1
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
2
|
Caglayan E, Konopka G. Decoding DNA sequence-driven evolution of the human brain epigenome at cellular resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557820. [PMID: 37745404 PMCID: PMC10515917 DOI: 10.1101/2023.09.14.557820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DNA-based evolutionary comparisons of regulatory genomic elements enable insight into functional changes, overcoming tissue inaccessibility. Here, we harnessed adult and fetal cortex single-cell ATAC-seq datasets to uncover DNA substitutions specific to the human and human-ancestral lineages within apes. We found that fetal microglia identity is evolutionarily divergent in all lineages, whereas other cell types are conserved. Using multiomic datasets, we further identified genes linked to multiple lineage-divergent gene regulatory elements and implicated biological pathways associated with these divergent features. We also uncovered patterns of transcription factor binding site evolution across lineages and identified expansion of bHLH-PAS factor targets in human-hominin lineages, and MEF2 factor targets in the ape lineage. Finally, conserved features were more enriched in brain disease variants, whereas there was no distinct enrichment on the human lineage compared to its ancestral lineages. Our study identifies major evolutionary patterns in the human brain epigenome at cellular resolution.
Collapse
Affiliation(s)
- Emre Caglayan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Dion-Albert L, Dudek KA, Russo SJ, Campbell M, Menard C. Neurovascular adaptations modulating cognition, mood, and stress responses. Trends Neurosci 2023; 46:276-292. [PMID: 36805768 DOI: 10.1016/j.tins.2023.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
The neurovascular unit (NVU) is a dynamic center for substance exchange between the blood and the brain, making it an essential gatekeeper for central nervous system (CNS) homeostasis. Recent evidence supports a role for the NVU in modulating brain function and cognition. In addition, alterations in NVU processes are observed in response to stress, although the mechanisms via which they can affect mood and cognitive functions remain elusive. Here, we summarize recent studies of neurovascular regulation of emotional processes and cognitive function, including under stressful conditions. We also highlight relevant RNA-sequencing (RNA-seq) databases aiming to profile the NVU along with innovative tools to study and manipulate NVU function that can be exploited in the context of cognition and stress research throughout development, aging, or brain disorders.
Collapse
Affiliation(s)
- Laurence Dion-Albert
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Katarzyna A Dudek
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada
| | - Scott J Russo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai and Center for Affective Neuroscience, 1 Gustave L Levy Place, New York, NY, USA
| | - Matthew Campbell
- Smurfit Institute of Genetics, Trinity College Dublin, Lincoln Place Gate, Dublin 2, Ireland
| | - Caroline Menard
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
4
|
Doi M, Li M, Usui N, Shimada S. Genomic Strategies for Understanding the Pathophysiology of Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:930941. [PMID: 35813066 PMCID: PMC9263364 DOI: 10.3389/fnmol.2022.930941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Recent breakthroughs in sequencing technology and technological developments have made it easier to analyze the entire human genome than ever before. In addition to disease-specific genetic mutations and chromosomal aberrations, epigenetic alterations in individuals can also be analyzed using genomics. Autism spectrum disorder (ASD) is a neurodevelopmental disorder (NDD) caused by genetic and/or environmental factors. More than a thousand genes associated with ASD have been identified which are known to be involved in brain development. However, it is difficult to decode the roles of ASD-associated genes without in vitro and in vivo validations, particularly in the process of brain development. In this review, we discuss genomic strategies for understanding the pathological mechanisms underlying ASD. For this purpose, we discuss ASD-associated genes and their functions, as well as analytical strategies and their strengths and weaknesses in cellular and animal models from a basic research perspective.
Collapse
Affiliation(s)
- Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| | - Mengwei Li
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- *Correspondence: Noriyoshi Usui
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Irie K, Doi M, Usui N, Shimada S. Evolution of the Human Brain Can Help Determine Pathophysiology of Neurodevelopmental Disorders. Front Neurosci 2022; 16:871979. [PMID: 35431788 PMCID: PMC9010664 DOI: 10.3389/fnins.2022.871979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 02/03/2023] Open
Abstract
The evolution of humans brought about a co-occurring evolution of the human brain, which is far larger and more complex than that of many other organisms. The brain has evolved characteristically in humans in many respects, including macro-and micro-anatomical changes in the brain structure, changes in gene expression, and cell populations and ratios. These characteristics are essential for the execution of higher functions, such as sociality, language, and cognition, which express humanity, and are thought to have been acquired over evolutionary time. However, with the acquisition of higher functions also comes the risk of the disease in which they fail. This review focuses on human brain evolution and neurodevelopmental disorders (NDDs) and discusses brain development, molecular evolution, and human brain evolution. Discussing the potential for the development and pathophysiology of NDDs acquired by human brain evolution will provide insights into the acquisition and breakdown of higher functions from a new perspective.
Collapse
Affiliation(s)
- Koichiro Irie
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Medical Research and Education, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
- *Correspondence: Noriyoshi Usui,
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, Japan
- United Graduate School of Child Development, Osaka University, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, Japan
| |
Collapse
|
6
|
Usui N, Co M, Harper M, Rieger MA, Dougherty JD, Konopka G. Sumoylation of FOXP2 Regulates Motor Function and Vocal Communication Through Purkinje Cell Development. Biol Psychiatry 2017; 81:220-230. [PMID: 27009683 PMCID: PMC4983264 DOI: 10.1016/j.biopsych.2016.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mutations in the gene encoding the transcription factor forkhead box P2 (FOXP2) result in brain developmental abnormalities, including reduced gray matter in both human patients and rodent models and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any posttranslational modifications of FOXP2 in the brain and disorders have been explored. METHODS We characterized sumoylation of FOXP2 biochemically and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation state of FOXP2 as well as Foxp2 expression levels in Purkinje cells of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. RESULTS We identified sumoylation of FOXP2 at K674 (K673 in mice) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the small ubiquitin-like modifier E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrated that FOXP2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of Purkinje cells in the mouse cerebellum. CONCLUSIONS Sumoylation of FOXP2 in neonatal mouse cerebellum regulates Purkinje cell development and motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Michael A. Rieger
- Department of Genetics and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D. Dougherty
- Department of Genetics and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
7
|
Konopka G, Roberts TF. Insights into the Neural and Genetic Basis of Vocal Communication. Cell 2016; 164:1269-1276. [PMID: 26967292 DOI: 10.1016/j.cell.2016.02.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 12/11/2022]
Abstract
The use of vocalizations to communicate information and elaborate social bonds is an adaptation seen in many vertebrate species. Human speech is an extreme version of this pervasive form of communication. Unlike the vocalizations exhibited by the majority of land vertebrates, speech is a learned behavior requiring early sensory exposure and auditory feedback for its development and maintenance. Studies in humans and a small number of other species have provided insights into the neural and genetic basis for learned vocal communication and are helping to delineate the roles of brain circuits across the cortex, basal ganglia, and cerebellum in generating vocal behaviors. This Review provides an outline of the current knowledge about these circuits and the genes implicated in vocal communication, as well as a perspective on future research directions in this field.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Todd F Roberts
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
8
|
Konopka G, Roberts TF. Animal Models of Speech and Vocal Communication Deficits Associated With Psychiatric Disorders. Biol Psychiatry 2016; 79:53-61. [PMID: 26232298 PMCID: PMC4666779 DOI: 10.1016/j.biopsych.2015.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/30/2022]
Abstract
Disruptions in speech, language, and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language compared with vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. We review animal models of vocal learning and vocal communication and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language, and vocal communication.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas.
| | | |
Collapse
|