1
|
Hou M, Wu Y, Xue J, Chen Q, Zhang Y, Zhang R, Yu L, Wang J, Zhou Z, Li X. A predictive model for readmission within 1-year post-discharge in patients with schizophrenia. BMC Psychiatry 2024; 24:573. [PMID: 39174919 PMCID: PMC11340171 DOI: 10.1186/s12888-024-06024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Schizophrenia is a pervasive and severe mental disorder characterized by significant disability and high rates of recurrence. The persistently high rates of readmission after discharge present a serious challenge and source of stress in treating this population. Early identification of this risk is critical for implementing targeted interventions. The present study aimed to develop an easy-to-use predictive instrument for identifying the risk of readmission within 1-year post-discharge among schizophrenia patients in China. METHODS A prediction model, based on static factors, was developed using data from 247 schizophrenia inpatients admitted to the Mental Health Center in Wuxi, China, from July 1 to December 31, 2020. For internal validation, an additional 106 patients were included. Multivariate Cox regression was applied to identify independent predictors and to create a nomogram for predicting the likelihood of readmission within 1-year post-discharge. The model's performance in terms of discrimination and calibration was evaluated using bootstrapping with 1000 resamples. RESULTS Multivariate cox regression demonstrated that involuntary admission (adjusted hazard ratio [aHR] 4.35, 95% confidence interval [CI] 2.13-8.86), repeat admissions (aHR 3.49, 95% CI 2.08-5.85), the prescription of antipsychotic polypharmacy (aHR 2.16, 95% CI 1.34-3.48), and a course of disease ≥ 20 years (aHR 1.80, 95% CI 1.04-3.12) were independent predictors for the readmission of schizophrenia patients within 1-year post-discharge. The area under the curve (AUC) and concordance index (C-index) of the nomogram constructed from these four factors were 0.820 and 0.780 in the training set, and 0.846 and 0.796 for the validation set, respectively. Furthermore, the calibration curves of the nomogram for both the training and validation sets closely approximated the ideal diagonal line. Additionally, decision curve analyses (DCAs) demonstrated a significantly better net benefit with this model. CONCLUSIONS A nomogram, developed using pre-discharge static factors, was designed to predict the likelihood of readmission within 1-year post-discharge for patients with schizophrenia. This tool may offer clinicians an accurate and effective way for the timely prediction and early management of psychiatric readmissions.
Collapse
Affiliation(s)
- Mingru Hou
- Department of General Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China
| | - Yuqing Wu
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China
| | - Jianhua Xue
- Health Screening Center, Shanghai Health and Medical Center, Wuxi, Jiangsu, 214065, China
| | - Qiongni Chen
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan Zhang
- Department of Nursing, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China
| | - Ruifen Zhang
- Department of Geriatric Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China
| | - Libo Yu
- Department of Substance Dependence, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China
| | - Jun Wang
- Department of Clinical Psychology, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi, Jiangsu, 214151, China.
| | - Xianwen Li
- School of Nursing, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
2
|
Meller T, Schmitt S, Ettinger U, Grant P, Stein F, Brosch K, Grotegerd D, Dohm K, Meinert S, Förster K, Hahn T, Jansen A, Dannlowski U, Krug A, Kircher T, Nenadić I. Brain structural correlates of schizotypal signs and subclinical schizophrenia nuclear symptoms in healthy individuals. Psychol Med 2022; 52:342-351. [PMID: 32578531 PMCID: PMC8842196 DOI: 10.1017/s0033291720002044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/23/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Subclinical psychotic-like experiences (PLE), resembling key symptoms of psychotic disorders, are common throughout the general population and possibly associated with psychosis risk. There is evidence that such symptoms are also associated with structural brain changes. METHODS In 672 healthy individuals, we assessed PLE and associated distress with the symptom-checklist-90R (SCL-90R) scales 'schizotypal signs' (STS) and 'schizophrenia nuclear symptoms' (SNS) and analysed associations with voxel- and surfaced-based brain structural parameters derived from structural magnetic resonance imaging at 3 T with CAT12. RESULTS For SNS, we found a positive correlation with the volume in the left superior parietal lobule and the precuneus, and a negative correlation with the volume in the right inferior temporal gyrus [p < 0.05 cluster-level Family Wise Error (FWE-corrected]. For STS, we found a negative correlation with the volume of the left and right precentral gyrus (p < 0.05 cluster-level FWE-corrected). Surface-based analyses did not detect any significant clusters with the chosen statistical threshold of p < 0.05. However, in exploratory analyses (p < 0.001, uncorrected), we found a positive correlation of SNS with gyrification in the left insula and rostral middle frontal gyrus and of STS with the left precuneus and insula, as well as a negative correlation of STS with gyrification in the left temporal pole. CONCLUSIONS Our results show that brain structures in areas implicated in schizophrenia are also related to PLE and its associated distress in healthy individuals. This pattern supports a dimensional model of the neural correlates of symptoms of the psychotic spectrum.
Collapse
Affiliation(s)
- Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Ulrich Ettinger
- Department of Psychology, University of Bonn, Kaiser-Karl-Ring 9, 53111Bonn, Germany
| | - Phillip Grant
- Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528Frankfurt am Main, Germany
- Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
| | - Dominik Grotegerd
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Katharina Dohm
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Susanne Meinert
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Katharina Förster
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Tim Hahn
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| | - Udo Dannlowski
- Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032Marburg, Germany
- Marburg University Hospital – UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany
| |
Collapse
|
3
|
Liu J, Wen F, Yan J, Yu L, Wang F, Wang D, Zhang J, Yan C, Chu J, Li Y, Li Y, Cui Y. Gray Matter Alterations in Pediatric Schizophrenia and Obsessive-Compulsive Disorder: A Systematic Review and Meta-Analysis of Voxel-Based Morphometry Studies. Front Psychiatry 2022; 13:785547. [PMID: 35308883 PMCID: PMC8924120 DOI: 10.3389/fpsyt.2022.785547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The aim of this study is comparing gray matter alterations in SCZ pediatric patients with those suffering from obsessive-compulsive disorder (OCD) based on a systematic review and an activation likelihood estimation (ALE) meta-analysis. METHODS A systematic literature search was performed in PubMed, Elsevier, and China National Knowledge Infrastructure (CNKI). A systematic review and an ALE meta-analysis were performed to quantitatively examine brain gray matter alterations. RESULTS Children and adolescents with schizophrenia had decreased gray matter volume (GMV) mainly in the prefrontal cortex (PFC), temporal cortex (such as the middle temporal gyrus and transverse temporal gyrus), and insula, while children and adolescents with OCD mainly had increased GMV in the PFC and the striatum (including the lentiform nucleus and caudate nucleus), and decreased GMV in the parietal cortex. CONCLUSIONS Our results suggest that gray matter abnormalities in the PFC may indicate homogeneity between the two diseases. In children and adolescents, structural alterations in schizophrenia mainly involve the fronto-temporal and cortico-insula circuits, whereas those in OCD mainly involve the prefrontal-parietal and the prefrontal-striatal circuits.
Collapse
Affiliation(s)
- Jingran Liu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Fang Wen
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Junjuan Yan
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Liping Yu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Fang Wang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Duo Wang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Jishui Zhang
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Chunmei Yan
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Jiahui Chu
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yanlin Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Ying Li
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| | - Yonghua Cui
- Department of Psychiatry, Beijing Children's Hospital, Capital Medical University, National Centre for Children's Health, Beijing, China
| |
Collapse
|
4
|
Altered coupling of spontaneous brain activities and brain temperature in patients with adolescent-onset, first-episode, drug-naïve schizophrenia. Neuroradiology 2019; 61:575-584. [PMID: 30843095 DOI: 10.1007/s00234-019-02181-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
PURPOSE A recent study has reported that schizophrenia patients show an uncoupled association between intraventricular brain temperature (BT) and cerebral blood flow (CBF). CBF has been found to be closely coupled with spontaneous brain activities (SBAs) derived from resting-state BOLD fMRI metrics. Yet, it is unclear so far whether the relationship between the intraventricular BT and the SBAs may change in patients with adolescent-onset schizophrenia (AOS) compared with that in healthy controls (HCs). METHODS The present study recruited 28 first-episode, drug-naïve AOS patients and 22 matched HCs. We measured the temperature of the lateral ventricles (LV) using diffusion-weighted imaging thermometry and measured SBAs using both regional homogeneity and amplitude of low-frequency fluctuation methods. A nonparametric Wilcoxon rank sum test was used to detect the difference in intraventricular BT between AOS patients and HCs with LV volume, age, and sex as covariates. We also evaluated the relationship between the intraventricular BT and the SBAs using partial correlation analysis controlling for LV volume, age, and sex. RESULTS We found that HCs showed a significant negative correlation between the intraventricular BT and the local SBAs in the bilateral putamina and left superior temporal gyrus, while such a correlation was absent in AOS patients. Additionally, no significant difference between the two groups was found in the intraventricular BT. CONCLUSION These findings suggest that AOS patients may experience an uncoupling between intraventricular BT and SBAs in several schizophrenia-related brain areas, which may be associated with the altered relationships among intraventricular BT, CBF, and metabolism.
Collapse
|
5
|
Seitz J, Rathi Y, Lyall A, Pasternak O, Del Re EC, Niznikiewicz M, Nestor P, Seidman LJ, Petryshen TL, Mesholam-Gately RI, Wojcik J, McCarley RW, Shenton ME, Koerte IK, Kubicki M. Alteration of gray matter microstructure in schizophrenia. Brain Imaging Behav 2018; 12:54-63. [PMID: 28102528 PMCID: PMC5517358 DOI: 10.1007/s11682-016-9666-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuroimaging studies demonstrate gray matter (GM) macrostructural abnormalities in patients with schizophrenia (SCZ). While ex-vivo and genetic studies suggest cellular pathology associated with abnormal neurodevelopmental processes in SCZ, few in-vivo measures have been proposed to target microstructural GM organization. Here, we use diffusion heterogeneity- to study GM microstructure in SCZ. Structural and diffusion magnetic resonance imaging (MRI) were acquired on a 3 Tesla scanner in 46 patients with SCZ and 37 matched healthy controls (HC). After correction for free water, diffusion heterogeneity as well as commonly used diffusion measures FA and MD and volume were calculated for the four cortical lobes on each hemisphere, and compared between groups. Patients with early course SCZ exhibited higher diffusion heterogeneity in the GM of the frontal lobes compared to controls. Diffusion heterogeneity of the frontal lobe showed excellent discrimination between patients and HC, while none of the commonly used diffusion measures such as FA or MD did. Higher diffusion heterogeneity in the frontal lobes in early SCZ may be due to abnormal brain maturation (migration, pruning) before and during adolescence and early adulthood. Further studies are needed to investigate the role of heterogeneity as potential biomarker for SCZ risk.
Collapse
Affiliation(s)
- Johanna Seitz
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig- Maximilians- Universität, Munich, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
| | - Amanda Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Elisabetta C Del Re
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA, USA
| | - Margaret Niznikiewicz
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA, USA
| | - Paul Nestor
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA, USA
- Department of Psychology, University of Massachusetts, Boston, MA, USA
| | - Larry J Seidman
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
- Beth Israel Deaconess Medical Center Public Psychiatry Division at the Massachusetts Mental Health Center Harvard Medical School, Boston, MA, USA
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetic Unit, Department of Psychiatry and Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Raquelle I Mesholam-Gately
- Beth Israel Deaconess Medical Center Public Psychiatry Division at the Massachusetts Mental Health Center Harvard Medical School, Boston, MA, USA
| | - Joanne Wojcik
- Beth Israel Deaconess Medical Center Public Psychiatry Division at the Massachusetts Mental Health Center Harvard Medical School, Boston, MA, USA
| | - Robert W McCarley
- Clinical Neuroscience Division, Laboratory of Neuroscience, VA Boston Healthcare System, Brockton, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- VA Boston Healthcare System, Brockton Division, Brockton, MA, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig- Maximilians- Universität, Munich, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, 1249 Boylston St, Boston, MA, 02215, USA.
- Department of Psychiatry, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA.
- Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Van Assche L, Morrens M, Luyten P, Van de Ven L, Vandenbulcke M. The neuropsychology and neurobiology of late-onset schizophrenia and very-late-onset schizophrenia-like psychosis: A critical review. Neurosci Biobehav Rev 2017; 83:604-621. [DOI: 10.1016/j.neubiorev.2017.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/25/2017] [Accepted: 08/30/2017] [Indexed: 01/20/2023]
|
7
|
Whole brain volume changes and its correlation with clinical symptom severity in patients with schizophrenia: A DARTEL-based VBM study. PLoS One 2017; 12:e0177251. [PMID: 28520743 PMCID: PMC5435302 DOI: 10.1371/journal.pone.0177251] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/21/2017] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to evaluate gray matter (GM) and white matter (WM) volume alterations in whole-brain structures in patients with schizophrenia and healthy controls using voxel-based morphometry (VBM), and further to assess the correlation between GM and WM volume variations and symptom severity in schizophrenia. A total of 22 patients with schizophrenia and 22 age-matched healthy controls participated. Magnetic resonance image data were processed using SPM8 software with diffeomorphic anatomical registration via an exponentiated Lie algebra (DARTEL) algorithm. Patients with schizophrenia exhibited significantly decreased GM volumes of the insula, superior temporal gyrus (STG), gyrus rectus, and anterior cingulate cortex (ACC) compared with healthy controls. The GM volumes of the STG and gyrus rectus were negatively correlated with the positive scales on the Positive and Negative Syndrome Scale (PANSS) and those of the STG and ACC were negatively correlated with the negative scales. The durations of illness in schizophrenia were negatively correlated with the GM volumes of the insula, STG, and ACC. Patients with schizophrenia exhibited significantly decreased WM volumes of the superior frontal gyrus, inferior temporal gyrus, and STG. The WM volumes of the STG were negatively correlated with the duration of illness. Our findings suggest that GM and WM volume abnormalities in the STG are associated with the psychopathology of schizophrenia.
Collapse
|
8
|
Li H, Tang J, Chen L, Liao Y, Zhou B, He Y, Li Z, Lv L, Zeng Y, Chen X. Reduced middle cingulate gyrus volume in late-onset schizophrenia in a Chinese Han population: a voxel-based structural MRI study. Neurosci Bull 2015; 31:626-7. [PMID: 25956581 DOI: 10.1007/s12264-015-1525-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/02/2015] [Indexed: 11/26/2022] Open
Affiliation(s)
- Hong Li
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jinsong Tang
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Liping Chen
- The Dalian 7th People's Hospital, Dalian, 116023, China.
| | - Yanhui Liao
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Bing Zhou
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Ying He
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zongchang Li
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, China
| | - Yi Zeng
- Department of Geriatrics, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Xiaogang Chen
- Institute of Mental Health, the Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, Changsha, China.
- National Technology Institute of Psychiatry, Changsha, 410011, China.
| |
Collapse
|