region-based manner that may contribute to the sex differences in susceptibility to neurobehavioral disorders. These findings highlight the need for the development of sex-based treatments for improving these conditions.
Collapse
Affiliation(s)
- Roisin A Moloney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Rebecca M Dyson
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Carlton L Pavy
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Max Berry
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
- Biomedical Research Unit, University of Otago, Wellington, New Zealand
| | - Jonathon J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| | - Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
- Hunter Medical Research Institute, Mothers and Babies Research Centre, Newcastle, Australia
| |
Collapse
|
3
|
Sethi S, Friesen-Waldner LJ, Regnault TRH, McKenzie CA. Quantifying Brain Myelin Water Fraction in a Guinea Pig Model of Spontaneous Intrauterine Growth Restriction. J Magn Reson Imaging 2024. [PMID: 38445838 DOI: 10.1002/jmri.29332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is an obstetrical condition where a fetus has not achieved its genetic potential. A consequence of IUGR is a decrease in brain myelin content. Myelin water imaging (MWI) has been used to assess fetal myelin water fraction (MWF) and might potentially assess myelination changes associated with IUGR. PURPOSE To quantify and compare the MWF of non-IUGR and IUGR fetal guinea pigs (GPs) in late gestation. STUDY TYPE Prospective animal model. ANIMAL MODEL Dunkin-Hartley GP model of spontaneous IUGR (mean ± SD: 60 ± 1.2 days gestation; 19 IUGR, 52 control). FIELD STRENGTH/SEQUENCE Eight spoiled gradient-recalled (SPGR) gradient echo volumes (flip angles [α]: 2°-16°), and two sets of eight balanced steady-state free precession (bSSFP) gradient echo volumes (α: 8° - 64°), at 0° and 180° phase increments, at 3.0 T. ASSESSMENT MWF maps were generated for each fetal GP brain using multicomponent driven equilibrium single pulse observation of T1 /T2 (mcDESPOT). MWF was quantified in the fetal corpus callosum (CC), fornix (FOR), parasagittal white matter (PSW), and whole fetal brain. STATISTICAL TESTS Linear regression was performed between five fetal IUGR markers (body volume, body-to-pregnancy volume ratio, brain-to-liver volume ratio, brain-to-placenta volume ratio, and brain-to-body volume ratio) and MWF (coefficient of determination, R2 ). A t-test with a linear mixed model compared the MWF of non-IUGR and IUGR fetal GPs (significance was determined at α < 0.05). RESULTS The MWF of the control fetuses are (mean ± SD): 0.23 ± 0.02 (CC), 0.31 ± 0.02 (FOR), 0.28 ± 0.02 (PSW), and 0.20 ± 0.01 (whole brain). The MWF of the IUGR fetuses are (mean ± SD): 0.19 ± 0.02 (CC), 0.27 ± 0.01 (FOR), 0.24 ± 0.03 (PSW), and 0.16 ± 0.01 (whole brain). Significant differences in MWF were found between the non-IUGR and IUGR fetuses in every comparison. DATA CONCLUSION The mean MWF of IUGR fetal GPs is significantly lower than non-IUGR fetal GPs. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Simran Sethi
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Timothy R H Regnault
- Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Kühne BA, Gutierrez-Vázquez L, Sánchez Lamelas E, Guardia-Escote L, Pla L, Loreiro C, Gratacós E, Barenys M, Illa M. Lactoferrin/sialic acid prevents adverse effects of intrauterine growth restriction on neurite length: investigations in an in vitro rabbit neurosphere model. Front Cell Neurosci 2023; 17:1116405. [PMID: 37180944 PMCID: PMC10169722 DOI: 10.3389/fncel.2023.1116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Intrauterine growth restriction (IUGR) is a well-known cause of impaired neurodevelopment during life. In this study, we aimed to characterize alterations in neuronal development underlying IUGR and discover strategies to ameliorate adverse neurodevelopment effects by using a recently established rabbit in vitro neurosphere culture. Methods IUGR was surgically induced in pregnant rabbits by ligation of placental vessels in one uterine horn, while the contralateral horn remained unaffected for normal growth (control). At this time point, rabbits were randomly assigned to receive either no treatment, docosahexaenoic acid (DHA), melatonin (MEL), or lactoferrin (LF) until c-section. Neurospheres consisting of neural progenitor cells were obtained from control and IUGR pup's whole brain and comparatively analyzed for the ability to differentiate into neurons, extend neurite length, and form dendritic branching or pre-synapses. We established for the very first time a protocol to cultivate control and IUGR rabbit neurospheres not only for 5 days but under long-term conditions up to 14 days under differentiation conditions. Additionally, an in vitro evaluation of these therapies was evaluated by exposing neurospheres from non-treated rabbits to DHA, MEL, and SA (sialic acid, which is the major lactoferrin compound) and by assessing the ability to differentiate neurons, extend neurite length, and form dendritic branching or pre-synapses. Results We revealed that IUGR significantly increased the neurite length after 5 days of cultivation in vitro, a result in good agreement with previous in vivo findings in IUGR rabbits presenting more complex dendritic arborization of neurons in the frontal cortex. MEL, DHA, and SA decreased the IUGR-induced length of primary dendrites in vitro, however, only SA was able to reduce the total neurite length to control level in IUGR neurospheres. After prenatal in vivo administration of SAs parent compound LF with subsequent evaluation in vitro, LF was able to prevent abnormal neurite extension. Discussion We established for the first time the maintenance of the rabbit neurosphere culture for 14 days under differentiation conditions with increasing complexity of neuronal length and branching up to pre-synaptic formation. From the therapies tested, LF or its major compound, SA, prevents abnormal neurite extension and was therefore identified as the most promising therapy against IUGR-induced changes in neuronal development.
Collapse
Affiliation(s)
- Britta Anna Kühne
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Lara Gutierrez-Vázquez
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Estela Sánchez Lamelas
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laia Guardia-Escote
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laura Pla
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Carla Loreiro
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Marta Barenys
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Miriam Illa
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
5
|
Huang Z, Sun L, Zheng X, Zhang Y, Zhu Y, Chen T, Chen Z, Ja L, OuYang L, Zhu Y, Chen S, Lei W. A neural tract tracing study on synaptic connections for cortical glutamatergic terminals and cervical spinal calretinin neurons in rats. Front Neural Circuits 2023; 17:1086873. [PMID: 37187913 PMCID: PMC10175624 DOI: 10.3389/fncir.2023.1086873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
The cerebral cortex innervates motor neurons in the anterior horn of the spinal cord by regulating of interneurons. At present, nerve tracing, immunohistochemistry, and immunoelectron microscopy are used to explore and confirm the characteristics of synaptic connections between the corticospinal tract (CST) and cervical spinal calretinin (Cr) interneurons. Our morphological results revealed that (1) biotinylated dextran amine labeled (BDA+) fibers from the cerebral cortex primarily presented a contralateral spinal distribution, with a denser distribution in the ventral horn (VH) than in the dorsal horn (DH). An electron microscope (EM) showed that BDA+ terminals formed asymmetric synapses with spinal neurons, and their mean labeling rate was not different between the DH and VH. (2) Cr-immunoreactive (Cr+) neurons were unevenly distributed throughout the spinal gray matter, and were denser and larger in the VH than in the DH. At the single labeling electron microscope (EM) level, the labeling rate of Cr+ dendrites was higher in the VH than in the DH, in which Cr+ dendrites mainly received asymmetric synaptic inputs, and between the VH and DH. (3) Immunofluorescence triple labeling showed obvious apposition points among BDA+ terminals, synaptophysin and Cr+ dendrites, with a higher density in the VH than in the DH. (4) Double labeling in EM, BDA+ terminals and Cr+ dendrites presented the same pattern, BDA+ terminals formed asymmetric synapses either with Cr+ dendrites or Cr negative (Cr-) dendrites, and Cr+ dendrites received either BDA+ terminals or BDA- synaptic inputs. The average percentage of BDA+ terminals targeting Cr+ dendrites was higher in the VH than in the DH, but the percentage of BDA+ terminals targeting Cr- dendrites was prominently higher than that targeting Cr+ dendrites. There was no difference in BDA+ terminal size. The percentage rate for Cr+ dendrites receiving BDA+ terminal inputs was lower than that receiving BDA- terminal inputs, and the BDA+ terminal size was larger than the BDA- terminal size received by Cr+ dendrites. The present morphological results suggested that spinal Cr+ interneurons are involved in the regulatory process of the cortico-spinal pathway.
Collapse
Affiliation(s)
- Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Liping Sun
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuefeng Zheng
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Ye Zhang
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yaxi Zhu
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linju Ja
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yaofeng Zhu
- College of Medicine, Institute of Medical Sciences, Jishou University, Jishou, China
- Yaofeng Zhu, ,
| | - Si Chen
- Department of Human Anatomy, Histology and Embryology, Zunyi Medical University, Zhuhai, China
- Si Chen, ,
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Wanlong Lei, ,
| |
Collapse
|
6
|
Sethi S, Friesen-Waldner LJ, Wade TP, Courchesne M, Nygard K, Sarr O, Sutherland B, Regnault TRH, McKenzie CA. Feasibility of MRI Quantification of Myelin Water Fraction in the Fetal Guinea Pig Brain. J Magn Reson Imaging 2022; 57:1856-1864. [PMID: 36239714 DOI: 10.1002/jmri.28482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Fetal myelination assessment is important for understanding neurodevelopment and neurodegeneration. Myelin water imaging (MWI) quantifies myelin water fraction (MWF), a validated marker for myelin content, and has been used to assess brain myelin in children and neonates. PURPOSE To demonstrate that MWI can quantify MWF in fetal guinea pigs (GPs). STUDY TYPE Animal model. ANIMAL MODEL Nine pregnant, Dunkin-Hartley GPs with 31 fetuses (mean ± standard deviation = 60 ± 1.5 days gestation). FIELD STRENGTH/SEQUENCE 3D spoiled gradient echo and balanced steady-state free precession sequences at 3.0 T. ASSESSMENT MWF maps were reconstructed for maternal and fetal GP brains using the multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) approach. Myelin basic protein (MBP) stain provided histological validation of the MWF. Regions of interest were placed in the maternal corpus callosum (CC), maternal fornix (FOR), fetal CC, and fetal FOR in MWF maps and MBP stains. STATISTICAL TESTS Linear regression between MWF and MBP stain intensity (SI) of all four regions (coefficient of determination, R2 ). A paired t-test compared the MWF of maternal and mean fetal CC, MBP SI of maternal and mean fetal CC, MWF of maternal and mean fetal FOR, MBP SI of maternal and mean fetal FOR. A paired t-test with a linear mixed model compared the MWF of fetal CC and fetal FOR, and MBP SI of fetal CC and fetal FOR. A P value < 0.0083 was considered statistically significant. RESULTS The mean MWF of the analyzed regions are as follows (mean ± standard deviation): 0.338 + 0.016 (maternal CC), 0.340 ± 0.017 (maternal FOR), 0.214 ± 0.016 (fetal CC), and 0.305 ± 0.025 (fetal FOR). MWF correlated with MBP SI in all regions (R2 = 0.81). Significant differences were found between MWF and MBP SI of maternal and fetal CC, and MWF and MBP SI of fetal CC and fetal FOR. DATA CONCLUSION This study demonstrated the feasibility of MWI in assessing fetal brain myelin content. EVIDENCE LEVEL 2 Technical Efficacy: Stage 1.
Collapse
Affiliation(s)
- Simran Sethi
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | | | - Trevor P Wade
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Marc Courchesne
- Biotron Experimental Climate Change Research Centre, Western University, London, Ontario, Canada
| | - Karen Nygard
- Biotron Experimental Climate Change Research Centre, Western University, London, Ontario, Canada
| | - Ousseynou Sarr
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Brian Sutherland
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada.,Division of Maternal, Fetal, and Newborn Health, Children's Health Research Institute, Lawson Health Research Institute, Western University, London, Ontario, Canada
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Division of Maternal, Fetal, and Newborn Health, Children's Health Research Institute, Lawson Health Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
7
|
Serpente P, Zhang Y, Islimye E, Hart-Johnson S, Gould AP. Quantification of fetal organ sparing in maternal low-protein dietary models. Wellcome Open Res 2022; 6:218. [PMID: 35634534 PMCID: PMC9120932 DOI: 10.12688/wellcomeopenres.17124.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Maternal malnutrition can lead to fetal growth restriction. This is often associated with organ sparing and long-lasting physiological dysfunctions during adulthood, although the underlying mechanisms are not yet well understood. Methods: Low protein (LP) dietary models in C57BL/6J mice were used to investigate the proximal effects of maternal malnutrition on fetal organ weights and organ sparing at embryonic day 18.5 (E18.5). Results: Maternal 8% LP diet induced strikingly different degrees of fetal growth restriction in different animal facilities, but adjustment of dietary protein content allowed similar fetal body masses to be obtained. A maternal LP diet that restricted fetal body mass by 40% did not decrease fetal brain mass to the same extent, reflecting positive growth sparing of this organ. Under these conditions, fetal pancreas and liver mass decreased by 60-70%, indicative of negative organ sparing. A series of dietary swaps between LP and standard diets showed that the liver is capable of efficient catch-up growth from as late as E14.5 whereas, after E10.5, the pancreas is not. Conclusions: This study highlights that the reproducibility of LP fetal growth restriction studies between laboratories can be improved by careful calibration of maternal dietary protein content. LP diets that induce 30-40% restriction of prenatal growth provide a good model for fetal organ sparing. For the liver, recovery of growth following protein restriction is efficient throughout fetal development but, for the pancreas, transient LP exposures spanning the progenitor expansion phase lead to an irreversible fetal growth deficit.
Collapse
Affiliation(s)
- Patricia Serpente
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| | - Ying Zhang
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Eva Islimye
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
| | - Sarah Hart-Johnson
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
- Biological Research Facility, The Francis Crick Institute, London, NW1 1AT, UK
| | - Alex P. Gould
- Laboratory of Physiology and Metabolism, The Francis Crick Institute, London, NW1 1AT, UK
- MRC National Institute for Medical Research, UK, Mill Hill, London, NW7 1AA, UK
| |
Collapse
|
8
|
Fessel J. Reversing Alzheimer's disease dementia with clemastine, fingolimod, or rolipram, plus anti-amyloid therapy. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12242. [PMID: 35128031 PMCID: PMC8804619 DOI: 10.1002/trc2.12242] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 12/17/2022]
Abstract
A few anti-amyloid trials offer a slight possibility of preventing progression of cognitive loss, but none has reversed the process. A possible reason is that amyloid may be necessary but insufficient in the pathogenesis of AD, and other causal factors may need addressing in addition to amyloid. It is argued here that drugs addressing myelination and synaptogenesis are the optimum partners for anti-amyloid drugs, since there is much evidence that early in the process that leads to AD, both neural circuits and synaptic activity are dysfunctional. Evidence to support this argument is presented. Evidence is also presented that clemastine, fingolimod, and rolipram, benefit both myelination and synaptogenesis. It is suggested that a regimen that includes one of them plus an anti-amyloid drug, could reverse AD.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Professor of Clinical Medicine, Emeritus, Department of MedicineUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
9
|
Romantsik O, Ross-Munro E, Grönlund S, Holmqvist B, Brinte A, Gerdtsson E, Vallius S, Bruschettini M, Wang X, Fleiss B, Ley D. Severe intraventricular hemorrhage causes long-lasting structural damage in a preterm rabbit pup model. Pediatr Res 2022; 92:403-414. [PMID: 35505079 PMCID: PMC9522590 DOI: 10.1038/s41390-022-02075-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND Intraventricular hemorrhage causes significant lifelong mortality and morbidity, especially in preterm born infants. Progress in finding an effective therapy is stymied by a lack of preterm animal models with long-term follow-up. This study addresses this unmet need, using an established model of preterm rabbit IVH and analyzing outcomes out to 1 month of age. METHODS Rabbit pups were delivered preterm and administered intraperitoneal injection of glycerol at 3 h of life and approximately 58% developed IVH. Neurobehavioral assessment was performed at 1 month of age followed by immunohistochemical labeling of epitopes for neurons, synapses, myelination, and interneurons, analyzed by means of digital quantitation and assessed via two-way ANOVA or Student's t test. RESULTS IVH pups had globally reduced myelin content, an aberrant cortical myelination microstructure, and thinner upper cortical layers (I-III). We also observed a lower number of parvalbumin (PV)-positive interneurons in deeper cortical layers (IV-VI) in IVH animals and reduced numbers of neurons, synapses, and microglia. However, there were no discernable changes in behaviors. CONCLUSIONS We have established in this preterm pup model that long-term changes after IVH include significant wide-ranging alterations to cortical organization and microstructure. Further work to improve the sensitivity of neurocognitive testing in this species at this age may be required. IMPACT This study uses an established animal model of preterm birth, in which the rabbit pups are truly born preterm, with reduced organ maturation and deprivation of maternally supplied trophic factors. This is the first study in preterm rabbits that explores the impacts of severe intraventricular hemorrhage beyond 14 days, out to 1 month of age. Our finding of persisting but subtle global changes including brain white and gray matter will have impact on our understanding of the best path for therapy design and interventions.
Collapse
Affiliation(s)
- Olga Romantsik
- Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185, Lund, Sweden.
| | - Emily Ross-Munro
- grid.1017.70000 0001 2163 3550School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, 3083 VIC Australia
| | - Susanne Grönlund
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | | | | | | | - Suvi Vallius
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | - Matteo Bruschettini
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| | - Xiaoyang Wang
- grid.8761.80000 0000 9919 9582Centre of Perinatal Medicine & Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, 40530 Gothenburg, Sweden ,grid.412719.8Henan Key Laboratory of Child Brain Injury and Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, 3083, VIC, Australia. .,Université de Paris, NeuroDiderot, Inserm, 75019, Paris, France.
| | - David Ley
- grid.4514.40000 0001 0930 2361Department of Clinical Sciences Lund, Division of Pediatrics, Lund University, Skåne University Hospital, 21185 Lund, Sweden
| |
Collapse
|
10
|
Dudink I, Hüppi PS, Sizonenko SV, Castillo-Melendez M, Sutherland AE, Allison BJ, Miller SL. Altered trajectory of neurodevelopment associated with fetal growth restriction. Exp Neurol 2021; 347:113885. [PMID: 34627856 DOI: 10.1016/j.expneurol.2021.113885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/23/2021] [Accepted: 10/02/2021] [Indexed: 12/17/2022]
Abstract
Fetal growth restriction (FGR) is principally caused by suboptimal placental function. Poor placental function causes an under supply of nutrients and oxygen to the developing fetus, restricting development of individual organs and overall growth. Estimated fetal weight below the 10th or 3rd percentile with uteroplacental dysfunction, and knowledge regarding the onset of growth restriction (early or late), provide diagnostic criteria for fetuses at greatest risk for adverse outcome. Brain development and function is altered with FGR, with ongoing clinical and preclinical studies elucidating neuropathological etiology. During the third trimester of pregnancy, from ~28 weeks gestation, neurogenesis is complete and neuronal complexity is expanding, through axonal and dendritic outgrowth, dendritic branching and synaptogenesis, accompanied by myelin production. Fetal compromise over this period, as occurs in FGR, has detrimental effects on these processes. Total brain volume and grey matter volume is reduced in infants with FGR, first evident in utero, with cortical volume particularly vulnerable. Imaging studies show that cerebral morphology is disturbed in FGR, with altered cerebral cortex, volume and organization of brain networks, and reduced connectivity of long- and short-range circuits. Thus, FGR induces a deviation in brain development trajectory affecting both grey and white matter, however grey matter volume is preferentially reduced, contributed by cell loss, and reduced neurite outgrowth of surviving neurons. In turn, cell-to-cell local networks are adversely affected in FGR, and whole brain left and right intrahemispheric connections and interhemispheric connections are altered. Importantly, disruptions to region-specific brain networks are linked to cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Ingrid Dudink
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Petra S Hüppi
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Stéphane V Sizonenko
- Department of Pediatrics, Obstetrics and Gynecology, University of Geneva, Switzerland
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia
| | - Amy E Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Beth J Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Translational Research Facility, Clayton, Victoria, Australia; Department of Obstetrics and Gynecology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
11
|
Abstract
Intrauterine growth restriction is a condition that prevents normal fetal development, and previous studies have reported that intrauterine growth restriction is caused by adverse intrauterine factors. This condition affects both short- and long-term neurodevelopmental disorders. Studies have revealed that neurodevelopmental disorders can contribute to gray and white matter damage and decrease the brain volume of affected individuals. Further, these disorders are associated with increased risks of mental retardation, cognitive impairment, and cerebral palsy, which seriously affect the quality of life. Although the mechanisms underlying the neurologic injury associated with intrauterine growth restriction are not completely clear, studies have revealed that neuronal apoptosis, neuroinflammation, oxidative stress, excitatory toxicity, disruption of blood-brain barrier, and epigenetics may be involved in this process. This article reviews the manifestations and possible mechanisms underlying neurologic injury in intrauterine growth restriction and provides a theoretical basis for the effective prevention and treatment of this condition.
Collapse
Affiliation(s)
- Lijia Wan
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Kaiju Luo
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| | - Pingyang Chen
- Department of Pediatrics, 70566The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Laboratory of Neonatal Disease, Institute of Pediatrics, Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Pla L, Illa M, Loreiro C, Lopez MC, Vázquez-Aristizabal P, Kühne BA, Barenys M, Eixarch E, Gratacós E. Structural Brain Changes during the Neonatal Period in a Rabbit Model of Intrauterine Growth Restriction. Dev Neurosci 2021; 42:217-229. [PMID: 33677448 DOI: 10.1159/000512948] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Intrauterine growth restriction (IUGR) is associated with abnormal neurodevelopment, but the associated structural brain changes are poorly documented. The aim of this study was to describe in an animal model the brain changes at the cellular level in the gray and white matter induced by IUGR during the neonatal period. METHODS The IUGR model was surgically induced in pregnant rabbits by ligating 40-50% of the uteroplacental vessels in 1 horn, whereas the uteroplacental vessels of the contralateral horn were not ligated. After 5 days, IUGR animals from the ligated horn and controls from the nonligated were delivered. On the day of delivery, perinatal data and placentas were collected. On postnatal day 1, functional changes were first evaluated, and thereafter, neuronal arborization in the frontal cortex and density of pre-oligodendrocytes, astrocytes, and microglia in the corpus callosum were evaluated. RESULTS Higher stillbirth in IUGR fetuses together with a reduced birth weight as compared to controls was evidenced. IUGR animals showed poorer functional results, an altered neuronal arborization pattern, and a decrease in the pre-oligodendrocytes, with no differences in microglia and astrocyte densities. CONCLUSIONS Overall, in the rabbit model used, IUGR is related to functional and brain changes evidenced already at birth, including changes in the neuronal arborization and abnormal oligodendrocyte maturation.
Collapse
Affiliation(s)
- Laura Pla
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Illa
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain, .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain,
| | - Carla Loreiro
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mari Carmen Lopez
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Paula Vázquez-Aristizabal
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Britta Anna Kühne
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marta Barenys
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| |
Collapse
|
13
|
Maki Y, Nygard K, Hammond RR, Regnault TRH, Richardson BS. Maternal Undernourishment in Guinea Pigs Leads to Fetal Growth Restriction with Increased Hypoxic Cells and Oxidative Stress in the Brain. Dev Neurosci 2020; 41:290-299. [PMID: 32316015 DOI: 10.1159/000506939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/28/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts markers for brain hypoxia and oxidative stress. METHODS Guinea pigs were fed ad libitum (control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1) was injected into pregnant sows. Fetuses were then necropsied and brain tissues were processed for HP-1 (hypoxia marker) and 4HNE, 8-OHdG, and 3-nitrotyrosine (oxidative stress markers) immunoreactivity (IR). RESULTS FGR-MNR fetal and brain weights were decreased 38 and 12%, respectively, with brain/fetal weights thereby increased 45% as a measure of brain sparing, and more so in males than females. FGR-MNR HP-1 IR was increased in most of the brain regions studied, and more so in males than females, while 4HNE and 8-OHdG IR were increased in select brain regions, but with no sex differences. CONCLUSIONS Chronic hypoxia is likely to be an important signaling mechanism in the FGR brain, but with males showing more hypoxia than females. This may involve sex differences in adaptive decreases in growth and normalizing of oxygen, with implications for sex-specific alterations in brain development and risk for later neuropsychiatric disorder.
Collapse
Affiliation(s)
- Yohei Maki
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, Ontario, Canada
| | - Robert R Hammond
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, Ontario, Canada.,Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.,The Children's Health Research Institute, London, Ontario, Canada
| | - Bryan S Richardson
- Department of Obstetrics and Gynecology, University of Western Ontario, London, Ontario, Canada, .,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada, .,The Children's Health Research Institute, London, Ontario, Canada,
| |
Collapse
|
14
|
Exposure to enriched environment rescues anxiety-like behavior and miRNA deregulated expression induced by perinatal malnutrition while altering oligodendrocyte morphology. Neuroscience 2019; 408:115-134. [PMID: 30904666 DOI: 10.1016/j.neuroscience.2019.03.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Maternal malnutrition is one of the major early-life adversities affecting the development of newborn's brain and is associated with an increased risk to acquire cognitive and emotional deficiencies later in life. Studies in rodents have demonstrated that exposure to an enriched environment (EE) can reverse the negative consequences of early adversities. However, rescue of emotional disorders caused by perinatal malnutrition and the mechanisms involved has not been determined. We hypothesized that exposure to an EE may attenuate the anxiety-like disorders observed in mice subjected to perinatal protein malnutrition and that this could be mediated by epigenetic mechanisms. Male CF-1 mice were subject to perinatal protein malnutrition until weaning and then exposed to an EE for 5 weeks after which small RNA-seq was performed. In parallel, dark-light box and elevated plus maze tests were conducted to evaluate anxiety traits. We found that exposure to an EE reverses the anxiety-like behavior in malnourished mice. This reversal is paralleled by the expression of three miRNAs that become dysregulated by perinatal malnutrition (miR-187-3p, miR-369-3p and miR-132-3p). The predicted mRNA targets of these miRNAs are mostly related to axon guidance pathway. Accordingly, we also found that perinatal malnutrition leads to reduction in the cingulum size and altered oligodendrocyte morphology. These results suggest that EE-rescue of anxiety disorders derived from perinatal malnutrition is mediated by the modulation of miRNAs associated with the regulation of genes involved in axonal guidance.
Collapse
|
15
|
Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with increased brain apoptosis. Pediatr Res 2019; 85:105-112. [PMID: 30420709 DOI: 10.1038/s41390-018-0230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/10/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND We determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts cell death in the brain with implications for neurodevelopmental adversity. METHODS Guinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Fetuses were necropsied near term and brain tissues processed for necrosis (H&E), apoptosis (TUNEL), and pro- (Bax) and anti- (Bcl-2 and Grp78) apoptotic protein immunoreactivity. RESULTS FGR-MNR fetal and brain weights were decreased 38% and 12%, respectively, indicating brain sparing but with brains still smaller. While necrosis remained unchanged, apoptosis was increased in the white matter and hippocampus in the FGR brains, and control and FGR-related apoptosis were increased in males for most brain areas. Bax was increased in the CA4 and Bcl-2 was decreased in the dentate gyrus in the FGR brains supporting a role in the increased apoptosis, while Grp78 was increased in the FGR females, possibly contributing to the sex-related differences. CONCLUSIONS MNR-induced FGR results in increased brain apoptosis with regional and sex-related differences that may contribute to the reduction in brain area size reported clinically and increased risk in FGR males for later neurodevelopmental adversity.
Collapse
|
16
|
Adverse neuropsychiatric development following perinatal brain injury: from a preclinical perspective. Pediatr Res 2019; 85:198-215. [PMID: 30367160 DOI: 10.1038/s41390-018-0222-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Perinatal brain injury is a leading cause of death and disability in young children. Recent advances in obstetrics, reproductive medicine and neonatal intensive care have resulted in significantly higher survival rates of preterm or sick born neonates, at the price of increased prevalence of neurological, behavioural and psychiatric problems in later life. Therefore, the current focus of experimental research shifts from immediate injury processes to the consequences for brain function in later life. The aetiology of perinatal brain injury is multi-factorial involving maternal and also labour-associated factors, including not only placental insufficiency and hypoxia-ischaemia but also exposure to high oxygen concentrations, maternal infection yielding excess inflammation, genetic factors and stress as important players, all of them associated with adverse long-term neurological outcome. Several animal models addressing these noxious stimuli have been established in the past to unravel the underlying molecular and cellular mechanisms of altered brain development. In spite of substantial efforts to investigate short-term consequences, preclinical evaluation of the long-term sequelae for the development of cognitive and neuropsychiatric disorders have rarely been addressed. This review will summarise and discuss not only current evidence but also requirements for experimental research providing a causal link between insults to the developing brain and long-lasting neurodevelopmental disorders.
Collapse
|
17
|
Enhancing Oligodendrocyte Myelination Rescues Synaptic Loss and Improves Functional Recovery after Chronic Hypoxia. Neuron 2018; 99:689-701.e5. [PMID: 30078577 DOI: 10.1016/j.neuron.2018.07.017] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022]
Abstract
To address the significance of enhancing myelination for functional recovery after white matter injury (WMI) in preterm infants, we characterized hypomyelination associated with chronic hypoxia and identified structural and functional deficits of excitatory cortical synapses with a prolonged motor deficit. We demonstrate that genetically delaying myelination phenocopies the synaptic and functional deficits observed in mice after hypoxia, suggesting that myelination may possibly facilitate excitatory presynaptic innervation. As a gain-of-function experiment, we specifically ablated the muscarinic receptor 1 (M1R), a negative regulator of oligodendrocyte differentiation in oligodendrocyte precursor cells. Genetically enhancing oligodendrocyte differentiation and myelination rescued the synaptic loss after chronic hypoxia and promoted functional recovery. As a proof of concept, drug-based myelination therapies also resulted in accelerated differentiation and myelination with functional recovery after chronic hypoxia. Together, our data indicate that myelination-enhancing strategies in preterm infants may represent a promising therapeutic approach for structural/functional recovery after hypoxic WMI.
Collapse
|
18
|
Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with evidence for chronic hypoxia. Pediatr Res 2017; 82:141-147. [PMID: 28376077 DOI: 10.1038/pr.2017.92] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/06/2017] [Indexed: 11/09/2022]
Abstract
BackgroundWe determined whether maternal nutrient restriction (MNR) in guinea pigs leading to fetal growth restriction (FGR) impacts markers for tissue hypoxia, implicating a mechanistic role for chronic hypoxia.MethodsGuinea pigs were fed ad libitum (Control) or 70% of the control diet before pregnancy, switching to 90% at mid-pregnancy (MNR). Near term, hypoxyprobe-1 (HP-1), a marker of tissue hypoxia, was injected into pregnant sows. Fetuses were then necropsied and liver, kidney, and placental tissues were processed for erythropoietin (EPO), EPO-receptor (EPOR), and vascular endothelial growth factor (VEGF) protein levels, and for HP-1 immunoreactivity (IR).ResultsFGR-MNR fetuses were 36% smaller with asymmetrical growth restriction compared to controls. EPO and VEGF protein levels were increased in the female FGR-MNR fetuses, providing support for hypoxic stimulus and linkage to increased erythropoiesis, but not in the male FGR-MNR fetuses, possibly reflecting a weaker link between oxygenation and erythropoiesis. HP-1 IR was increased in the liver and kidneys of both male and female FGR-MNR fetuses as an index of local tissue hypoxia, but with no changes in the placenta.ConclusionChronic hypoxia is likely to be an important signaling mechanism for the decreased fetal growth seen with maternal undernutrition and appears to be post-placental in nature.
Collapse
|
19
|
Goncharova K, Lozinska L, Arevalo Sureda E, Woliński J, Weström B, Pierzynowski S. Importance of neonatal immunoglobulin transfer for hippocampal development and behaviour in the newborn pig. PLoS One 2017; 12:e0180002. [PMID: 28658291 PMCID: PMC5489200 DOI: 10.1371/journal.pone.0180002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 01/02/2023] Open
Abstract
Neurological disorders are among the main clinical problems affecting preterm children and often result in the development of communication and learning disabilities later in life. Several factors are of importance for brain development, however the role of immunoglobulins (passive immunity transfer) has not yet been investigated. Piglets are born agammaglobulinemic, as a result of the lack of transfer of maternal immunoglobulins in utero, thus, they serve as an ideal model to mimic the condition of immunoglobulin deficiency in preterm infants. Thirty six, unsuckled newborn piglets were fed an infant formula or colostrum and supplemented orally or intravenously with either species-specific or foreign immunoglobulin and then compared to both newborn and sow-reared piglets. Two days after the piglets were born behavioural tests (novel recognition and olfactory discrimination of conspecifics scent) were performed, after which the piglets were sacrificed and blood, cerebrospinal fluid and hippocampi samples were collected for analyses. Both parameters of neuronal plasticity (neuronal maturation and synapse-associated proteins) and behavioural test parameters appeared to be improved by the appearance of species-specific porcine immunoglulin in the circulation and cerebrospinal fluid of the piglets. In conclusion, we postulate possible positive clinical effects following intravenous infusion of human immunoglobulin in terms of neuronal plasticity and cognitive function in preterm infants born with low blood immunoglobulin levels.
Collapse
Affiliation(s)
- Kateryna Goncharova
- Department of Biology, Lund University, Lund, Sweden
- R&D Anara AB, Trelleborg, Sweden
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
- * E-mail: ,
| | - Liudmyla Lozinska
- Department of Biology, Lund University, Lund, Sweden
- R&D Anara AB, Trelleborg, Sweden
| | | | - Jarosław Woliński
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Jabłonna, Poland
| | - Björn Weström
- Department of Biology, Lund University, Lund, Sweden
| | - Stefan Pierzynowski
- Department of Biology, Lund University, Lund, Sweden
- R&D Anara AB, Trelleborg, Sweden
- Department of Medical Biology, Institute of Rural Health, Lublin, Poland
| |
Collapse
|
20
|
Effects of combined IUGR and prenatal stress on the development of the hippocampus in a fetal guinea pig model. J Dev Orig Health Dis 2017; 8:584-596. [PMID: 28502262 DOI: 10.1017/s2040174417000307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intrauterine growth restriction (IUGR) and maternal stress during pregnancy are two compromises that negatively impact neurodevelopment and increase the risk of developing later life neuropsychiatric disorders such as schizophrenia, depression and behavioural disorders. Neurosteroids, particularly allopregnanolone, are important in protecting the developing brain and promoting many essential neurodevelopmental processes. Individually, IUGR and prenatal stress (PS) reduce myelination and neurogenesis within affected fetal brains, however less information is available on the combined effects of these two disorders on the term fetal brain. This study aimed to investigate how IUGR and PS impairs the neurosteroid pathway when combined using a guinea pig model, and how these then disrupt the neurodevelopment of the fetus. Uterine artery blood flow restriction was performed at GA30-35 to induce growth restriction, whilst PS was induced by exposure of the dam to a strobe light during gestation commencing GA40 and repeated every 5 days. Exposure in this model caused reductions in hippocampal CA1 MBP immunostaining of male fetuses in both IUGR alone and IUGR+PS paradigms but only by IUGR in the subcortical white mater, compared with control males. Plasma allopregnanolone was reduced by both stressors irrespective of sex, whereas GFAP or MAP2 expression were not affected by either stressor. Female neurodevelopment, as assessed by these markers, was unimpeded by these compromises. The addition of prenatal stress did not further compound these deficits.
Collapse
|
21
|
Hunter DS, Hazel SJ, Kind KL, Owens JA, Pitcher JB, Gatford KL. Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR. Physiol Behav 2016; 164:233-48. [DOI: 10.1016/j.physbeh.2016.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|
22
|
Rideau Batista Novais A, Pham H, Van de Looij Y, Bernal M, Mairesse J, Zana-Taieb E, Colella M, Jarreau PH, Pansiot J, Dumont F, Sizonenko S, Gressens P, Charriaut-Marlangue C, Tanter M, Demene C, Vaiman D, Baud O. Transcriptomic regulations in oligodendroglial and microglial cells related to brain damage following fetal growth restriction. Glia 2016; 64:2306-2320. [PMID: 27687291 DOI: 10.1002/glia.23079] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022]
Abstract
Fetal growth restriction (FGR) is a major complication of human pregnancy, frequently resulting from placental vascular diseases and prenatal malnutrition, and is associated with adverse neurocognitive outcomes throughout life. However, the mechanisms linking poor fetal growth and neurocognitive impairment are unclear. Here, we aimed to correlate changes in gene expression induced by FGR in rats and abnormal cerebral white matter maturation, brain microstructure, and cortical connectivity in vivo. We investigated a model of FGR induced by low-protein-diet malnutrition between embryonic day 0 and birth using an interdisciplinary approach combining advanced brain imaging, in vivo connectivity, microarray analysis of sorted oligodendroglial and microglial cells and histology. We show that myelination and brain function are both significantly altered in our model of FGR. These alterations, detected first in the white matter on magnetic resonance imaging significantly reduced cortical connectivity as assessed by ultrafast ultrasound imaging. Fetal growth retardation was found associated with white matter dysmaturation as shown by the immunohistochemical profiles and microarrays analyses. Strikingly, transcriptomic and gene network analyses reveal not only a myelination deficit in growth-restricted pups, but also the extensive deregulation of genes controlling neuroinflammation and the cell cycle in both oligodendrocytes and microglia. Our findings shed new light on the cellular and gene regulatory mechanisms mediating brain structural and functional defects in malnutrition-induced FGR, and suggest, for the first time, a neuroinflammatory basis for the poor neurocognitive outcome observed in growth-restricted human infants. GLIA 2016;64:2306-2320.
Collapse
Affiliation(s)
- Aline Rideau Batista Novais
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Réanimation et Pédiatrie Néonatales, Groupe Hospitalier Robert Debré, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Hoa Pham
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Yohan Van de Looij
- Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Division of Development and Growth, Department of Child and Adolescent Medicine, Geneva University Hospital and School of Medicine, Geneva, Switzerland
| | - Miguel Bernal
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Jerome Mairesse
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Elodie Zana-Taieb
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France.,Université Paris-Descartes, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Médecine et Réanimation Néonatales de Port-Royal, Groupe Hospitalier Cochin, Broca, Hôtel-Dieu, Paris, France
| | - Marina Colella
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Pierre-Henri Jarreau
- Fondation PremUp, Paris, France.,Université Paris-Descartes, Paris, France.,Assistance Publique - Hôpitaux de Paris, Service de Médecine et Réanimation Néonatales de Port-Royal, Groupe Hospitalier Cochin, Broca, Hôtel-Dieu, Paris, France
| | - Julien Pansiot
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Fondation PremUp, Paris, France
| | - Florent Dumont
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Paris, France
| | - Stéphane Sizonenko
- Division of Development and Growth, Department of Child and Adolescent Medicine, Geneva University Hospital and School of Medicine, Geneva, Switzerland
| | - Pierre Gressens
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Christiane Charriaut-Marlangue
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France.,Université Paris Diderot, Paris, France.,Fondation PremUp, Paris, France
| | - Mickael Tanter
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Charlie Demene
- Institut Langevin, CNRS UMR 7587, Inserm U979, ESPCI ParisTech, PSL Research University, Paris, France
| | - Daniel Vaiman
- Institut Cochin, Inserm U1016, UMR8104 CNRS, Paris, France
| | - Olivier Baud
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1141, Paris, France. .,Assistance Publique - Hôpitaux de Paris, Service de Réanimation et Pédiatrie Néonatales, Groupe Hospitalier Robert Debré, Paris, France. .,Université Paris Diderot, Paris, France. .,Fondation PremUp, Paris, France.
| |
Collapse
|
23
|
Elias AA, Ghaly A, Matushewski B, Regnault TRH, Richardson BS. Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction. Reprod Sci 2015; 23:219-27. [DOI: 10.1177/1933719115602773] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Alexander A. Elias
- Departments of Obstetrics and Gynecology, Physiology and Pharmacology, and Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Andrew Ghaly
- Departments of Obstetrics and Gynecology, Physiology and Pharmacology, and Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Brad Matushewski
- Departments of Obstetrics and Gynecology, Physiology and Pharmacology, and Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Timothy R. H. Regnault
- Departments of Obstetrics and Gynecology, Physiology and Pharmacology, and Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | - Bryan S. Richardson
- Departments of Obstetrics and Gynecology, Physiology and Pharmacology, and Pediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| |
Collapse
|