1
|
Liu H, Zakrzewicz D, Nosol K, Irobalieva RN, Mukherjee S, Bang-Sørensen R, Goldmann N, Kunz S, Rossi L, Kossiakoff AA, Urban S, Glebe D, Geyer J, Locher KP. Structure of antiviral drug bulevirtide bound to hepatitis B and D virus receptor protein NTCP. Nat Commun 2024; 15:2476. [PMID: 38509088 PMCID: PMC10954734 DOI: 10.1038/s41467-024-46706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Cellular entry of the hepatitis B and D viruses (HBV/HDV) requires binding of the viral surface polypeptide preS1 to the hepatobiliary transporter Na+-taurocholate co-transporting polypeptide (NTCP). This interaction can be blocked by bulevirtide (BLV, formerly Myrcludex B), a preS1 derivative and approved drug for treating HDV infection. Here, to elucidate the basis of this inhibitory function, we determined a cryo-EM structure of BLV-bound human NTCP. BLV forms two domains, a plug lodged in the bile salt transport tunnel of NTCP and a string that covers the receptor's extracellular surface. The N-terminally attached myristoyl group of BLV interacts with the lipid-exposed surface of NTCP. Our structure reveals how BLV inhibits bile salt transport, rationalizes NTCP mutations that decrease the risk of HBV/HDV infection, and provides a basis for understanding the host specificity of HBV/HDV. Our results provide opportunities for structure-guided development of inhibitors that target HBV/HDV docking to NTCP.
Collapse
Affiliation(s)
- Hongtao Liu
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Dariusz Zakrzewicz
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Kamil Nosol
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | | | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Rose Bang-Sørensen
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Nora Goldmann
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF) - Giessen-Marburg-Langen Partner Site, Giessen, Germany
| | - Sebastian Kunz
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Lorenzo Rossi
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany.
- German Center for Infection Research (DZIF) - partner site Heidelberg, Heidelberg, Germany.
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University Giessen, Giessen, Germany.
- German Center for Infection Research (DZIF) - Giessen-Marburg-Langen Partner Site, Giessen, Germany.
| | - Joachim Geyer
- Institute of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
2
|
Lim CK, Romeo O, Tran BM, Flanagan DJ, Kirby EN, McCartney EM, Tse E, Vincan E, Beard MR. Assessment of hepatitis B virus infection and interhost cellular responses using intrahepatic cholangiocyte organoids. J Med Virol 2023; 95:e29232. [PMID: 38009279 DOI: 10.1002/jmv.29232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/28/2023]
Abstract
The intrahepatic cholangiocyte organoids (ICOs) model was evaluated for host differences in hepatitis B virus (HBV) infection, cellular responses, antiviral and immunomodulator responses. Twelve ICOs generated from liver resections and biopsies were assessed for metabolic markers and functional HBV entry receptor expression throughout differentiation. Structural changes relevant to HBV infection were characterized using histology, confocal, and electron microscopy examinations. Optimal ICO culture conditions for HBV infection using HepAD38 (genotype D) and plasma-derived HBV (genotype B and C) were described. HBV infection was confirmed using HBcAg immunostaining, qRT-PCR (RNA, covalently closed circular DNA [cccDNA], extracellular DNA) and ELISA (HBsAg and HBeAg). Drug response to antiviral and immunosuppressive agent, and cellular responses (interferon-stimulated genes [ISG]) to interferon-α and viral mimic (PolyI:C) were assessed. ICOs underwent metabolic and structural remodeling following differentiation. Optimal HBV infection was achieved in well-differentiated ICOs using spinoculation, with time and donor-dependent increase in HBV RNA, cccDNA, extracellular DNA, HBeAg and HBsAg. Donor-dependent drug responsiveness to entry inhibitor and JAK inhibitor was observed. Despite having a robust ISG response to interferon-α and PolyI:C, HBV infection in ICOs did not upregulate ISGs. Human ICOs support HBV infection and replication with donor-dependent variation in viral dynamics and cellular responses. These features can be utilized for the development of personalized drug testing platform for antivirals.
Collapse
Affiliation(s)
- Chuan K Lim
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ornella Romeo
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bang M Tran
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dustin J Flanagan
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Emily N Kirby
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Erin M McCartney
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Victoria, Australia
| | - Edmund Tse
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Victoria, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael R Beard
- Research Centre for Infectious Diseases and Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Lim CK, Tran BM, Flanagan D, McCartney E, Tse E, Vincan E. Assessment of HBV infection and inter-host cellular responses using intrahepatic cholangiocyte organoids. J Med Virol 2023; 95:e28975. [PMID: 37503549 DOI: 10.1002/jmv.28975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Intrahepatic cholangiocyte organoids (ICOs) model was evaluated for host differences in hepatitis B virus (HBV) infection, cellular responses, antiviral, and immunomodulator responses. Twelve ICOs generated from liver resections and biopsies were assessed for metabolic markers and functional HBV entry receptor expression throughout differentiation. Structural changes relevant to HBV infection were characterized using histology, confocal, and electron microscopy examinations. Optimal ICO culture conditions for HBV infection using HepAD38 (genotype D) and plasma derived HBV (genotype B & C) were described. HBV infection was confirmed using HBcAg immunostaining, qRT-PCR (RNA, cccDNA, extracellular DNA), and ELISA (HBsAg and HBeAg). Drug response to antiviral and immunosuppressive agent, and cellular responses (interferon-stimulated genes [ISG]) to interferon-α and viral mimic (PolyI:C) were assessed. ICOs underwent metabolic and structural remodeling following differentiation. Optimal HBV infection was achieved in well-differentiated ICOs using spinoculation, with time and donor dependent increase in HBV RNA, cccDNA, extracellular DNA, HBeAg, and HBsAg. Donor dependent drug-responsiveness to entry inhibitor and JAK inhibitor was observed. Despite having a robust ISG response to interferon-α and PolyI:C, HBV infection in ICOs did not upregulate ISGs. Human ICOs support HBV infection and replication with donor dependent variation in viral dynamics and cellular responses. These features can be utilized for development of personalized drug testing platform for antivirals.
Collapse
Affiliation(s)
- Chuan Kok Lim
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Bang Manh Tran
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dustin Flanagan
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Erin McCartney
- Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Edmund Tse
- Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Yang H, Yao W, Yang J. Overview of the development of HBV small molecule inhibitors. Eur J Med Chem 2023; 249:115128. [PMID: 36709647 DOI: 10.1016/j.ejmech.2023.115128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/28/2023]
Abstract
Like tuberculosis and Acquired Immune Deficiency Syndrome (AIDS), hepatitis B is a globally recognized major public health threat. Although there are many small-molecule drugs for the treatment of hepatitis B, the approved drugs cannot eradicate the pathogenic culprit covalently closed circular DNA in patients, so the patients need long-term medication to control HBV amplification. Driven by a high unmet medical need, many pharmaceutical companies and research institutions have been engaged in the development of anti-HBV drugs to achieve a functional cure for chronic hepatitis B as soon as possible. This review summarizes the pathogenesis of hepatitis B virus and the research progress in the development of anti-HBV small molecule drugs, and introduces the cccDNA formation and transcription inhibitors and core inhibitors in detail, especially emphasizes the role of chinese herbal medicine in the treatment of chronic hepatitis B. Furthermore, this review proposes three potential strategies for cccDNA eradication in the future. We believe this review will provide meaningful guidance to achieve a functional cure for viral hepatitis B in the future.
Collapse
Affiliation(s)
- Huihui Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Weiwei Yao
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China
| | - Jinfei Yang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266001, China.
| |
Collapse
|
5
|
Bazinet M, Anderson M, Pântea V, Placinta G, Moscalu I, Cebotarescu V, Cojuhari L, Jimbei P, Iarovoi L, Smesnoi V, Musteata T, Jucov A, Dittmer U, Gersch J, Holzmayer V, Kuhns M, Cloherty G, Vaillant A. HBsAg isoform dynamics during NAP-based therapy of HBeAg-negative chronic HBV and HBV/HDV infection. Hepatol Commun 2022; 6:1870-1880. [PMID: 35368148 PMCID: PMC9315123 DOI: 10.1002/hep4.1951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Nucleic acid polymers block the assembly of hepatitis B virus (HBV) subviral particles, effectively preventing hepatitis B surface antigen (HBsAg) replenishment in the circulation. Nucleic acid polymer (NAP)-based combination therapy of HBV infection or HBV/hepatitis D virus (HDV) co-infection is accompanied by HBsAg clearance and seroconversion, HDV-RNA clearance in co-infection, and persistent functional cure of HBV (HBsAg < 0.05 IU/ml, HBV-DNA target not dected, normal alanine aminotransferase) and persistent clearance of HDV RNA. An analysis of HBsAg isoform changes during quantitative HBsAg declines (qHBsAg), and subsequent treatment-free follow-up in the REP 301/REP 301-LTF (HBV/HDV) and REP 401 (HBV) studies was conducted. HBsAg isoforms were analyzed from frozen serum samples using Abbott Research Use Only assays for HBsAg isoforms (large [L], medium [M], and total [T]). The relative change over time in small HBsAg relative to the other isoforms was inferred by the change in the ratio over time of T-HBsAg to M-HBsAg. HBsAg isoform declines followed qHBsAg declines in all participants. No HBsAg isoforms were detectable in any participants with functional cure. HBsAg declines > 2 log10 IU/ml from baseline were correlated with selective clearance of S-HBsAg in 39 of 42 participants. Selective S-HBsAg decline was absent in 9 of 10 participants with HBsAg decline < 2 log10 IU/ml from baseline. Mild qHBsAg rebound during follow-up <10 IU/ml consisted mostly of S-HBsAg and M-HBsAg and not accompanied by significant covalently closed circular DNA activity. Conclusion: The faster observed declines in S-HBsAg indicate the selective clearance of subviral particles from the circulation, consistent with previous mechanistic studies on NAPs. Trace HBsAg rebound in the absence of HBV DNA may reflect HBsAg derived from integrated HBV DNA and not rebound of viral infection.
Collapse
Affiliation(s)
| | | | - Victor Pântea
- Department of Infectious DiseasesNicolae Testemiţanu State University of Medicine and PharmacyChișinăuRepublic of Moldova
| | - Gheorghe Placinta
- Department of Infectious DiseasesNicolae Testemiţanu State University of Medicine and PharmacyChișinăuRepublic of Moldova
| | - Iurie Moscalu
- ARENSIA Exploratory MedicineRepublican Clinical HospitalChișinăuRepublic of Moldova
| | - Valentin Cebotarescu
- Department of Infectious DiseasesNicolae Testemiţanu State University of Medicine and PharmacyChișinăuRepublic of Moldova
| | - Lilia Cojuhari
- Department of Infectious DiseasesNicolae Testemiţanu State University of Medicine and PharmacyChișinăuRepublic of Moldova
| | - Pavlina Jimbei
- Toma Ciorbǎ Infectious Clinical HospitalChișinăuRepublic of Moldova
| | - Liviu Iarovoi
- Department of Infectious DiseasesNicolae Testemiţanu State University of Medicine and PharmacyChișinăuRepublic of Moldova
| | | | - Tatina Musteata
- Toma Ciorbǎ Infectious Clinical HospitalChișinăuRepublic of Moldova
| | - Alina Jucov
- Department of Infectious DiseasesNicolae Testemiţanu State University of Medicine and PharmacyChișinăuRepublic of Moldova.,ARENSIA Exploratory MedicineRepublican Clinical HospitalChișinăuRepublic of Moldova
| | - Ulf Dittmer
- Institute for VirologyUniversity of Duisburg-EssenEssenGermany
| | | | | | - Mary Kuhns
- Abbott DiagnosticsAbbott ParkIllinoisUSA
| | | | | |
Collapse
|
6
|
Jiao Q, Xu W, Guo X, Liu H, Liao B, Zhu X, Chen C, Yang F, Wu L, Xie C, Peng L. NLRX1 can counteract innate immune response induced by an external stimulus favoring HBV infection by competitive inhibition of MAVS-RLRs signaling in HepG2-NTCP cells. Sci Prog 2021; 104:368504211058036. [PMID: 34825857 PMCID: PMC10461377 DOI: 10.1177/00368504211058036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION This study is aimed at the determination of the effect of the immune-regulatory factor NLRX1 on the antiviral activity of hepatocytes against an external stimuli favoring hepatitis B virus infection, and to explore its mechanism of action. METHODS A HepG2-NTCP model was established using the LV003 lentivirus. Cells were transfected using an overexpression vector and NLRX1 siRNA to achieve overexpression and interference of NLRX1 expression (OV-NLRX1, si-NLRX1). Levels of HBsAg and HBcAg were determined using Western blotting analysis and immunohistochemical analysis. The levels of hepatitis B virus DNA and hepatitis B virus cccDNA were determined by real-time quantitative polymerase chain reaction. The expression and transcriptional activity of IFN-α, IFN-β, and IL-6 were measured using real-time quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and promoter-luciferase reporter plasmids. Co-immunoprecipitation was used to determine the effect of NLRX1 on the interaction between MAVS and RIG-1. Western blotting was used to obtain the phosphorylation of essential proteins in the MAVS-RLRs signaling pathways. RESULTS NLRX1 promoted HepG2-NTCP cell hepatitis B virus infection. Compared to the control group, the levels of HBsAg, HBcAg, hepatitis B virus cccDNA, and hepatitis B virus DNA increased in the OV-NLRX1 group and decreased in the si-NLRX1. Co-immunoprecipitation results showed that NLRX1 competitively inhibited the interaction between MAVS and RIG-1, and inhibited the phosphorylation of p65, IRF3, and IRF7. Additionally, NLRX1 reduced the transcription activity and expression levels of the final products: IFN-α, IFN-β, and IL-6. CONCLUSIONS NLRX1 can counteract innate immune response induced by an external stimuli favoring hepatitis B virus infection by competitive inhibition of MAVS-RLRs signaling in HepG2-NTCP cells. Inhibition of the MAVS-RLR-mediated signaling pathways leads to a decline in the expression levels of I-IFN and IL-6.
Collapse
Affiliation(s)
- Qian Jiao
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Wenxiong Xu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Xiaoyan Guo
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Huiyuan Liu
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Baolin Liao
- Infectious Disease Center, Guangzhou Eighth People’s
Hospital, Guangzhou Medical University, China
| | - Xiang Zhu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Chuming Chen
- Department of Infectious Diseases, Third People’s Hospital of
Shenzhen, China
| | - Fangji Yang
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Lina Wu
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Chan Xie
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| | - Liang Peng
- Department of Infectious Diseases,
Third Affiliated Hospital, Sun Yat-sen University, China
| |
Collapse
|
7
|
Zhang BY, Chai DP, Wu YH, Qiu LP, Zhang YY, Ye ZH, Yu XP. Potential Drug Targets Against Hepatitis B Virus Based on Both Virus and Host Factors. Curr Drug Targets 2020; 20:1636-1651. [PMID: 31362671 DOI: 10.2174/1389450120666190729115646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis B is a very harmful and epidemic disease caused by hepatitis B virus (HBV). Although an effective anti-HBV vaccine is available, chronic infection poses still a huge health burden in the whole world. The present anti-HBV drugs including nucleoside analogues and interferonalpha have their limitations without exception. There is no effective drug and therapeutic method that can really and truly cure hepatitis B so far. The variability of HBV genome results in that a significant number of patients develop drug resistance during the long-term use of anti-HBV drugs. Hence, it is urgently needed to discover novel targets and develop new drugs against hepatitis B. OBJECTIVE The review aims to provide the theory support for designing of the anti-HBV innovative drugs by offering a summary of the current situation of antiviral potential targets. RESULTS AND CONCLUSION Since HBV is obligate intracellular parasite, and as such it depends on host cellular components and functions to replicate itself. The targeting both virus and host might be a novel therapeutic option for hepatitis B. Accordingly, we analyse the advances in the study of the potential drug targets for anti-HBV infection, focusing on targeting virus genome, on targeting host cellular functions and on targeting virus-host proteins interactions, respectively. Meanwhile, the immune targets against chronic hepatitis B are also emphasized. In short, the review provides a summary of antiviral therapeutic strategies to target virus factors, host factors and immune factors for future designing of the innovative drug against HBV infection.
Collapse
Affiliation(s)
- Bing-Yi Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Dan-Ping Chai
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yi-Hang Wu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yong-Yong Zhang
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zi-Hong Ye
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiao-Ping Yu
- Department of Pharmacy, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
8
|
Majer C, Schüssler JM, König R. Intertwined: SAMHD1 cellular functions, restriction, and viral evasion strategies. Med Microbiol Immunol 2019; 208:513-529. [PMID: 30879196 DOI: 10.1007/s00430-019-00593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023]
Abstract
SAMHD1 was initially described for its ability to efficiently restrict HIV-1 replication in myeloid cells and resting CD4+ T cells. However, a growing body of evidence suggests that SAMHD1-mediated restriction is by far not limited to lentiviruses, but seems to be a general concept that applies to most retroviruses and at least a number of DNA viruses. SAMHD1 anti-viral activity was long believed to be solely due to its ability to deplete cellular dNTPs by enzymatic degradation. However, since its discovery, several new functions have been attributed to SAMHD1. It has been demonstrated to bind nucleic acids, to modulate innate immunity, as well as to participate in the DNA damage response and resolution of stalled replication forks. Consequently, it is likely that SAMHD1-mediated anti-viral activity is not or not exclusively mediated through its dNTPase activity. Therefore, in this review, we summarize current knowledge on SAMHD1 cellular functions and systematically discuss how these functions could contribute to the restriction of a broad range of viruses besides retroviruses: herpesviruses, poxviruses and hepatitis B virus. Furthermore, we aim to highlight different ways how viruses counteract SAMHD1-mediated restriction to bypass the SAMHD1-mediated block to viral infection.
Collapse
Affiliation(s)
- Catharina Majer
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany
| | | | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany. .,Immunity and Pathogenesis Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA. .,German Center for Infection Research (DZIF), 63225, Langen, Germany. .,Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225, Langen, Germany.
| |
Collapse
|
9
|
Qiu JW, Deng M, Cheng Y, Atif RM, Lin WX, Guo L, Li H, Song YZ. Sodium taurocholate cotransporting polypeptide (NTCP) deficiency: Identification of a novel SLC10A1 mutation in two unrelated infants presenting with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia. Oncotarget 2017; 8:106598-106607. [PMID: 29290974 PMCID: PMC5739759 DOI: 10.18632/oncotarget.22503] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
Sodium taurocholate cotransporting polypeptide (NTCP) is encoded by the gene SLC10A1 and expressed in the basolateral membrane of the hepatocyte, functioning to uptake bile acids from plasma. Although SLC10A1 has been cloned and NTCP function studied intensively for years, clinical description of NTCP deficiency remains rather limited. This study reported the genotypic and phenotypic features of two neonatal patients with NTCP deficiency. They both presented with neonatal indirect hyperbilirubinemia and remarkable hypercholanemia, and harbored the SLC10A1 variants c.800C>T (p.S267F) and c.263T>C (p.I88T). On genetic analysis of the two family trios, the latter missense variant was detected in trans with the former, a reported loss-of-function variant. Having not been reported in any databases, the c.263T>C (p.I88T) variant demonstrated an allele frequency of 0.67% (1/150) in healthy controls. Moreover, this variant involved a relatively conservative amino acid, and was predicted to be pathogenic or deleterious by changing the conformation of the NTCP molecule. In conclusion, the novel variant c.263T>C (p.I88T) in this study enriched the SLC10A1 mutation spectrum; the clinical findings lent support to the primary role of NTCP in hepatic bile acid clearance, and suggested that NTCP deficiency might be a contributing factor for the development of neonatal indirect hyperbilirubinemia.
Collapse
Affiliation(s)
- Jian-Wu Qiu
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Mei Deng
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Cheng
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Raza-Muhammad Atif
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wei-Xia Lin
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Li Guo
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hua Li
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuan-Zong Song
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
10
|
Botelho-Souza LF, Vasconcelos MPA, Dos Santos ADO, Salcedo JMV, Vieira DS. Hepatitis delta: virological and clinical aspects. Virol J 2017; 14:177. [PMID: 28903779 PMCID: PMC5597996 DOI: 10.1186/s12985-017-0845-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
There are an estimated 400 million chronic carriers of HBV worldwide; between 15 and 20 million have serological evidence of exposure to HDV. Traditionally, regions with high rates of endemicity are central and northern Africa, the Amazon Basin, eastern Europe and the Mediterranean, the Middle East and parts of Asia. There are two types of HDV/HBV infection which are differentiated by the previous status infection by HBV for the individual. Individuals with acute HBV infection contaminated by HDV is an HDV/HBV co-infection, while individuals with chronic HBV infection contaminated by HDV represent an HDV/HBV super-infection. The appropriate treatment for chronic hepatitis delta is still widely discussed since it does not have an effective drug. Alpha interferon is currently the only licensed therapy for the treatment of chronic hepatitis D. The most widely used drug is pegylated interferon but only approximately 25% of patients maintain a sustained viral response after 1 year of treatment. The best marker of therapeutic success would be the clearance of HBsAg, but this data is rare in clinical practice. Therefore, the best way to predict a sustained virologic response is the maintenance of undetectable HDV RNA levels.
Collapse
Affiliation(s)
- Luan Felipo Botelho-Souza
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil.
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil.
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil.
| | | | - Alcione de Oliveira Dos Santos
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Juan Miguel Villalobos Salcedo
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| | - Deusilene Souza Vieira
- Laboratório de Virologia Molecular - FIOCRUZ - RONDÔNIA, Rua da Beira, 7671 - BR 364, Km 3,5 Bairro Lagoa, CEP: 76812, Porto Velho, RO, CEP: 76812-329, Brazil
- Ambulatório de Hepatites Virais, Fundação Oswaldo Cruz Rondônia e Centro de Pesquisa em Medicina Tropical - CEPEM, Avenida Guaporé, 215, anexo Hospital CEMETRON, Agenor M de Carvalho, Porto Velho, RO, CEP: 76812-329, Brazil
- Programa de Pós-Graduação em Biologia Experimental - PGBioExp, Rodovia Br-364, KM 9, CAMPUS UNIR, Porto Velho, RO, CEP: 76801-974, Brazil
| |
Collapse
|
11
|
Elazar M, Glenn JS. Emerging concepts for the treatment of hepatitis delta. Curr Opin Virol 2017; 24:55-59. [PMID: 28475945 DOI: 10.1016/j.coviro.2017.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV) causes the most severe form of human viral hepatitis and is associated with a higher risk of cirrhosis, liver decompensation and liver cancer. Interferon alpha is the only agent that has demonstrated efficacy to date, although response rates are low and it is associated with significant side effects. A better understanding of the relevant molecular virology has resulted in the identification of new candidate targets. Future therapeutic options are rapidly evolving as several new agents have entered clinical development, including the entry inhibitor myrcludex-B, the nucleic acid polymer REP2139-Ca inhibiting HBV surface antigen secretion, the farnesyltransferase inhibitor lonafarnib that targets virus assembly, and a better tolerated interferon-interferon lambda.
Collapse
Affiliation(s)
- Menashe Elazar
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey S Glenn
- Departments of Medicine (Division of Gastroenterology and Hepatology) and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA; Veterans Administration Medical Center, Palo Alto, California.
| |
Collapse
|
12
|
|
13
|
Meng ZJ, Yang YD. Potential strategies for "cure" of hepatitis B. Shijie Huaren Xiaohua Zazhi 2016; 24:4438-4449. [DOI: 10.11569/wcjd.v24.i33.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B is a worldwide health problem and the main cause of liver cirrhosis, liver failure, and liver cancer. The steady state of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in HBV infected hepatocytes and virus specific immune tolerance contribute to the chronic persistent infection and hard-to-cure of hepatitis B. The presently available therapeutics for hepatitis B can control viral replication, but rarely eliminate HBV surface antigen (HBsAg) or HBV cccDNA. The "cure" of hepatitis B, which is characterized by the HBsAg loss or HBsAg seroconversion, and cccDNA clearance, has been the goal of researchers for years. In recent years, with the robust progress in understanding the HBV pathogenesis and the rapid development of gene editing technology, the "cure" of hepatitis B becomes prospective. This paper aims to summarize the potential strategies for the "cure" of hepatitis B.
Collapse
|
14
|
Ferdek PE, Jakubowska MA, Gerasimenko JV, Gerasimenko OV, Petersen OH. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake. J Physiol 2016; 594:6147-6164. [PMID: 27406326 PMCID: PMC5088250 DOI: 10.1113/jp272774] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+ ; and Na+ -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. ABSTRACT Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na+ -dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+ , showing that bile-dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC-S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC-S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK. ,
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Julia V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Ole H Petersen
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| |
Collapse
|
15
|
Modification of Three Amino Acids in Sodium Taurocholate Cotransporting Polypeptide Renders Mice Susceptible to Infection with Hepatitis D Virus In Vivo. J Virol 2016; 90:8866-74. [PMID: 27466423 DOI: 10.1128/jvi.00901-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Sodium taurocholate cotransporting polypeptide (NTCP) was identified as a functional receptor for hepatitis D virus (HDV) and its helper hepatitis B virus (HBV). In cultured cell lines, HDV infection through mouse NTCP is restricted by residues 84 to 87 of the receptor. This study shows that mice with these three amino acids altered their corresponding human residues (H84R, T86K, and S87N) in endogenous mouse NTCP support de novo HDV infection in vivo HDV infection was documented by the presence of replicative forms of HDV RNA and HDV proteins in liver cells at day 6 after viral inoculation. Monoclonal antibody specifically binding to the motif centered on K86 in NTCP partially inhibited HDV infection. These studies demonstrated specific interaction between the receptor and the viral envelopes in vivo and established a novel mouse model with minimal genetic manipulation for studying HDV infection. The model will also be useful for evaluating entry inhibitors against HDV and its helper HBV. IMPORTANCE NTCP was identified as a functional receptor for both HDV and HBV in cell cultures. We recently showed that neonatal C57BL/6 transgenic (Tg) mice exogenously expressing human NTCP (hNTCP-Tg) in liver support transient HDV infection. In this study, we introduced alterations of three amino acids in the endogenous NTCP of FVB mice through genome editing. The mice with the humanized NTCP residues (H84R, T86K, and S87N) are susceptible to HDV infection, and the infection can be established in both neonatal and adult mice with this editing. We also developed a monoclonal antibody specifically targeting the region of NTCP centered on lysine residue 86, and it can differentiate the modified mouse NTCP from that of the wild type and partially inhibited HDV infection. These studies shed new light on NTCP-mediated HDV infection in vivo, and the NTCP-modified mice provide a useful animal model for studying HDV infection and evaluating antivirals against the infection.
Collapse
|
16
|
Wang YJ, Yang L, Zuo JP. Recent developments in antivirals against hepatitis B virus. Virus Res 2015; 213:205-213. [PMID: 26732483 DOI: 10.1016/j.virusres.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
Chronic hepatitis B virus (HBV) infection (CHB) is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Although the availability of HBV vaccines effectively reduces the incidence of HBV infection, the healthcare burden from CHB remains high. Several antiviral agents, such as (pegylated-) interferon-α and nucleos(t)ide analogs are approved by US FDA for chronic HBV infection management. Entecavir (ETV) and tenofovir disoproxil fumarate (TDF) have been recommended as the first-line anti-HBV drugs for excellent viral suppression with a low risk of antiviral resistance, but the cost and need for essentially life-long treatment are considerable challenges. And none of these current treatments can eradicate the intracellular virus. Given these issues, there is still an unmet medical need for an efficient HBV cure. We summarize here the key developments of antivirals against hepatitis B virus, including HBV replication cycle inhibitors and host immune regulators.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555, Shanghai, People's Republic of China
| | - Li Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555, Shanghai, People's Republic of China.
| | - Jian-Ping Zuo
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zuchongzhi Road 555, Shanghai, People's Republic of China.
| |
Collapse
|