1
|
Çelik N, Demir K, Dibeklioğlu SE, Dündar BN, Hatipoğlu N, Mutlu GY, Arslan E, Yıldırımçakar D, Çayır A, Hacıhamdioğlu B, Sütçü ZK, Ünsal Y, Karagüzel G. Clinical and genetic characteristics of patients with monocarboxylate transporter-8 deficiency: a multicentre retrospective study. Eur J Pediatr 2024; 184:92. [PMID: 39699593 DOI: 10.1007/s00431-024-05931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Allan-Herndon-Dudley syndrome is a neurodevelopmental disorder characterized by motor and intellectual disabilities. Despite its rarity, there has been a rise in interest due to ongoing research and emerging therapy suggestions. In this multicenter, retrospective, cross-sectional study, the genetic characteristics and clinical data of twenty-one cases of genetically confirmed MCT8 deficiency were evaluated. The median age at the diagnosis was 2.4 (1.29; 5.9) years, which ranged from 0.5 to 14.0 years. The median follow-up period was 2.34 years, ranging from four months to 7.9 years. In 21 patients, 17 different variants were detected in the SLC16A2 gene. Eleven of these variants (c.1456delC, c.439G > T, c.949C > A, c.1392dupC, c.1612C > T, c.407dup, c.781del, c.589C > A, c.712G > A, c.311 T > A, c.1461del) have not been previously reported. In this study, with the exception of three cases with fT3/fT4 ratios of 4.95, 3.58, and 4.52, all cases exhibited fT3/fT4 ratios higher than five (9.9 (7.9; 12.0)). CONCLUSION MCT8 deficiency is a rare and devastating disorder characterized by central hypothyroidism and peripheral thyrotoxicosis. The fT3/fT4 ratio can be used as a useful diagnostic indicator of MCT8 deficiency in males with mental and motor retardation. There is a need to raise clinicians' awareness of this potentially treatable condition with the emergence of new and promising treatments. WHAT IS KNOWN • Allan-Herndon-Dudley syndrome, also known as MCT8 deficiency is a rare and devastating disorder characterized by central hypothyroidism and peripheral thyrotoxicosis. WHAT IS NEW • In this study, seventeen different variants were detected in the SLC16A2 gene, eleven of which (c.1456delC; c.439G>T; c.949C>A; c.1392dupC; c.1612C>T; c.407dup; c.781del; c.589C>A; c.712G>A; c.311T>A; c.1461del) have not been reported before. • The fT3/fT4 ratio can be used as a useful diagnostic indicator of MCT8 deficiency in males with mental and motor retardation.
Collapse
Affiliation(s)
- Nurullah Çelik
- Department of Pediatric Endocrinology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Korcan Demir
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | | | - Bumin Nuri Dündar
- Department of Pediatric Endocrinology, Faculty of Medicine, İzmir Katip Celebi University, Izmir, Turkey
| | - Nihal Hatipoğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gül Yeşiltepe Mutlu
- Department of Pediatric Endocrinology and Diabetes, Koç University School of Medicine, Istanbul, Turkey
| | - Emrullah Arslan
- Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, Ege University, Izmir, Turkey
| | - Didem Yıldırımçakar
- Department of Pediatric Endocrinology, Denizli State Hospital, Denizli, Turkey
| | - Atilla Çayır
- Department of Pediatric Endocrinology and Diabetes, Erzurum Education and Research Hospital, University of Health Science, Erzurum, Turkey
| | - Bülent Hacıhamdioğlu
- Department of Pediatric Endocrinology, Faculty of Medicine, İstanbul Aydın University, Istanbul, Turkey
| | - Zümrüt Kocabey Sütçü
- Başakşehir Çam and Sakura City Hospital, Pediatric Endocrinology, Istanbul, Turkey
| | - Yağmur Ünsal
- Clinic of Pediatric Endocrinology, Şanlıurfa Education and Research Hospital, Şanlıurfa, Turkey
| | - Gülay Karagüzel
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
2
|
Wolff TM, Veil C, Dietrich JW, Müller MA. Mathematical modeling and simulation of thyroid homeostasis: Implications for the Allan-Herndon-Dudley syndrome. Front Endocrinol (Lausanne) 2022; 13:882788. [PMID: 36568087 PMCID: PMC9772020 DOI: 10.3389/fendo.2022.882788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/31/2022] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION A mathematical model of the pituitary-thyroid feedback loop is extended to deepen the understanding of the Allan-Herndon-Dudley syndrome (AHDS). The AHDS is characterized by unusual thyroid hormone concentrations and a mutation in the SLC16A2 gene encoding for the monocarboxylate transporter 8 (MCT8). This mutation leads to a loss of thyroid hormone transport activity. One hypothesis to explain the unusual hormone concentrations of AHDS patients is that due to the loss of thyroid hormone transport activity, thyroxine (T 4) is partially retained in thyroid cells. METHODS This hypothesis is investigated by extending a mathematical model of the pituitary-thyroid feedback loop to include a model of the net effects of membrane transporters such that the thyroid hormone transport activity can be considered. A nonlinear modeling approach based on the Michaelis-Menten kinetics and its linear approximation are employed to consider the membrane transporters. The unknown parameters are estimated through a constrained parameter optimization. RESULTS In dynamic simulations, damaged membrane transporters result in a retention of T 4 in thyroid cells and ultimately in the unusual hormone concentrations of AHDS patients. The Michaelis-Menten modeling approach and its linear approximation lead to similar results. DISCUSSION The results support the hypothesis that a partial retention of T 4 in thyroid cells represents one mechanism responsible for the unusual hormone concentrations of AHDS patients. Moreover, our results suggest that the retention of T 4 in thyroid cells could be the main reason for the unusual hormone concentrations of AHDS patients.
Collapse
Affiliation(s)
- Tobias M. Wolff
- Institute of Automatic Control, Leibniz University Hannover, Hannover, Germany
- *Correspondence: Tobias M. Wolff,
| | - Carina Veil
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Johannes W. Dietrich
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
- Diabetes Centre Bochum-Hattingen, St. Elisabeth-Hospital Blankenstein, Hattingen, Germany
- Ruhr Center for RareDiseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| | - Matthias A. Müller
- Institute of Automatic Control, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
3
|
Liao JY, Salles PA, Shuaib UA, Fernandez HH. Genetic updates on paroxysmal dyskinesias. J Neural Transm (Vienna) 2021; 128:447-471. [PMID: 33929620 DOI: 10.1007/s00702-021-02335-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
The paroxysmal dyskinesias are a diverse group of genetic disorders that manifest as episodic movements, with specific triggers, attack frequency, and duration. With recent advances in genetic sequencing, the number of genetic variants associated with paroxysmal dyskinesia has dramatically increased, and it is now evident that there is significant genotype-phenotype overlap, reduced (or incomplete) penetrance, and phenotypic variability. In addition, a variety of genetic conditions can present with paroxysmal dyskinesia as the initial symptom. This review will cover the 34 genes implicated to date and propose a diagnostic workflow featuring judicious use of whole-exome or -genome sequencing. The goal of this review is to provide a common understanding of paroxysmal dyskinesias so basic scientists, geneticists, and clinicians can collaborate effectively to provide diagnoses and treatments for patients.
Collapse
Affiliation(s)
- James Y Liao
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Philippe A Salles
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
- Centro de Trastornos del Movimiento, CETRAM, Santiago, Chile
| | - Umar A Shuaib
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Hubert H Fernandez
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
4
|
Abstract
Resistance to thyroid hormone alpha occurs due to pathogenic, heterozygous variants in THRA. The entity was first described in 2012 and to date only a small number of patients with varying severity have been reported. In this review, we summarize and interpret the heterogeneous clinical and laboratory features of all published cases, including ours. Many symptoms and findings are similar to those seen in primary hypothyroidism. However, thyroid-stimulating hormone levels are normal. Free triiodothyronine (T3) levels are in the upper half of normal range or frankly high and free thyroxine (T4) levels are low or in the lower half of normal range. Alterations in free T3 and free T4 may not be remarkable, particularly in adults, possibly contributing to underdiagnosis. In such patients, low reverse T3 levels, normo- or macrocytic anemia or, particularly in children, mildly elevated creatine kinase levels would warrant THRA sequencing. Treatment with L-thyroxine results in improvement of some clinical findings.
Collapse
Affiliation(s)
- İbrahim Mert Erbaş
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey,* Address for Correspondence: Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey Phone: +90 232 412 60 77 E-mail:
| |
Collapse
|
5
|
van Geest FS, Gunhanlar N, Groeneweg S, Visser WE. Monocarboxylate Transporter 8 Deficiency: From Pathophysiological Understanding to Therapy Development. Front Endocrinol (Lausanne) 2021; 12:723750. [PMID: 34539576 PMCID: PMC8440930 DOI: 10.3389/fendo.2021.723750] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/13/2021] [Indexed: 01/18/2023] Open
Abstract
Genetic defects in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) result in MCT8 deficiency. This disorder is characterized by a combination of severe intellectual and motor disability, caused by decreased cerebral thyroid hormone signalling, and a chronic thyrotoxic state in peripheral tissues, caused by exposure to elevated serum T3 concentrations. In particular, MCT8 plays a crucial role in the transport of thyroid hormone across the blood-brain-barrier. The life expectancy of patients with MCT8 deficiency is strongly impaired. Absence of head control and being underweight at a young age, which are considered proxies of the severity of the neurocognitive and peripheral phenotype, respectively, are associated with higher mortality rate. The thyroid hormone analogue triiodothyroacetic acid is able to effectively and safely ameliorate the peripheral thyrotoxicosis; its effect on the neurocognitive phenotype is currently under investigation. Other possible therapies are at a pre-clinical stage. This review provides an overview of the current understanding of the physiological role of MCT8 and the pathophysiology, key clinical characteristics and developing treatment options for MCT8 deficiency.
Collapse
|
6
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Vancamp P, Demeneix BA, Remaud S. Monocarboxylate Transporter 8 Deficiency: Delayed or Permanent Hypomyelination? Front Endocrinol (Lausanne) 2020; 11:283. [PMID: 32477268 PMCID: PMC7237703 DOI: 10.3389/fendo.2020.00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) deficiency or the Allan-Herndon-Dudley Syndrome (AHDS) is an X-linked psychomotor disability syndrome with around 320 clinical cases described worldwide. SLC16A2 gene mutations, encoding the thyroid hormone (TH) transporter MCT8, result in intellectual disability due to impaired TH uptake in the developing brain. MCT8 deficiency is a multi-organ affecting disease with a predominant neuronal cell-based pathology, with the glial component inadequately investigated. However, deficiency in myelin, a key component of white matter (WM) enabling fast nerve conduction, is a TH-dependent hallmark of the disease. Nevertheless, analysis of the myelin status in AHDS patients has led to conflicting interpretations. The majority of individual case studies reported delayed myelination, that was restored later in life. In contrast, post-mortem studies and high-resolution MRIs detected WM (micro-) abnormalities throughout adolescence, suggesting permanent hypomyelination. Thus, interpretations vary depending on methodology to investigate WM microstructure. Further, it is unknown whether the mutation within the MCT8 is linked to the severity of the myelin deficiency. Consequently, terminology is inconsistent among reports, and AHDS is occasionally misdiagnosed as another WM disorder. The evolutionary conserved TH signaling pathway that promotes the generation of myelinating oligodendrocytes enabled deciphering how the lack of MCT8 might affect myelinogenesis. Linking patient findings on myelination to those obtained from models of MCT8 deficiency revealed underlying pathophysiological mechanisms, but knowledge gaps remain, notably how myelination progresses both spatially and temporally in MCT8 deficiency. This limits predicting how myelin integrity might benefit therapeutically, and when to initiate. A recurrent observation in clinical trials is the absence of neurological improvement. Testing MCT8-independent thyromimetics in models, and evaluating treatments used in other demyelinating diseases, despite different etiologies, is crucial to propose new therapeutic strategies combatting this devastating disease.
Collapse
Affiliation(s)
- Pieter Vancamp
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Molecular Physiology and Adaptation, Centre National de le Recherche Scientifique-Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
8
|
Remerand G, Boespflug-Tanguy O, Tonduti D, Touraine R, Rodriguez D, Curie A, Perreton N, Des Portes V, Sarret C. Expanding the phenotypic spectrum of Allan-Herndon-Dudley syndrome in patients with SLC16A2 mutations. Dev Med Child Neurol 2019; 61:1439-1447. [PMID: 31410843 DOI: 10.1111/dmcn.14332] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2019] [Indexed: 01/01/2023]
Abstract
The aim of the study was to redefine the phenotype of Allan-Herndon-Dudley syndrome (AHDS), which is caused by mutations in the SLC16A2 gene that encodes the brain transporter of thyroid hormones. Clinical phenotypes, brain imaging, thyroid hormone profiles, and genetic data were compared to the existing literature. Twenty-four males aged 11 months to 29 years had a mutation in SLC16A2, including 12 novel mutations and five previously described mutations. Sixteen patients presented with profound developmental delay, three had severe intellectual disability with poor language and walking with an aid, four had moderate intellectual disability with language and walking abilities, and one had mild intellectual disability with hypotonia. Overall, eight had learned to walk, all had hypotonia, 17 had spasticity, 18 had dystonia, 12 had choreoathetosis, 19 had hypomyelination, and 10 had brain atrophy. Kyphoscoliosis (n=12), seizures (n=7), and pneumopathies (n=5) were the most severe complications. This study extends the phenotypic spectrum of AHDS to a mild intellectual disability with hypotonia. Developmental delay, hypotonia, hypomyelination, and thyroid hormone profile help to diagnose patients. Clinical course depends on initial severity, with stable acquisition after infancy; this may be adversely affected by neuro-orthopaedic, pulmonary, and epileptic complications. WHAT THIS PAPER ADDS: Mild intellectual disability is associated with SLC16A2 mutations. A thyroid hormone profile with a free T3 /T4 ratio higher than 0.75 can help diagnose patients. Patients with SLC16A2 mutations present a broad spectrum of neurological phenotypes that are also observed in other hypomyelinating disorders. Axial hypotonia is a consistent feature of Allan-Herndon-Dudley syndrome and leads to specific complications.
Collapse
Affiliation(s)
- Ganaelle Remerand
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Pôle Femme et Enfant, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Odile Boespflug-Tanguy
- Centre de Référence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Service de Neurologie Pédiatrique, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris, Paris, France.,NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Paris, France
| | - Davide Tonduti
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Unit of Child Neurology, V. Buzzi Children's Hospital, Milan, Italy
| | - Renaud Touraine
- Service de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Diana Rodriguez
- Sorbonne Université, GRC no. 19, Pathologies Congénitales du Cervelet-LeucoDystrophies, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France.,Centre de Référence Neurogénétique, Service de Neurologie Pédiatrique, Assistance Publique-Hôpitaux de Paris, Hôpital Armand Trousseau, Paris, France
| | - Aurore Curie
- Centre de Référence des Déficiences Intellectuelles de Cause Rare, Service de Neurologie Pédiatrique, Centre Hospitalier Universitaire de Lyon, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Nathalie Perreton
- CIC 1407Inserm, Centre Hospitalo-Universitaire de Lyon, Lyon, France
| | - Vincent Des Portes
- Centre de Référence des Déficiences Intellectuelles de Cause Rare, Service de Neurologie Pédiatrique, Centre Hospitalier Universitaire de Lyon, Hôpital Femme-Mère-Enfant, Lyon, France
| | - Catherine Sarret
- Centre de Compétence des Leucodystrophies et Leucoencéphalopathies de Cause Rare, Pôle Femme et Enfant, Hôpital Estaing, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France.,IGCNC, Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, Clermont-Ferrand, France
| | | |
Collapse
|
9
|
Virili C, Antonelli A, Santaguida MG, Benvenga S, Centanni M. Gastrointestinal Malabsorption of Thyroxine. Endocr Rev 2019; 40:118-136. [PMID: 30476027 DOI: 10.1210/er.2018-00168] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023]
Abstract
Levothyroxine, a largely prescribed drug with a narrow therapeutic index, is often a lifelong treatment. The therapeutic efficacy of T4 may be marred by behavioral, pharmacologic, and pathologic issues acting as interfering factors. Despite a continuous search for an optimal T4 treatment, a significant number of patients fail to show a complete chemical and/or clinical response to this reference dose of T4. Gastrointestinal malabsorption of oral T4 represents an emerging cause of refractory hypothyroidism and may be more frequent than previously reputed. In this review, we examine the pharmacologic features of T4 preparations and their linkage with the intestinal absorption of the hormone. We have stressed the major biochemical and pharmacologic characteristics of T4 and its interaction with the putative transporter at the intestinal level. We have examined the interfering role of nutrients, foods, and drugs on T4 absorption at the gastric and intestinal levels. The impact of gastrointestinal disorders on T4 treatment efficacy has been also analyzed, in keeping with the site of action and the interfering mechanisms. Based on the evidence obtained from the literature, we also propose a schematic diagnostic workup for the most frequent and often hidden gastrointestinal diseases impairing T4 absorption.
Collapse
Affiliation(s)
- Camilla Virili
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Giulia Santaguida
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy.,Endocrinology Unit, AUSL Latina, Latina, Italy
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario G. Martino, Messina, Italy.,Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Policlinico Universitario G. Martino, Messina, Italy.,Interdepartmental Program of Molecular and Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| | - Marco Centanni
- Endocrinology Unit, Department of Medico-Surgical Sciences and Biotechnologies, "Sapienza" University of Rome, Latina, Italy.,Endocrinology Unit, AUSL Latina, Latina, Italy
| |
Collapse
|
10
|
Islam MS, Namba N, Ohata Y, Fujiwara M, Nakano C, Takeyari S, Miyata K, Nakano Y, Yamamoto K, Nakayama H, Kitaoka T, Kubota T, Ozono K. Functional analysis of monocarboxylate transporter 8 mutations in Japanese Allan-Herndon-Dudley syndrome patients. Endocr J 2019; 66:19-29. [PMID: 30369548 DOI: 10.1507/endocrj.ej18-0251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates T3 uptake into cells. Mutations in MCT8 lead to Allan-Herndon-Dudley syndrome (AHDS), which is characterized by severe psychomotor retardation and abnormal thyroid hormone profile. Nine uncharacterized MCT8 mutations in Japanese patients with severe neurocognitive impairment and elevated serum T3 levels were studied regarding the transport of T3. Human MCT8 (hMCT8) function was studied in wild-type (WT) or mutant hMCT8-transfected human placental choriocarcinoma cells (JEG3) by visualizing the locations of the proteins in the cells, detecting specific proteins, and measuring T3 uptake. We identified 6 missense (p.Arg445Ser, p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, and p.Gly312Arg), 2 frameshift (p.Arg355Profs*64 and p.Tyr550Serfs*17), and 1 deletion (p.Pro561del) mutation(s) in the hMCT8 gene. All patients exhibited clinical characteristics of AHDS with high free T3, low-normal free T4, and normal-elevated TSH levels. All tested mutants were expressed at the protein level, except p.Arg355Profs*64 and p.Tyr550Serfs*17, which were truncated, and were inactive in T3 uptake, excluding p.Arg445Ser and p.Pro561del mutants, compared with WT-hMCT8. Immunocytochemistry revealed plasma membrane localization of p.Arg445Ser and p.Pro561del mutants similar with WT-hMCT8. The other mutants failed to localize in significant amount(s) in the plasma membrane and instead localized in the cytoplasm. These data indicate that p.Arg445Ser and p.Pro561del mutants preserve residual function, whereas p.Asp498Asn, p.Gly276Arg, p.Gly196Glu, p.Gly401Arg, p.Gly312Arg, p.Arg355Profs*64, and p.Tyr550Serfs*17 mutants lack function. These findings suggest that the mutations in MCT8 cause loss of function by reducing protein expression, impairing trafficking of protein to plasma membrane, and disrupting substrate channel.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Chiho Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kei Miyata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yukako Nakano
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
- The Japan Environment and Children's Study, Osaka Unit Center, Suita, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takuo Kubota
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Groeneweg S, van den Berge A, Meima ME, Peeters RP, Visser TJ, Visser WE. Effects of Chemical Chaperones on Thyroid Hormone Transport by MCT8 Mutants in Patient-Derived Fibroblasts. Endocrinology 2018; 159:1290-1302. [PMID: 29309566 DOI: 10.1210/en.2017-00846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/29/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) result in severe intellectual and motor disability. At present, no effective therapy is available to restore TH signaling in MCT8-dependent tissues. Recent in vitro studies in stable overexpression cell models suggested that the function of certain mutant MCT8 proteins, specifically those that affect protein stability and intracellular trafficking (e.g., p.F501del), could be partially recovered by chemical chaperones. However, the effects of chaperones have not been demonstrated in other commonly used models for MCT8 deficiency, including transient overexpression models and patient-derived fibroblasts. Here, we demonstrate that the chemical chaperone 4-phenylbutyric acid (PBA) similarly potentiates the T3 transport function of wild-type and p.F501del mutant MCT8 in transiently transfected COS-1 cells by increasing MCT8 messenger RNA, total protein, and cell surface expression levels. Although PBA also increased the cell surface expression levels of the p.R445L mutant, no functional improvement was observed, which is in line with the proposed important role of Arg445 in substrate translocation. In contrast, PBA showed only minimal effects in ex vivo studies using control or p.F501del patient-derived fibroblasts. Moreover, the MCT8-specific inhibitor silychristin did not change these minimal effects, suggesting that the underlying mechanism is unrelated to the rescue of functional MCT8. Together, these findings indicate that the potency of chaperones to rescue mutant MCT8 function strongly depends on the cellular model and stress the need for further preclinical studies before clinically available chaperones should be considered as a treatment option in patients with MCT8 deficiency.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Amanda van den Berge
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center and Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
12
|
Groeneweg S, Lima de Souza EC, Meima ME, Peeters RP, Visser WE, Visser TJ. Outward-Open Model of Thyroid Hormone Transporter Monocarboxylate Transporter 8 Provides Novel Structural and Functional Insights. Endocrinology 2017; 158:3292-3306. [PMID: 28977587 DOI: 10.1210/en.2017-00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) facilitates cellular uptake and efflux of thyroid hormone (TH). Mutations in MCT8 result in severe intellectual and motor disability known as the Allan-Herndon-Dudley syndrome (AHDS). Previous studies have provided valuable insights into the putative mechanism of substrate binding in the inward-open conformation, required for TH efflux. The current study aims to delineate the mechanism of substrate binding in the outward-open conformation, required for TH uptake. Extensive chemical modification and site-directed mutagenesis studies were used to guide protein homology modeling of MCT8 in the outward-open conformation. Arg271 and Arg445 were modified by phenylglyoxal, which was partially prevented in the presence of substrate. Substrate docking in our outward-open model suggested an important role for His192 and Arg445 in substrate binding. Interestingly, mutations affecting these residues have been identified in patients who have AHDS. In addition, our outward-open model predicted the location of Phe189, Met227, Phe279, Gly282, Phe287, and Phe501 at the substrate-binding center, and their Ala substitution differentially affected the apparent Vmax and Km of T3 transport, with F189A, F279A, and F287A showing the highest impact. Thus, here we present an MCT8 homology model in the outward-open conformation, which supports the important role of His192 and Arg445 in substrate docking and identifies critical residues at the putative substrate-binding center. Our findings provide insights into MCT8 structure and function, which add to our understanding of the pathogenic mechanism of mutations found in patients who have AHDS and can be used to screen for novel substrates and inhibitors.
Collapse
Affiliation(s)
- Stefan Groeneweg
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Elaine C Lima de Souza
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Marcel E Meima
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Robin P Peeters
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - W Edward Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| | - Theo J Visser
- The Rotterdam Thyroid Center & Department of Internal Medicine, Erasmus Medical Center, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Beukhof CM, van Doorn L, Visser TJ, Bins S, Visser WE, van Heerebeek R, van Kemenade FJ, de Rijke YB, de Herder WW, Chaker L, Mathijssen RH, Peeters RP. Sorafenib-Induced Changes in Thyroid Hormone Levels in Patients Treated for Hepatocellular Carcinoma. J Clin Endocrinol Metab 2017; 102:2922-2929. [PMID: 28575418 DOI: 10.1210/jc.2016-4025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 02/13/2023]
Abstract
CONTEXT The pathogenesis of tyrosine kinase inhibitor-induced thyroid hormone (TH) alterations are still a matter of debate. OBJECTIVE The objective of this study was to determine the effects of sorafenib on TH levels in patients with hepatocellular carcinoma (HCC) and to evaluate possible mechanisms. DESIGN We performed a prospective cohort study between 2009 and 2016. SETTING This study was conducted at a tertiary referral center. PATIENTS This study included 57 consecutive patients with HCC who were treated with sorafenib. MAIN OUTCOME MEASURE Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) levels were measured every 6 weeks, and extensive thyroid function tests (TFTs) were measured before treatment (t0), after 6 weeks (t6), and at the end of therapy. The effect of sorafenib on TH transport by monocarboxylate transporter (MCT)8 or MCT10 was tested in transfected COS1 cells. RESULTS Four patients (7%) developed thyroiditis. Among the other patients, 30% had elevation of TSH or FT4 above the normal range. Overall, between t0 and t6, mean TSH increased from 1.28 to 1.57 mU/L (P < 0.001) and mean FT4 from 18.4 to 21.2 pmol/L (P < 0.001). Simultaneously, the serum triiodothyronine (T3)/reverse triiodothyronine ratio and the (T3/thyroxine) ×100 ratio decreased. Sorafenib decreased cellular T3 uptake by MCT8 and to a lesser extent by MCT10. CONCLUSIONS These in vivo data suggest that sorafenib affects TFTs on multiple levels. Our in vitro experiments suggest a possible role of sorafenib-induced inhibition of T3 transport into the cell by MCT8 and MCT10.
Collapse
Affiliation(s)
- Carolien M Beukhof
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Leni van Doorn
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Theo J Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Sander Bins
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - W Edward Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Ramona van Heerebeek
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Folkert J van Kemenade
- Department of Pathology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Wouter W de Herder
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Layal Chaker
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Ron H Mathijssen
- Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus University Medical Center, 3000 CA Rotterdam, Netherlands
| |
Collapse
|
14
|
Protze J, Braun D, Hinz KM, Bayer-Kusch D, Schweizer U, Krause G. Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8. Cell Mol Life Sci 2017; 74:2299-2318. [PMID: 28132097 PMCID: PMC11107705 DOI: 10.1007/s00018-017-2461-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/14/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Monocarboxylate transporter 8 (MCT8) mediates thyroid hormone (TH) transport across the plasma membrane in many cell types. In order to better understand its mechanism, we have generated three new MCT8 homology models based on sugar transporters XylE in the intracellular opened (PDB ID: 4aj4) and the extracellular partly occluded (PDB ID: 4gby) conformations as well as FucP (PDB ID: 3o7q) and GLUT3 (PDB ID: 4zwc) in the fully extracellular opened conformation. T3-docking studies from both sides revealed interactions with His192, His415, Arg445 and Asp498 as previously identified. Selected mutations revealed further transport-sensitive positions mainly at the discontinuous transmembrane helices TMH7 and 10. Lys418 is potentially involved in neutralising the charge of the TH substrate because it can be replaced by charged, but not by uncharged, amino acids. The side chain of Thr503 was hypothesised to stabilise a helix break at TMH10 that undergoes a prominent local shift during the transport cycle. A T503V mutation accordingly affected transport. The aromatic Tyr419, the polar Ser313 and Ser314 as well as the charged Glu422 and Glu423 lining the transport channel have been studied. Based on related sugar transporters, we suggest an alternating access mechanism for MCT8 involving a series of amino acid positions previously and newly identified as critical for transport.
Collapse
Affiliation(s)
- Jonas Protze
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Doreen Braun
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Katrin Manuela Hinz
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Dorothea Bayer-Kusch
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany
| | - Ulrich Schweizer
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Germany.
| | - Gerd Krause
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
15
|
Abstract
Transport of thyroid hormone (TH) across the plasma membrane is essential for intracellular TH metabolism and action, and this is mediated by specific transporter proteins. During the last two decades several transporters capable of transporting TH have been identified, including monocarboxylate transporter 8 (MCT8), MCT10 and organic anion transporting polypeptide 1C1 (OATP1C1). In particular MCT8 and OATP1C1 are important for the regulation of local TH activity in the brain and thus for brain development. MCT8 is a protein containing 12 transmembrane domains, and is encoded by the SLC16A2 gene located on the X chromosome. It facilitates both TH uptake and efflux across the cell membrane. Male subjects with hemizygous mutations in MCT8 are afflicted with severe intellectual and motor disability, also known as the Allan-Herndon-Dudley syndrome (AHDS), which goes together with low serum T4 and high T3 levels. This review concerns molecular and clinical aspects of MCT8 function.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W Edward Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Theo J Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Novara F, Groeneweg S, Freri E, Estienne M, Reho P, Matricardi S, Castellotti B, Visser WE, Zuffardi O, Visser TJ. Clinical and Molecular Characteristics of SLC16A2 (MCT8) Mutations in Three Families with the Allan-Herndon-Dudley Syndrome. Hum Mutat 2017; 38:260-264. [PMID: 27805744 DOI: 10.1002/humu.23140] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/11/2022]
Abstract
Mutations in the thyroid hormone transporter SLC16A2 (MCT8) cause the Allan-Herndon-Dudley Syndrome (AHDS), characterized by severe psychomotor retardation and peripheral thyrotoxicosis. Here, we report three newly identified AHDS patients. Previously documented mutations were identified in probands 1 (p.R271H) and 2 (p.G564R), resulting in a severe clinical phenotype. A novel mutation (p.G564E) was identified in proband 3, affecting the same Gly564 residue, but resulting in a relatively mild clinical phenotype. Functional analysis in transiently transfected COS-1 and JEG-3 cells showed a near-complete inactivation of TH transport for p.G564R, whereas considerable cell-type-dependent residual transport activity was observed for p.G564E. Both mutants showed a strong decrease in protein expression levels, but differentially affected Vmax and Km values of T3 transport. Our findings illustrate that different mutations affecting the same residue may have a differential impact on SLC16A2 transporter function, which translates into differences in severity of the clinical phenotype.
Collapse
Affiliation(s)
- Francesca Novara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefan Groeneweg
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elena Freri
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Margherita Estienne
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - Paolo Reho
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sara Matricardi
- Department of Pediatric Neuroscience, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy.,Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Barbara Castellotti
- SOSD Genetica delle Malattie Neurodegenerative e Metaboliche, U.O Patologia Clinica, Foundation I.R.C.C.S. Neurological Institute "C. Besta", Milan, Italy
| | - W Edward Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Theo J Visser
- Department of Internal Medicine and Rotterdam Thyroid Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|