1
|
Griffin DK, Kretschmer R, Srikulnath K, Singchat W, O'Connor RE, Romanov MN. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol Cytogenet 2024; 17:24. [PMID: 39482771 PMCID: PMC11526677 DOI: 10.1186/s13039-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions.
Collapse
Affiliation(s)
- Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, 96010-900, RS, Brazil
| | - Kornsorn Srikulnath
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- L. K. Ernst Federal Research Center for Animal Husbandry, Dubrovitsy, Podolsk, 142132, Moscow Oblast, Russia.
| |
Collapse
|
2
|
Wu S, Dou T, Yuan S, Yan S, Xu Z, Liu Y, Jian Z, Zhao J, Zhao R, Zi X, Gu D, Liu L, Li Q, Wu DD, Jia J, Ge C, Su Z, Wang K. Annotations of four high-quality indigenous chicken genomes identify more than one thousand missing genes in subtelomeric regions and micro-chromosomes with high G/C contents. BMC Genomics 2024; 25:430. [PMID: 38693501 PMCID: PMC11061957 DOI: 10.1186/s12864-024-10316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.
Collapse
Affiliation(s)
- Siwen Wu
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Sisi Yuan
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rouhan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xiannian Zi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, the University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Wu S, Wang K, Dou T, Yuan S, Yan S, Xu Z, Liu Y, Jian Z, Zhao J, Zhao R, Zi X, Gu D, Liu L, Li Q, Wu DD, Jia J, Su Z, Ge C. High quality assemblies of four indigenous chicken genomes and related functional data resources. Sci Data 2024; 11:300. [PMID: 38490983 PMCID: PMC10942973 DOI: 10.1038/s41597-024-03126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
Many lines of evidence indicate that red jungle fowl (RJF) is the primary ancestor of domestic chickens. Although multiple versions of RJF (galgal2-galgal5 and GRCg6a) and commercial chickens (GRCg7b/w and Huxu) genomes have been assembled since 2004, no high-quality indigenous chicken genomes have been assembled, hampering the understanding of chicken domestication and evolution. To fill the gap, we sequenced the genomes of four indigenous chickens with distinct morphological traits in southwest China, using a combination of short, long and Hi-C reads. We assembled each genome (~1.0 Gb) into 42 chromosomes with chromosome N50 90.5-90.9 Mb, amongst the highest quality of chicken genome assemblies. To provide resources for gene annotation and functional analysis, we also sequenced transcriptomes of 10 tissues for each of the four chickens. Moreover, we corrected many mis-assemblies and assembled missing micro-chromosomes 29 and 34-39 for GRCg6a. Our assemblies, sequencing data and the correction of GRCg6a can be valuable resources for studying chicken domestication and evolution.
Collapse
Affiliation(s)
- Siwen Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Kun Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Tengfei Dou
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Sisi Yuan
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Shixiong Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Zhiqiang Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yong Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Zonghui Jian
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jingying Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Rouhan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xiannian Zi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Dahai Gu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Lixian Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Qihua Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Junjing Jia
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| | - Changrong Ge
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
4
|
Yang T, Qiu L, Jiang Y, Bai H, Bi Y, Wang Z, Chen G, Chang G. Identification, biogenesis, and function prediction of a novel circRNA_3238 of chicken. Anim Biotechnol 2023; 34:2527-2536. [PMID: 35875943 DOI: 10.1080/10495398.2022.2102504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
With the development of high-throughput sequencing, circular RNA has come into people's vision and attracted more and more attention. Many studies have found that circular RNA plays an important role in a variety of biological processes and the occurrence and development of diseases. According to the previous sequencing results, circRNA_3238 was differentially expressed in ALV-J infected group and the non-infected group was selected for subsequent verification and analysis. We found that circRNA_3238 is a stable, circular transcript, which mainly exists in the cytoplasm. And it is widely expressed in various tissues of chickens, and highly expressed in lung, lymph, and bursa of fabricius. Bioinformatics results show that circRNA_3238 and the predicted target genes enriched MAPK signaling pathway, Notch signaling pathway, and other pathways related to disease or immune, revealing circRNA_3238 may indirectly regulate the process of ALV-J infection by regulating target genes.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hao Bai
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Yulin Bi
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Integrative comparative analysis of avian chromosome evolution by in-silico mapping of the gene ontology of homologous synteny blocks and evolutionary breakpoint regions. Genetica 2023:10.1007/s10709-023-00185-x. [PMID: 36940055 DOI: 10.1007/s10709-023-00185-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 03/21/2023]
Abstract
Avian chromosomes undergo more intra- than interchromosomal rearrangements, which either induce or are associated with genome variations among birds. Evolving from a common ancestor with a karyotype not dissimilar from modern chicken, two evolutionary elements characterize evolutionary change: homologous synteny blocks (HSBs) constitute common conserved parts at the sequence level, while evolutionary breakpoint regions (EBRs) occur between HSBs, defining the points where rearrangement occurred. Understanding the link between the structural organization and functionality of HSBs and EBRs provides insight into the mechanistic basis of chromosomal change. Previously, we identified gene ontology (GO) terms associated with both; however, here we revisit our analyses in light of newly developed bioinformatic algorithms and the chicken genome assembly galGal6. We aligned genomes available for six birds and one lizard species, identifying 630 HSBs and 19 EBRs. We demonstrate that HSBs hold vast functionality expressed by GO terms that have been largely conserved through evolution. Particularly, we found that genes within microchromosomal HSBs had specific functionalities relevant to neurons, RNA, cellular transport and embryonic development, and other associations. Our findings suggest that microchromosomes may have conserved throughout evolution due to the specificity of GO terms within their HSBs. The detected EBRs included those found in the genome of the anole lizard, meaning they were shared by all saurian descendants, with others being unique to avian lineages. Our estimate of gene richness in HSBs supported the fact that microchromosomes contain twice as many genes as macrochromosomes.
Collapse
|
6
|
Huang Z, Xu Z, Bai H, Huang Y, Kang N, Ding X, Liu J, Luo H, Yang C, Chen W, Guo Q, Xue L, Zhang X, Xu L, Chen M, Fu H, Chen Y, Yue Z, Fukagawa T, Liu S, Chang G, Xu L. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci U S A 2023; 120:e2216641120. [PMID: 36780517 PMCID: PMC9974502 DOI: 10.1073/pnas.2216641120] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.
Collapse
Affiliation(s)
- Zhen Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou350108, China
| | - Zaoxu Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province745000, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou350108, China
| | - Na Kang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaoting Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou350002, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Li Xu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, 518054, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing100193, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
7
|
Guan D, Halstead MM, Islas-Trejo AD, Goszczynski DE, Cheng HH, Ross PJ, Zhou H. Prediction of transcript isoforms in 19 chicken tissues by Oxford Nanopore long-read sequencing. Front Genet 2022; 13:997460. [PMID: 36246588 PMCID: PMC9561881 DOI: 10.3389/fgene.2022.997460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
To identify and annotate transcript isoforms in the chicken genome, we generated Nanopore long-read sequencing data from 68 samples that encompassed 19 diverse tissues collected from experimental adult male and female White Leghorn chickens. More than 23.8 million reads with mean read length of 790 bases and average quality of 18.2 were generated. The annotation and subsequent filtering resulted in the identification of 55,382 transcripts at 40,547 loci with mean length of 1,700 bases. We predicted 30,967 coding transcripts at 19,461 loci, and 16,495 lncRNA transcripts at 15,512 loci. Compared to existing reference annotations, we found ∼52% of annotated transcripts could be partially or fully matched while ∼47% were novel. Seventy percent of novel transcripts were potentially transcribed from lncRNA loci. Based on our annotation, we quantified transcript expression across tissues and found two brain tissues (i.e., cerebellum and cortex) expressed the highest number of transcripts and loci. Furthermore, ∼22% of the transcripts displayed tissue specificity with the reproductive tissues (i.e., testis and ovary) exhibiting the most tissue-specific transcripts. Despite our wide sampling, ∼20% of Ensembl reference loci were not detected. This suggests that deeper sequencing and additional samples that include different breeds, cell types, developmental stages, and physiological conditions, are needed to fully annotate the chicken genome. The application of Nanopore sequencing in this study demonstrates the usefulness of long-read data in discovering additional novel loci (e.g., lncRNA loci) and resolving complex transcripts (e.g., the longest transcript for the TTN locus).
Collapse
Affiliation(s)
- Dailu Guan
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Michelle M. Halstead
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Alma D. Islas-Trejo
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Daniel E. Goszczynski
- Department of Animal Science, University of California Davis, Davis, CA, United States
| | - Hans H. Cheng
- USDA, ARS, USNPRC, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Pablo J. Ross
- Department of Animal Science, University of California Davis, Davis, CA, United States
- *Correspondence: Pablo J. Ross, ; Huaijun Zhou,
| | - Huaijun Zhou
- Department of Animal Science, University of California Davis, Davis, CA, United States
- *Correspondence: Pablo J. Ross, ; Huaijun Zhou,
| |
Collapse
|
8
|
Tian W, Wang Z, Wang D, Zhi Y, Dong J, Jiang R, Han R, Li Z, Kang X, Li H, Liu X. Chromatin Interaction Responds to Breast Muscle Development and Intramuscular Fat Deposition Between Chinese Indigenous Chicken and Fast-Growing Broiler. Front Cell Dev Biol 2021; 9:782268. [PMID: 34912810 PMCID: PMC8667342 DOI: 10.3389/fcell.2021.782268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle development and intramuscular fat (IMF) content, which positively contribute to meat production and quality, are regulated by precisely orchestrated processes. However, changes in three-dimensional chromatin structure and interaction, a newly emerged mediator of gene expression, during the skeletal muscle development and IMF deposition have remained unclear. In the present study, we analyzed the differences in muscle development and IMF content between one-day-old commercial Arbor Acres broiler (AA) and Chinese indigenous Lushi blue-shelled-egg chicken (LS) and performed Hi-C analysis on their breast muscles. Our results indicated that significantly higher IMF content, however remarkably lower muscle fiber diameter was detected in breast muscle of LS chicken compared to that of AA broiler. The chromatin intra-interaction was prior to inter-interaction in both AA and LS chicken, and chromatin inter-interaction was heavily focused on the small and gene-rich chromosomes. For genomic compartmentalization, no significant difference in the number of B type compartments was found, but AA had more A type compartments versus LS. The A/B compartment switching of AA versus LS showed more A to B switching than B to A switching. There were no significant differences in the average sizes and distributions of topologically associating domains (TAD). Additionally, approximately 50% of TAD boundaries were overlapping. The reforming and disappearing events of TAD boundaries were identified between AA and LS chicken breast muscles. Among these, the HMGCR gene was located in the TAD-boundary regions in AA broilers, but in TAD-interior regions in LS chickens, and the IGF2BP3 gene was located in the AA-unique TAD boundaries. Both HMGCR and IGF2BP3 genes exhibited increased mRNA expression in one-day-old AA broiler breast muscles. It was demonstrated that the IGF2BP3 and HMGCR genes regulated by TAD boundary sliding were potential biomarkers for chicken breast muscle development and IMF deposition. Our data not only provide a valuable understanding of higher-order chromatin dynamics during muscle development and lipid accumulation but also reveal new insights into the regulatory mechanisms of muscle development and IMF deposition in chicken.
Collapse
Affiliation(s)
- Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Jiajia Dong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.,Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Zhengzhou, China.,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| |
Collapse
|
9
|
Estermann MA, Hirst CE, Major AT, Smith CA. The homeobox gene TGIF1 is required for chicken ovarian cortical development and generation of the juxtacortical medulla. Development 2021; 148:dev199646. [PMID: 34387307 PMCID: PMC8406534 DOI: 10.1242/dev.199646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
During early embryogenesis in amniotic vertebrates, the gonads differentiate into either ovaries or testes. The first cell lineage to differentiate gives rise to the supporting cells: Sertoli cells in males and pre-granulosa cells in females. These key cell types direct the differentiation of the other cell types in the gonad, including steroidogenic cells. The gonadal surface epithelium and the interstitial cell populations are less well studied, and little is known about their sexual differentiation programs. Here, we show the requirement of the homeobox transcription factor gene TGIF1 for ovarian development in the chicken embryo. TGIF1 is expressed in the two principal ovarian somatic cell populations: the cortex and the pre-granulosa cells of the medulla. TGIF1 expression is associated with an ovarian phenotype in estrogen-mediated sex reversal experiments. Targeted misexpression and gene knockdown indicate that TGIF1 is required, but not sufficient, for proper ovarian cortex formation. In addition, TGIF1 is identified as the first known regulator of juxtacortical medulla development. These findings provide new insights into chicken ovarian differentiation and development, specifically cortical and juxtacortical medulla formation.
Collapse
Affiliation(s)
| | | | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
10
|
Feregrino C, Tschopp P. Assessing evolutionary and developmental transcriptome dynamics in homologous cell types. Dev Dyn 2021; 251:1472-1489. [PMID: 34114716 PMCID: PMC9545966 DOI: 10.1002/dvdy.384] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Background During development, complex organ patterns emerge through the precise temporal and spatial specification of different cell types. On an evolutionary timescale, these patterns can change, resulting in morphological diversification. It is generally believed that homologous anatomical structures are built—largely—by homologous cell types. However, whether a common evolutionary origin of such cell types is always reflected in the conservation of their intrinsic transcriptional specification programs is less clear. Results Here, we developed a user‐friendly bioinformatics workflow to detect gene co‐expression modules and test for their conservation across developmental stages and species boundaries. Using a paradigm of morphological diversification, the tetrapod limb, and single‐cell RNA‐sequencing data from two distantly related species, chicken and mouse, we assessed the transcriptional dynamics of homologous cell types during embryonic patterning. With mouse limb data as reference, we identified 19 gene co‐expression modules with varying tissue or cell type‐restricted activities. Testing for co‐expression conservation revealed modules with high evolutionary turnover, while others seemed maintained—to different degrees, in module make‐up, density or connectivity—over developmental and evolutionary timescales. Conclusions We present an approach to identify evolutionary and developmental dynamics in gene co‐expression modules during patterning‐relevant stages of homologous cell type specification using single‐cell RNA‐sequencing data. We present an approach to identify evolutionary and developmental dynamics in gene co‐expression modules during patterning‐relevant stages of homologous cell type specification using single‐cell RNA‐sequencing data.
Collapse
Affiliation(s)
- Christian Feregrino
- DUW Zoology, University of Basel, Basel, Switzerland.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany. Hannoversche Str. 28, Berlin, Germany
| | | |
Collapse
|
11
|
Lawal RA, Hanotte O. Domestic chicken diversity: Origin, distribution, and adaptation. Anim Genet 2021; 52:385-394. [PMID: 34060099 DOI: 10.1111/age.13091] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Chicken is the most numerous among the domesticated livestock species. Across cultures, religions, and societies, chicken is widely accepted with little or no taboo compared to other domestic animals. Its adaptability to diverse environmental conditions and demonstrated potential for breeding improvement provide a unique genetic resource for addressing the challenges of food security in a world impacted by climatic change and human population growth. Recent studies, shedding new knowledge on the chicken genomes, have helped reconstruct its past evolutionary history. Here, we review the literature concerning the origin, dispersion, and adaptation of domestic chicken. We highlight the role of human and natural selection in shaping the diversity of the species and provide a few examples of knowledge gaps that may be the focus of future research.
Collapse
Affiliation(s)
- R A Lawal
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609, USA
| | - O Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,Centre for Tropical Livestock Genetics and Health, The Roslin Institute, Edinburgh, EH25 9RG, UK.,LiveGene, International Livestock Research Institute (ILRI), P.O. 5689, Addis Ababa, Ethiopia
| |
Collapse
|
12
|
Sustainable intensification of indigenous village chicken production system: matching the genotype with the environment. Trop Anim Health Prod 2021; 53:337. [PMID: 34021847 DOI: 10.1007/s11250-021-02773-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The multi-purpose indigenous village chickens (IVCs) are kept in low- and middle-income countries. IVCs are hardy and are resilient to disease, hostile environment, global warming, and climate change. The IVCs are a little impacted by anthropogenic effects; consequently, they possess high genetic and phenotypic diversity. Likewise, the genetic structure of IVCs is principally shaped by natural selection, which enables them to accumulate high genetic polymorphism and to adaptively radiate. Regardless of this, the genetic wealth of IVCs has been eroded by indiscriminate crossbreeding. Emerging infectious and non-infectious diseases, flawed assumptions, predation, inadequate nutrition, poorly maintained night enclosures, and underdeveloped market infrastructure, and the overlooked multiple-use values and unique attributes of IVCs have threatened their mere survival. The IVCs lay a few eggs and produce less meat, which cannot meet the growing (existing) demand. However, the demand for IVC products is growing attributable to the flavor and texture of eggs and meat, and they are well-aligned with the subsistence farming system. The several use values and ecosystem services provided by IVCs have been increasingly realized. Enhanced production can be attained through sustainable use of local (genetic) resources and by scaling up and out best practices. Genetic improvement needs to mainly rely upon IVC genetic resources and should have to match the genotype with the environment. Moreover, it has to maintain the genetic polymorphism that has been accumulated for time immemorial to respond to unanticipated changes in the production system and consumers' demand. In this review, enhanced management, selection strategies, and genetic crosses including the crossing of commercial chickens with red junglefowl have been proposed to sustainably intensify the IVC production system.
Collapse
|
13
|
Charlesworth D. When and how do sex-linked regions become sex chromosomes? Evolution 2021; 75:569-581. [PMID: 33592115 DOI: 10.1111/evo.14196] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
The attention given to heteromorphism and genetic degeneration of "classical sex chromosomes" (Y chromosomes in XY systems, and the W in ZW systems that were studied first and are best described) has perhaps created the impression that the absence of recombination between sex chromosomes is inevitable. I here argue that continued recombination is often to be expected, that absence of recombination is surprising and demands further study, and that the involvement of selection in reduced recombination is not yet well understood. Despite a long history of investigations of sex chromosome pairs, there is a need for more quantitative approaches to studying sex-linked regions. I describe a scheme to help understand the relationships between different properties of sex-linked regions. Specifically, I focus on their sizes (differentiating between small regions and extensive fully sex-linked ones), the times when they evolved, and their differentiation, and review studies using DNA sequencing in nonmodel organisms that are providing information about the processes causing these properties.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
14
|
Comparative Mapping of the Macrochromosomes of Eight Avian Species Provides Further Insight into Their Phylogenetic Relationships and Avian Karyotype Evolution. Cells 2021; 10:cells10020362. [PMID: 33572408 PMCID: PMC7916199 DOI: 10.3390/cells10020362] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Avian genomes typically consist of ~10 pairs of macro- and ~30 pairs of microchromosomes. While inter-chromosomally, a pattern emerges of very little change (with notable exceptions) throughout evolution, intrachromosomal changes remain relatively poorly studied. To rectify this, here we use a pan-avian universally hybridising set of 74 chicken bacterial artificial chromosome (BAC) probes on the macrochromosomes of eight bird species: common blackbird, Atlantic canary, Eurasian woodcock, helmeted guinea fowl, houbara bustard, mallard duck, and rock dove. A combination of molecular cytogenetic, bioinformatics, and mathematical analyses allowed the building of comparative cytogenetic maps, reconstruction of a putative Neognathae ancestor, and assessment of chromosome rearrangement patterns and phylogenetic relationships in the studied neognath lineages. We observe that, as with our previous studies, chicken appears to have the karyotype most similar to the ancestor; however, previous reports of an increased rate of intrachromosomal change in Passeriformes (songbirds) appear not to be the case in our dataset. The use of this universally hybridizing probe set is applicable not only for the re-tracing of avian karyotype evolution but, potentially, for reconstructing genome assemblies.
Collapse
|
15
|
Yang T, Qiu L, Bai M, Wang L, Hu X, Huang L, Chen G, Chang G. Identification, biogenesis and function prediction of novel circRNA during the chicken ALV-J infection. Anim Biotechnol 2020; 33:981-991. [PMID: 33325776 DOI: 10.1080/10495398.2020.1856125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Circular RNA (circRNA) is a new non-coding RNA with a highly conserved and stable covalently closed loop structure, and it plays an important role in a variety of biological processes and the occurrence of diseases. Based on the sequencing results, circRNA_3079 had the most significant difference between the infected group and normal group, up to about 8 times. It has attracted our attention and was selected for further verification and analysis. Though the characteristics analysis of circRNA_3079 in chicken, we found circRNA_3079 is a stable, circular transcript, which mainly exists in the cytoplasm. And it is widely expressed in various tissues of chickens, and highly expressed in lung, spleen, lymph and bursa of fabricius. Bioinformatics analysis results showed that circRNA_3079 and the predicted target genes are enriched in many pathways related to immunity or tumors, such as p53 signaling pathway, Jak-STAT signaling pathway and NOD-like receptor signaling pathway, which revealed that circRNA_3079 may indirectly regulate the ALV-J infection process through the regulation of target genes.HIGHLIGHTSCircRNA_3079 is an abundant and stable circular RNA expressed in different tissues and cells in chicken.The circularization of circRNA_3079 does not depend on the reverse complementary repetitive sequence of the flanking sequence.CircRNA_3079 may indirectly regulate the ALV-J infection process.
Collapse
Affiliation(s)
- Ting Yang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lingling Qiu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Meng Bai
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Laidi Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaodan Hu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lan Huang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Kulikova T, Surkova A, Zlotina A, Krasikova A. Mapping epigenetic modifications on chicken lampbrush chromosomes. Mol Cytogenet 2020; 13:32. [PMID: 32774459 PMCID: PMC7397634 DOI: 10.1186/s13039-020-00496-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background The epigenetic regulation of genome is crucial for implementation of the genetic program of ontogenesis through establishing and maintaining differential gene expression. Thus mapping of various epigenetic modifications to the genome is relevant for studying the regulation of gene expression. Giant transcriptionally active lampbrush chromosomes are an established tool for high resolution physical mapping of the genome and its epigenetic modifications. This study is aimed at characterizing the epigenetic status of compact chromatin domains (chromomeres) of chicken lampbrush macrochromosomes. Results Distribution of three epigenetic modifications – 5-methylcytosine, histone H3 trimethylated at lysine 9 and hyperacetylated histone H4 – along the axes of chicken lampbrush chromosomes 1–4, Z and W was analyzed in details. Enrichment of chromatin domains with the investigated epigenetic modifications was indicated on the cytological chromomere-loop maps for corresponding chicken lampbrush chromosomes. Heterogeneity in the distribution of 5-methylcytosine and histone H3 trimethylated at lysine 9 along the chromosome axes was revealed. Conclusions On examples of certain chromomeres of chicken lampbrush chromosomes 1, 3, 4 and W we demonstrated that a combination of immunofluorescent staining and fluorescence in situ hybridization allows to relate the epigenetic status and a DNA sequence context of individual chromomeres.
Collapse
Affiliation(s)
| | - Anna Surkova
- Saint Petersburg State University, Saint-Petersburg, Russia
| | - Anna Zlotina
- Saint Petersburg State University, Saint-Petersburg, Russia
| | - Alla Krasikova
- Saint Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
17
|
Hosnedlova B, Vernerova K, Kizek R, Bozzi R, Kadlec J, Curn V, Kouba F, Fernandez C, Machander V, Horna H. Associations between IGF1, IGFBP2 and TGFß3 Genes Polymorphisms and Growth Performance of Broiler Chicken Lines. Animals (Basel) 2020; 10:E800. [PMID: 32380764 PMCID: PMC7277336 DOI: 10.3390/ani10050800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Marker-assisted selection based on fast and accurate molecular analysis of individual genes is considered an acceptable tool in the speed-up of the genetic improvement of production performance in chickens. The objective of this study was to detect the single nucleotide polymorphisms (SNPs) in the IGF1, IGFBP2 and TGFß3 genes, and to investigate their associations with growth performance (body weight (BW) and average daily gain (ADG) at 14, 21, 28, 35 and 42 days of age) and carcass traits in broilers. Performance (carcass) data (weight before slaughter; weights of the trunk, giblets, abdominal fat, breast muscle and thigh muscle; slaughter value and slaughter percentage), as well as blood samples for DNA extraction and SNP analysis, were obtained from 97 chickens belonging to two different lines (Hubbard F15 and Cobb E) equally divided between the two sexes. The genotypes were detected using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) methods with specific primers and restrictase for each gene. The statistical analysis discovered significant associations (p < 0.05) between the TGFβ3 SNP and the following parameters: BW at 21, 28 and 35 days, trunk weight and slaughter value. Association analysis of BWs (at 21, 28 and 35 days) and SNPs was always significant for codominant, dominant and overdominant genetic models, showing a possible path for genomic selection in these chicken lines. Slaughter value was significant for codominant, recessive and overdominant patterns, whereas other carcass traits were not influenced by SNPs. Based on the results of this study, we suggested that the TGFβ3 gene could be used as a candidate gene marker for chicken growth traits in the Hubbard F15 and Cobb E population selection programs, whereas for carcass traits further investigation is needed.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Katerina Vernerova
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Rene Kizek
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Riccardo Bozzi
- Food, Environment and Forestry, Animal Science Section, Department of Agriculture, University of Florence, Via delle Cascine, 5, 50144 Firenze, Italy;
| | - Jaromir Kadlec
- Department of Agricultural Products’ Quality, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Vladislav Curn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Frantisek Kouba
- State Veterinary Administration, Regional Veterinary Administration of the South Bohemian Region, Severní 9, 370 10 České Budějovice, Czech Republic;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK;
| | - Vlastislav Machander
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| | - Hana Horna
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| |
Collapse
|
18
|
De Koning DJ, Dominguez-Gasca N, Fleming RH, Gill A, Kurian D, Law A, McCormack HA, Morrice D, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Preisinger R, Schmutz M, Šmídová V, Turner F, Wilson PW, Zhou R, Dunn IC. An eQTL in the cystathionine beta synthase gene is linked to osteoporosis in laying hens. Genet Sel Evol 2020; 52:13. [PMID: 32093603 PMCID: PMC7038551 DOI: 10.1186/s12711-020-00532-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skeletal damage is a challenge for laying hens because the physiological adaptations required for egg laying make them susceptible to osteoporosis. Previously, we showed that genetic factors explain 40% of the variation in end of lay bone quality and we detected a quantitative trait locus (QTL) of large effect on chicken chromosome 1. The aim of this study was to combine data from the commercial founder White Leghorn population and the F2 mapping population to fine-map this QTL and understand its function in terms of gene expression and physiology. RESULTS Several single nucleotide polymorphisms on chromosome 1 between 104 and 110 Mb (galGal6) had highly significant associations with tibial breaking strength. The alternative genotypes of markers of large effect that flanked the region had tibial breaking strengths of 200.4 vs. 218.1 Newton (P < 0.002) and, in a subsequent founder generation, the higher breaking strength genotype was again associated with higher breaking strength. In a subsequent generation, cortical bone density and volume were increased in individuals with the better bone genotype but with significantly reduced medullary bone quality. The effects on cortical bone density were confirmed in a further generation and was accompanied by increased mineral maturity of the cortical bone as measured by infrared spectrometry and there was evidence of better collagen cross-linking in the cortical bone. Comparing the transcriptome of the tibia from individuals with good or poor bone quality genotypes indicated four differentially-expressed genes at the locus, one gene, cystathionine beta synthase (CBS), having a nine-fold higher expression in the genotype for low bone quality. The mechanism was cis-acting and although there was an amino-acid difference in the CBS protein between the genotypes, there was no difference in the activity of the enzyme. Plasma homocysteine concentration, the substrate of CBS, was higher in the poor bone quality genotype. CONCLUSIONS Validated markers that predict bone strength have been defined for selective breeding and a gene was identified that may suggest alternative ways to improve bone health in addition to genetic selection. The identification of how genetic variants affect different aspects of bone turnover shows potential for translational medicine.
Collapse
Affiliation(s)
| | | | - Robert H Fleming
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Gill
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,School of Chemistry, The University of Lincoln, Lincoln, LN6 7TS, England, UK
| | - Dominic Kurian
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Andrew Law
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Heather A McCormack
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - David Morrice
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | | | | | | | - Veronica Šmídová
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Frances Turner
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | - Rongyan Zhou
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.,Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK.
| |
Collapse
|
19
|
McCarthy FM, Pendarvis K, Cooksey AM, Gresham CR, Bomhoff M, Davey S, Lyons E, Sonstegard TS, Bridges SM, Burgess SC. Chickspress: a resource for chicken gene expression. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5512474. [PMID: 31210271 PMCID: PMC6556980 DOI: 10.1093/database/baz058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 04/15/2019] [Indexed: 12/12/2022]
Abstract
High-throughput sequencing and proteomics technologies are markedly increasing the amount of RNA and peptide data that are available to researchers, which are typically made publicly available via data repositories such as the NCBI Sequence Read Archive and proteome archives, respectively. These data sets contain valuable information about when and where gene products are expressed, but this information is not readily obtainable from archived data sets. Here we report Chickspress (http://geneatlas.arl.arizona.edu), the first publicly available gene expression resource for chicken tissues. Since there is no single source of chicken gene models, Chickspress incorporates both NCBI and Ensembl gene models and links these gene sets with experimental gene expression data and QTL information. By linking gene models from both NCBI and Ensembl gene prediction pipelines, researchers can, for the first time, easily compare gene models from each of these prediction workflows to available experimental data for these products. We use Chickspress data to show the differences between these gene annotation pipelines. Chickspress also provides rapid search, visualization and download capacity for chicken gene sets based upon tissue type, developmental stage and experiment type. This first Chickspress release contains 161 gene expression data sets, including expression of mRNAs, miRNAs, proteins and peptides. We provide several examples demonstrating how researchers may use this resource.
Collapse
Affiliation(s)
- Fiona M McCarthy
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Ken Pendarvis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Amanda M Cooksey
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| | - Cathy R Gresham
- Institute of Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville MS, USA
| | - Matt Bomhoff
- School of Plant Sciences, CyVerse, University of Arizona, Tucson AZ , USA
| | - Sean Davey
- School of Plant Sciences, CyVerse, University of Arizona, Tucson AZ , USA
| | - Eric Lyons
- School of Plant Sciences, CyVerse, University of Arizona, Tucson AZ , USA
| | - Tad S Sonstegard
- United States Department of Agriculture Agricultural Research Service Beltsville Agricultural Research Center, Beltsville MD, USA
| | - Susan M Bridges
- Department of Computer Science and Engineering, Mississippi State University, Starkville MS, USA
| | - Shane C Burgess
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA
| |
Collapse
|
20
|
Nuthalapati NK, Evans JD, Taylor RL, Branton SL, Nanduri B, Pharr GT. Transcriptomic analysis of early B-cell development in the chicken embryo. Poult Sci 2019; 98:5342-5354. [PMID: 31237340 PMCID: PMC6771548 DOI: 10.3382/ps/pez354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/01/2019] [Indexed: 12/19/2022] Open
Abstract
The chicken bursa of Fabricius is a primary lymphoid tissue important for B-cell development. Our long-term goal is to understand the role of bursal microenvironment in an early B-cell differentiation event initiating repertoire development through immunoglobulin gene conversion in the chick embryo. We hypothesize that early bursal B-cell differentiation is guided by signals through cytokine receptors. Our theory is based on previous evidence for expression of the receptor tyrosine kinase superfamily members and interleukin receptors in unseparated populations of bursal B-cells and bursal tissue. Knowledge of the expressed genes that are responsible for B-cell differentiation is a prerequisite for understanding the bursal microenvironment's function. This project uses transcriptomic analysis to evaluate gene expression across early B-cell development. RNA-seq was performed with total RNA isolated from bursal B-cells at embryonic day (ED) 16 and ED 19 (n = 3). Approximately 90 million high-quality clean reads were obtained from the cDNA libraries. The analysis revealed differentially expressed genes involved in the Jak-STAT pathway, Wnt signaling pathway, MAPK signaling pathway, metabolic pathways including tyrosine metabolism, Toll-like receptor signaling pathway, and cell-adhesion molecules. The genes predicted to encode surface receptors, signal transduction proteins, and transcription factors identified in this study represent gene candidates for controlling B-cell development in response to differentiation factors in the bursal microenvironment.
Collapse
Affiliation(s)
- Nikhil K Nuthalapati
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State MS 39762, Mississippi State
| | - Jeffrey D Evans
- USDA, Agricultural Research Service, Poultry Research Unit, PO Box 5367, Mississippi State University, Starkville, MS 39762-5367
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506
| | - Scott L Branton
- USDA, Agricultural Research Service, Poultry Research Unit, PO Box 5367, Mississippi State University, Starkville, MS 39762-5367
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State MS 39762, Mississippi State
| | - Gregory T Pharr
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State MS 39762, Mississippi State
| |
Collapse
|
21
|
Báez M, Vaio M, Dreissig S, Schubert V, Houben A, Pedrosa-Harand A. Together But Different: The Subgenomes of the Bimodal Eleutherine Karyotypes Are Differentially Organized. FRONTIERS IN PLANT SCIENCE 2019; 10:1170. [PMID: 31649686 PMCID: PMC6791338 DOI: 10.3389/fpls.2019.01170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Bimodal karyotypes are characterized by the presence of two sets of chromosomes of contrasting size. Eleutherine bulbosa (2n = 12) presents a bimodal karyotype with a large chromosome pair, which has a pericentric inversion in permanent heterozygosity with suppressed recombination, and five pairs of three to four times smaller chromosomes. Aiming to understand whether high copy number sequence composition differs between both chromosome sets, we investigated the repetitive DNA fraction of E. bulbosa and compared it to the chromosomal organization of the related Eleutherine latifolia species, not containing the pericentric inversion. We also compared the repetitive sequence proportions between the heteromorphic large chromosomes of E. bulbosa and between E. bulbosa and E. latifolia to understand the influence of the chromosome inversion on the dynamics of repetitive sequences. The most abundant repetitive families of the genome showed a similar chromosomal distribution in both homologs of the large pair and in both species, apparently not influenced by the species-specific inversions. The repeat families Ebusat1 and Ebusat4 are localized interstitially only on the large chromosome pair, while Ebusat2 is located in the centromeric region of all chromosomes. The four most abundant retrotransposon lineages are accumulated in the large chromosome pair. Replication timing and distribution of epigenetic and transcriptional marks differ between large and small chromosomes. The differential distribution of retroelements appears to be related to the bimodal condition and is not influenced by the nonrecombining chromosome inversions in these species. Thus, the large and small chromosome subgenomes of the bimodal Eleutherine karyotype are differentially organized and probably evolved by repetitive sequences accumulation on the large chromosome set.
Collapse
Affiliation(s)
- Mariana Báez
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | - Magdalena Vaio
- Laboratory of Genetics, Department of Plant Biology, College of Agronomy, University of the Republic, Montevideo, Uruguay
| | - Steven Dreissig
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Veit Schubert
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andreas Houben
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Andrea Pedrosa-Harand
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
22
|
Li J, Davis BW, Jern P, Dorshorst BJ, Siegel PB, Andersson L. Characterization of the endogenous retrovirus insertion in CYP19A1 associated with henny feathering in chicken. Mob DNA 2019; 10:38. [PMID: 31467598 PMCID: PMC6712707 DOI: 10.1186/s13100-019-0181-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 11/10/2022] Open
Abstract
Background Henny feathering in chickens is determined by a dominant mutation that transforms male-specific plumage to female-like plumage. Previous studies indicated that this phenotype is caused by ectopic expression in skin of CYP19A1 encoding aromatase that converts androgens to estrogen and thereby inhibits the development of male-specific plumage. A long terminal repeat (LTR) from an uncharacterized endogenous retrovirus (ERV) insertion was found in an isoform of the CYP19A1 transcript from henny feathering chicken. However, the complete sequence and the genomic position of the insertion were not determined. Results We used publicly available whole genome sequence data to determine the flanking sequences of the ERV, and then PCR amplified the entire insertion and sequenced it using Nanopore long reads and Sanger sequencing. The 7524 bp insertion contains an intact endogenous retrovirus that was not found in chickens representing 31 different breeds not showing henny feathering or in samples of the ancestral red junglefowl. The sequence shows over 99% sequence identity to the avian leukosis virus ev-1 and ev-21 strains, suggesting a recent integration. The ERV 3’LTR, containing a powerful transcriptional enhancer and core promoter with TATA box together with binding sites for EFIII and Ig/EBP inside the CYP19A1 5′ untranslated region, was detected partially in an aromatase transcript, which present a plausible explanation for ectopic expression of aromatase in non-ovarian tissues underlying the henny feathering phenotype. Conclusions We demonstrate that the henny feathering allele harbors an insertion of an intact avian leukosis virus at the 5’end of CYP19A1. The presence of this ERV showed complete concordance with the henny feathering phenotype both within a pedigree segregating for this phenotype and across breeds. Electronic supplementary material The online version of this article (10.1186/s13100-019-0181-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jingyi Li
- 1Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Brian W Davis
- 1Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Patric Jern
- 2Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Ben J Dorshorst
- 4Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061 USA
| | - Paul B Siegel
- 4Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24061 USA
| | - Leif Andersson
- 1Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA.,2Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.,3Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-7507 Uppsala, Sweden
| |
Collapse
|
23
|
Fishman V, Battulin N, Nuriddinov M, Maslova A, Zlotina A, Strunov A, Chervyakova D, Korablev A, Serov O, Krasikova A. 3D organization of chicken genome demonstrates evolutionary conservation of topologically associated domains and highlights unique architecture of erythrocytes' chromatin. Nucleic Acids Res 2019; 47:648-665. [PMID: 30418618 PMCID: PMC6344868 DOI: 10.1093/nar/gky1103] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/24/2018] [Indexed: 12/25/2022] Open
Abstract
How chromosomes are folded, spatially organized and regulated in three dimensions inside the cell nucleus are among the longest standing questions in cell biology. Genome-wide chromosome conformation capture (Hi-C) technique allowed identifying and characterizing spatial chromatin compartments in several mammalian species. Here, we present the first genome-wide analysis of chromatin interactions in chicken embryonic fibroblasts (CEF) and adult erythrocytes. We showed that genome of CEF is partitioned into topologically associated domains (TADs), distributed in accordance with gene density, transcriptional activity and CTCF-binding sites. In contrast to mammals, where all examined somatic cell types display relatively similar spatial organization of genome, chicken erythrocytes strongly differ from fibroblasts, showing pronounced A- and B- compartments, absence of typical TADs and formation of long-range chromatin interactions previously observed on mitotic chromosomes. Comparing mammalian and chicken genome architectures, we provide evidence highlighting evolutionary role of chicken TADs and their significance in genome activity and regulation.
Collapse
Affiliation(s)
- Veniamin Fishman
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia.,Department of Natural Science, Novosibirsk State University, Novosibirsk 630099, Russia
| | - Nariman Battulin
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia.,Department of Natural Science, Novosibirsk State University, Novosibirsk 630099, Russia
| | - Miroslav Nuriddinov
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia
| | - Antonina Maslova
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Anna Zlotina
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Anton Strunov
- Department of cell biology, Institute of Cytology and Genetics, Novosibirsk 630099, Russia
| | | | - Alexey Korablev
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia
| | - Oleg Serov
- Department of molecular mechanisms of ontogenesis, Institute of Cytology and Genetics, Novosibirsk 630099, Russia.,Department of Natural Science, Novosibirsk State University, Novosibirsk 630099, Russia
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| |
Collapse
|
24
|
Shultz AJ, Sackton TB. Immune genes are hotspots of shared positive selection across birds and mammals. eLife 2019; 8:e41815. [PMID: 30620335 PMCID: PMC6338464 DOI: 10.7554/elife.41815] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/08/2019] [Indexed: 12/16/2022] Open
Abstract
Consistent patterns of positive selection in functionally similar genes can suggest a common selective pressure across a group of species. We use alignments of orthologous protein-coding genes from 39 species of birds to estimate parameters related to positive selection for 11,000 genes conserved across birds. We show that functional pathways related to the immune system, recombination, lipid metabolism, and phototransduction are enriched for positively selected genes. By comparing our results with mammalian data, we find a significant enrichment for positively selected genes shared between taxa, and that these shared selected genes are enriched for viral immune pathways. Using pathogen-challenge transcriptome data, we show that genes up-regulated in response to pathogens are also enriched for positively selected genes. Together, our results suggest that pathogens, particularly viruses, consistently target the same genes across divergent clades, and that these genes are hotspots of host-pathogen conflict over deep evolutionary time.
Collapse
Affiliation(s)
- Allison J Shultz
- Informatics GroupHarvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
- Museum of Comparative ZoologyHarvard UniversityCambridgeUnited States
| | | |
Collapse
|
25
|
Höhn H. Michael Schmid (1948-2018): A Life Devoted to Science. Sex Dev 2018; 12:265-268. [PMID: 30376669 DOI: 10.1159/000494234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
26
|
O’Connor RE, Farré M, Joseph S, Damas J, Kiazim L, Jennings R, Bennett S, Slack EA, Allanson E, Larkin DM, Griffin DK. Chromosome-level assembly reveals extensive rearrangement in saker falcon and budgerigar, but not ostrich, genomes. Genome Biol 2018; 19:171. [PMID: 30355328 PMCID: PMC6201548 DOI: 10.1186/s13059-018-1550-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 09/24/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The number of de novo genome sequence assemblies is increasing exponentially; however, relatively few contain one scaffold/contig per chromosome. Such assemblies are essential for studies of genotype-to-phenotype association, gross genomic evolution, and speciation. Inter-species differences can arise from chromosomal changes fixed during evolution, and we previously hypothesized that a higher fraction of elements under negative selection contributed to avian-specific phenotypes and avian genome organization stability. The objective of this study is to generate chromosome-level assemblies of three avian species (saker falcon, budgerigar, and ostrich) previously reported as karyotypically rearranged compared to most birds. We also test the hypothesis that the density of conserved non-coding elements is associated with the positions of evolutionary breakpoint regions. RESULTS We used reference-assisted chromosome assembly, PCR, and lab-based molecular approaches, to generate chromosome-level assemblies of the three species. We mapped inter- and intrachromosomal changes from the avian ancestor, finding no interchromosomal rearrangements in the ostrich genome, despite it being previously described as chromosomally rearranged. We found that the average density of conserved non-coding elements in evolutionary breakpoint regions is significantly reduced. Fission evolutionary breakpoint regions have the lowest conserved non-coding element density, and intrachromomosomal evolutionary breakpoint regions have the highest. CONCLUSIONS The tools used here can generate inexpensive, efficient chromosome-level assemblies, with > 80% assigned to chromosomes, which is comparable to genomes assembled using high-density physical or genetic mapping. Moreover, conserved non-coding elements are important factors in defining where rearrangements, especially interchromosomal, are fixed during evolution without deleterious effects.
Collapse
Affiliation(s)
| | - Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Sunitha Joseph
- School of Biosciences, University of Kent, Canterbury, UK
| | - Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Lucas Kiazim
- School of Biosciences, University of Kent, Canterbury, UK
| | | | - Sophie Bennett
- School of Biosciences, University of Kent, Canterbury, UK
| | - Eden A Slack
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Emily Allanson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| | | |
Collapse
|
27
|
Höhn H. Michael Schmid (1948-2018): A Life Devoted to Science. Mol Syndromol 2018. [DOI: 10.1159/000494233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
28
|
Höhn H. Michael Schmid (1948-2018): A Life Devoted to Science. Cytogenet Genome Res 2018; 156:1-4. [PMID: 30326464 DOI: 10.1159/000494232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
|
29
|
Kartout-Benmessaoud Y, Ladjali-Mohammedi K. Banding cytogenetics of chimeric hybrids Coturnixcoturnix × Coturnixjaponica and comparative analysis with the domestic fowl. COMPARATIVE CYTOGENETICS 2018; 12:445-470. [PMID: 30364889 PMCID: PMC6199345 DOI: 10.3897/compcytogen.v12i4.27341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The Common quail Coturnixcoturnix Linnaeus, 1758 is a wild migratory bird which is distributed in Eurasia and North Africa, everywhere with an accelerating decline in population size. This species is protected by the Bonn and Berne conventions (1979) and by annex II/1 of the Birds Directive (2009). In Algeria, its breeding took place at the hunting centre in the west of the country. Breeding errors caused uncontrolled crosses between the Common quail and Japanese quail Coturnixjaponica Temminck & Schlegel, 1849. In order to help to preserve the natural genetic heritage of the Common quail and to lift the ambiguity among the populations of quail raised in Algeria, it seemed essential to begin to describe the chromosomes of this species in the country since no cytogenetic study has been reported to date. Fibroblast cultures from embryo and adult animal were initiated. Double synchronization with excess thymidine allowed us to obtain high resolution chromosomes blocked at prometaphase stage. The karyotype and the idiogram in GTG morphological banding (G-bands obtained with trypsin and Giemsa) corresponding to larger chromosomes 1-12 and ZW pair were thus established. The diploid set of chromosomes was estimated as 2N=78. Cytogenetic analysis of expected hybrid animals revealed the presence of a genetic introgression and cellular chimerism. This technique is effective in distinguishing the two quail taxa. Furthermore, the comparative chromosomal analysis of the two quails and domestic chicken Gallusgallusdomesticus Linnaeus, 1758 has been conducted. Differences in morphology and/or GTG band motifs were observed on 1, 2, 4, 7, 8 and W chromosomes. Neocentromere occurrence was suggested for Common quail chromosome 1 and Chicken chromosomes 4 and W. Double pericentric inversion was observed on the Common quail chromosome 2 while pericentric inversion hypothesis was proposed for Chicken chromosome 8. A deletion on the short arm of the Common quail chromosome 7 was also found. These results suggest that Common quail would be a chromosomally intermediate species between Chicken and Japanese quail. The appearance of only a few intrachromosomal rearrangements that occurred during evolution suggests that the organization of the genome is highly conserved between these three galliform species.
Collapse
Affiliation(s)
- Yasmine Kartout-Benmessaoud
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneBab-EzzouarAlgeria
- University of Bejaia, Faculty of Nature and Life Sciences, Department of Physico-Chemical Biology, 06000, Bejaia, AlgeriaUniversity of BejaiaBejaiaAlgeria
| | - Kafia Ladjali-Mohammedi
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Team of Developmental Genetics. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneBab-EzzouarAlgeria
| |
Collapse
|
30
|
Trukhina AV, Lukina NA, Smirnov AF. Hormonal Sex Inversion and Some Aspects of Its Genetic Determination in Chicken. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Combination of novel and public RNA-seq datasets to generate an mRNA expression atlas for the domestic chicken. BMC Genomics 2018; 19:594. [PMID: 30086717 PMCID: PMC6081845 DOI: 10.1186/s12864-018-4972-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/31/2018] [Indexed: 12/20/2022] Open
Abstract
Background The domestic chicken (Gallus gallus) is widely used as a model in developmental biology and is also an important livestock species. We describe a novel approach to data integration to generate an mRNA expression atlas for the chicken spanning major tissue types and developmental stages, using a diverse range of publicly-archived RNA-seq datasets and new data derived from immune cells and tissues. Results Randomly down-sampling RNA-seq datasets to a common depth and quantifying expression against a reference transcriptome using the mRNA quantitation tool Kallisto ensured that disparate datasets explored comparable transcriptomic space. The network analysis tool Graphia was used to extract clusters of co-expressed genes from the resulting expression atlas, many of which were tissue or cell-type restricted, contained transcription factors that have previously been implicated in their regulation, or were otherwise associated with biological processes, such as the cell cycle. The atlas provides a resource for the functional annotation of genes that currently have only a locus ID. We cross-referenced the RNA-seq atlas to a publicly available embryonic Cap Analysis of Gene Expression (CAGE) dataset to infer the developmental time course of organ systems, and to identify a signature of the expansion of tissue macrophage populations during development. Conclusion Expression profiles obtained from public RNA-seq datasets – despite being generated by different laboratories using different methodologies – can be made comparable to each other. This meta-analytic approach to RNA-seq can be extended with new datasets from novel tissues, and is applicable to any species. Electronic supplementary material The online version of this article (10.1186/s12864-018-4972-7) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Lawal RA, Al-Atiyat RM, Aljumaah RS, Silva P, Mwacharo JM, Hanotte O. Whole-Genome Resequencing of Red Junglefowl and Indigenous Village Chicken Reveal New Insights on the Genome Dynamics of the Species. Front Genet 2018; 9:264. [PMID: 30079080 PMCID: PMC6062655 DOI: 10.3389/fgene.2018.00264] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/29/2018] [Indexed: 12/13/2022] Open
Abstract
The red junglefowl Gallus gallus is the main progenitor of domestic chicken, the commonest livestock species, outnumbering humans by an approximate ratio of six to one. The genetic control for production traits have been well studied in commercial chicken, but the selection pressures underlying unique adaptation and production to local environments remain largely unknown in indigenous village chicken. Likewise, the genome regions under positive selection in the wild red junglefowl remain untapped. Here, using the pool heterozygosity approach, we analyzed indigenous village chicken populations from Ethiopia, Saudi Arabia, and Sri Lanka, alongside six red junglefowl, for signatures of positive selection across the autosomes. Two red junglefowl candidate selected regions were shared with all domestic chicken populations. Four candidates sweep regions, unique to and shared among all indigenous domestic chicken, were detected. Only one region includes annotated genes (TSHR and GTF2A1). Candidate regions that were unique to each domestic chicken population with functions relating to adaptation to temperature gradient, production, reproduction and immunity were identified. Our results provide new insights on the consequence of the selection pressures that followed domestication on the genome landscape of the domestic village chicken.
Collapse
Affiliation(s)
- Raman A. Lawal
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Raed M. Al-Atiyat
- Genetics and Biotechnology, Animal Science Department, Agriculture Faculty, Mutah University, Karak, Jordan
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Riyadh S. Aljumaah
- Animal Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pradeepa Silva
- Department of Animal Sciences, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Joram M. Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- LiveGene – CTLGH, International Livestock Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
33
|
Ouchia-Benissad S, Ladjali-Mohammedi K. Banding cytogenetics of the Barbary partridge Alectoris barbara and the Chukar partridge Alectoris chukar (Phasianidae): a large conservation with Domestic fowl Gallus domesticus revealed by high resolution chromosomes. COMPARATIVE CYTOGENETICS 2018; 12:171-199. [PMID: 29896323 PMCID: PMC5995975 DOI: 10.3897/compcytogen.v12i2.23743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
The development of avian cytogenetics is significantly behind that of mammals. In fact, since the advent of cytogenetic techniques, fewer than 1500 karyotypes have been established. The Barbary partridge Alectoris barbara Bonnaterre, 1790 is a bird of economic interest but its genome has not been studied so far. This species is endemic to North Africa and globally declining. The Chukar partridge Alectoris chukar Gray, 1830 is an introduced species which shares the same habitat area as the Barbary partridge and so there could be introgressive hybridisation. A cytogenetic study has been initiated in order to contribute to the Barbary partridge and the Chukar partridge genome analyses. The GTG, RBG and RHG-banded karyotypes of these species have been described. Primary fibroblast cell lines obtained from embryos were harvested after simple and double thymidine synchronisation. The first eight autosomal pairs and Z sex chromosome have been described at high resolution and compared to those of the domestic fowl Gallus domesticus Linnaeus, 1758. The diploid number was established as 2n = 78 for both partridges, as well as for most species belonging to the Galliformes order, underlying the stability of chromosome number in avian karyotypes. Wide homologies were observed for macrochromosomes and gonosome except for chromosome 4, 7, 8 and Z which present differences in morphology and/or banding pattern. Neocentromere occurrence was suggested for both partridges chromosome 4 with an assumed paracentric inversion in the Chukar partridge chromosome 4. Terminal inversion in the long arm of the Barbary partridge chromosome Z was also found. These rearrangements confirm that the avian karyotypes structure is conserved interchromosomally, but not at the intrachromosomal scale.
Collapse
Affiliation(s)
- Siham Ouchia-Benissad
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, LBCM lab., Team: Genetics of Development. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, Algeria
| | - Kafia Ladjali-Mohammedi
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, LBCM lab., Team: Genetics of Development. USTHB, PO box 32 El-Alia, Bab-Ezzouar, 16110 Algiers, Algeria
| |
Collapse
|
34
|
Chicken Interferon-induced Protein with Tetratricopeptide Repeats 5 Antagonizes Replication of RNA Viruses. Sci Rep 2018; 8:6794. [PMID: 29717152 PMCID: PMC5931624 DOI: 10.1038/s41598-018-24905-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
The intracellular actions of interferon (IFN)-regulated proteins, including IFN-induced proteins with tetratricopeptide repeats (IFITs), attribute a major component of the protective antiviral host defense. Here we applied genomics approaches to annotate the chicken IFIT locus and currently identified a single IFIT (chIFIT5) gene. The profound transcriptional level of this effector of innate immunity was mapped within its unique cis-acting elements. This highly virus- and IFN-responsive chIFIT5 protein interacted with negative sense viral RNA structures that carried a triphosphate group on its 5' terminus (ppp-RNA). This interaction reduced the replication of RNA viruses in lentivirus-mediated IFIT5-stable chicken fibroblasts whereas CRISPR/Cas9-edited chIFIT5 gene knockout fibroblasts supported the replication of RNA viruses. Finally, we generated mosaic transgenic chicken embryos stably expressing chIFIT5 protein or knocked-down for endogenous chIFIT5 gene. Replication kinetics of RNA viruses in these transgenic chicken embryos demonstrated the antiviral potential of chIFIT5 in ovo. Taken together, these findings propose that IFIT5 specifically antagonize RNA viruses by sequestering viral nucleic acids in chickens, which are unique in innate immune sensing and responses to viruses of both poultry and human health significance.
Collapse
|
35
|
A survey of functional genomic variation in domesticated chickens. Genet Sel Evol 2018; 50:17. [PMID: 29661130 PMCID: PMC5902831 DOI: 10.1186/s12711-018-0390-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deleterious genetic variation can increase in frequency as a result of mutations, genetic drift, and genetic hitchhiking. Although individual effects are often small, the cumulative effect of deleterious genetic variation can impact population fitness substantially. In this study, we examined the genome of commercial purebred chicken lines for deleterious and functional variations, combining genotype and whole-genome sequence data. RESULTS We analysed over 22,000 animals that were genotyped on a 60 K SNP chip from four purebred lines (two white egg and two brown egg layer lines) and two crossbred lines. We identified 79 haplotypes that showed a significant deficit in homozygous carriers. This deficit was assumed to stem from haplotypes that potentially harbour lethal recessive variations. To identify potentially deleterious mutations, a catalogue of over 10 million variants was derived from 250 whole-genome sequenced animals from three purebred white-egg layer lines. Out of 4219 putative deleterious variants, 152 mutations were identified that likely induce embryonic lethality in the homozygous state. Inferred deleterious variation showed evidence of purifying selection and deleterious alleles were generally overrepresented in regions of low recombination. Finally, we found evidence that mutations, which were inferred to be evolutionally intolerant, likely have positive effects in commercial chicken populations. CONCLUSIONS We present a comprehensive genomic perspective on deleterious and functional genetic variation in egg layer breeding lines, which are under intensive selection and characterized by a small effective population size. We show that deleterious variation is subject to purifying selection and that there is a positive relationship between recombination rate and purging efficiency. In addition, multiple putative functional coding variants were discovered in selective sweep regions, which are likely under positive selection. Together, this study provides a unique molecular perspective on functional and deleterious variation in commercial egg-laying chickens, which can enhance current genomic breeding practices to lower the frequency of undesirable variants in the population.
Collapse
|
36
|
Ghosh M, Sharma N, Singh AK, Gera M, Pulicherla KK, Jeong DK. Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture. Crit Rev Biotechnol 2018; 38:1157-1175. [PMID: 29631431 DOI: 10.1080/07388551.2018.1451819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For more than a quarter of a century, sequencing technologies from Sanger's method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Neelesh Sharma
- b Department of Veterinary Science and Animal Husbandry , Sher-e-Kashmir University of Agricultural Sciences and Technology , R.S. Pura , India
| | - Amit Kumar Singh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Meeta Gera
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | | | - Dong Kee Jeong
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| |
Collapse
|
37
|
Boschiero C, Moreira GCM, Gheyas AA, Godoy TF, Gasparin G, Mariani PDSC, Paduan M, Cesar ASM, Ledur MC, Coutinho LL. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. BMC Genomics 2018; 19:83. [PMID: 29370772 PMCID: PMC5785814 DOI: 10.1186/s12864-018-4444-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Background Meat and egg-type chickens have been selected for several generations for different traits. Artificial and natural selection for different phenotypes can change frequency of genetic variants, leaving particular genomic footprints throghtout the genome. Thus, the aims of this study were to sequence 28 chickens from two Brazilian lines (meat and white egg-type) and use this information to characterize genome-wide genetic variations, identify putative regions under selection using Fst method, and find putative pathways under selection. Results A total of 13.93 million SNPs and 1.36 million INDELs were identified, with more variants detected from the broiler (meat-type) line. Although most were located in non-coding regions, we identified 7255 intolerant non-synonymous SNPs, 512 stopgain/loss SNPs, 1381 frameshift and 1094 non-frameshift INDELs that may alter protein functions. Genes harboring intolerant non-synonymous SNPs affected metabolic pathways related mainly to reproduction and endocrine systems in the white-egg layer line, and lipid metabolism and metabolic diseases in the broiler line. Fst analysis in sliding windows, using SNPs and INDELs separately, identified over 300 putative regions of selection overlapping with more than 250 genes. For the first time in chicken, INDEL variants were considered for selection signature analysis, showing high level of correlation in results between SNP and INDEL data. The putative regions of selection signatures revealed interesting candidate genes and pathways related to important phenotypic traits in chicken, such as lipid metabolism, growth, reproduction, and cardiac development. Conclusions In this study, Fst method was applied to identify high confidence putative regions under selection, providing novel insights into selection footprints that can help elucidate the functional mechanisms underlying different phenotypic traits relevant to meat and egg-type chicken lines. In addition, we generated a large catalog of line-specific and common genetic variants from a Brazilian broiler and a white egg layer line that can be used for genomic studies involving association analysis with phenotypes of economic interest to the poultry industry. Electronic supplementary material The online version of this article (10.1186/s12864-018-4444-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clarissa Boschiero
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil. .,Noble Reserch Institute, 2510 Sam Noble Parkway, Ardmore, Oklahoma, 73401, USA.
| | - Gabriel Costa Monteiro Moreira
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Almas Ara Gheyas
- Department of Genetics and Genomics, The Roslin Institute and Royal School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Thaís Fernanda Godoy
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Gustavo Gasparin
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Pilar Drummond Sampaio Corrêa Mariani
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Marcela Paduan
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | - Aline Silva Mello Cesar
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| | | | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
38
|
Orgeur M, Martens M, Börno ST, Timmermann B, Duprez D, Stricker S. A dual transcript-discovery approach to improve the delimitation of gene features from RNA-seq data in the chicken model. Biol Open 2018; 7:bio.028498. [PMID: 29183907 PMCID: PMC5827264 DOI: 10.1242/bio.028498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The sequence of the chicken genome, like several other draft genome sequences, is presently not fully covered. Gaps, contigs assigned with low confidence and uncharacterized chromosomes result in gene fragmentation and imprecise gene annotation. Transcript abundance estimation from RNA sequencing (RNA-seq) data relies on read quality, library complexity and expression normalization. In addition, the quality of the genome sequence used to map sequencing reads, and the gene annotation that defines gene features, must also be taken into account. A partially covered genome sequence causes the loss of sequencing reads from the mapping step, while an inaccurate definition of gene features induces imprecise read counts from the assignment step. Both steps can significantly bias interpretation of RNA-seq data. Here, we describe a dual transcript-discovery approach combining a genome-guided gene prediction and a de novo transcriptome assembly. This dual approach enabled us to increase the assignment rate of RNA-seq data by nearly 20% as compared to when using only the chicken reference annotation, contributing therefore to a more accurate estimation of transcript abundance. More generally, this strategy could be applied to any organism with partial genome sequence and/or lacking a manually-curated reference annotation in order to improve the accuracy of gene expression studies.
Collapse
Affiliation(s)
- Mickael Orgeur
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, 14195 Berlin, Germany.,Max Planck Institute for Molecular Genetics, Development and Disease Group, Ihnestrasse 63-73, 14195 Berlin, Germany.,Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75252 Paris Cedex 05, France
| | - Marvin Martens
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75252 Paris Cedex 05, France
| | - Stefan T Börno
- Max Planck Institute for Molecular Genetics, Development and Disease Group, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Bernd Timmermann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Delphine Duprez
- Sorbonne Universités, UPMC Univ. Paris 06, CNRS UMR 7622, Inserm U1156, IBPS-Developmental Biology Laboratory, 9 Quai Saint-Bernard, 75252 Paris Cedex 05, France
| | - Sigmar Stricker
- Freie Universität Berlin, Institut für Chemie und Biochemie, Thielallee 63, 14195 Berlin, Germany .,Max Planck Institute for Molecular Genetics, Development and Disease Group, Ihnestrasse 63-73, 14195 Berlin, Germany
| |
Collapse
|
39
|
Xie S, Yang X, Wang D, Zhu F, Yang N, Hou Z, Ning Z. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds. PLoS One 2018; 13:e0191096. [PMID: 29320582 PMCID: PMC5761956 DOI: 10.1371/journal.pone.0191096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/28/2017] [Indexed: 11/18/2022] Open
Abstract
Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold, and showed higher responsiveness in BS compared with RIR chickens, suggesting greater adaptability of the thyroid in BS chickens. Moreover, 10,053 differential splicing events were revealed among the groups, with RNA splicing and processing, gene expression, transport, and metabolism being the main affected biological processes, identifying a valuable alternative splicing repertoire for the chicken thyroid. A short isoform of TPO (encoding thyroid peroxidase) containing multiple open reading frames was generated in both breeds by skipping exons 4 and 5 in the cold environment. These findings provide novel clues for future studies of the molecular mechanisms underlying cold adaptation and/or acclimation in chickens.
Collapse
Affiliation(s)
- Shanshan Xie
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xukai Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dehe Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
40
|
Berghof TVL, Visker MHPW, Arts JAJ, Parmentier HK, van der Poel JJ, Vereijken ALJ, Bovenhuis H. Genomic Region Containing Toll-Like Receptor Genes Has a Major Impact on Total IgM Antibodies Including KLH-Binding IgM Natural Antibodies in Chickens. Front Immunol 2018; 8:1879. [PMID: 29375555 PMCID: PMC5767321 DOI: 10.3389/fimmu.2017.01879] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/11/2017] [Indexed: 02/04/2023] Open
Abstract
Natural antibodies (NAb) are antigen binding antibodies present in individuals without a previous exposure to this antigen. Keyhole limpet hemocyanin (KLH)-binding NAb levels were previously associated with survival in chickens. This suggests that selective breeding for KLH-binding NAb may increase survival by means of improved general disease resistance. Genome-wide association studies (GWAS) were performed to identify genes underlying genetic variation in NAb levels. The studied population consisted of 1,628 adolescent layer chickens with observations for titers of KLH-binding NAb of the isotypes IgM, IgA, IgG, the total KLH-binding (IgT) NAb titers, total antibody concentrations of the isotypes IgM, IgA, IgG, and the total antibodies concentration in plasma. GWAS were performed using 57,636 single-nucleotide polymorphisms (SNP). One chromosomal region on chromosome 4 was associated with KLH-binding IgT NAb, and total IgM concentration, and especially with KLH-binding IgM NAb. The region of interest was fine mapped by imputing the region of the study population to whole genome sequence, and subsequently performing an association study using the imputed sequence variants. 16 candidate genes were identified, of which FAM114A1, Toll-like receptor 1 family member B (TLR1B), TLR1A, Krüppel-like factor 3 (KLF3) showed the strongest associations. SNP located in coding regions of the candidate genes were checked for predicted changes in protein functioning. One SNP (at 69,965,939 base pairs) received the maximum impact score from two independent prediction tools, which makes this SNP the most likely causal variant. This SNP is located in TLR1A, which suggests a fundamental role of TLR1A on regulation of IgM levels (i.e., KLH-binding IgM NAb, and total IgM concentration), or B cells biology, or both. This study contributes to increased understanding of (genetic) regulation of KLH-binding NAb levels, and total antibody concentrations.
Collapse
Affiliation(s)
- Tom V L Berghof
- Animal Breeding and Genomics, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands.,Adaptation Physiology, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Marleen H P W Visker
- Animal Breeding and Genomics, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Joop A J Arts
- Adaptation Physiology, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Henk K Parmentier
- Adaptation Physiology, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Jan J van der Poel
- Animal Breeding and Genomics, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Addie L J Vereijken
- Hendrix Genetics Research, Technology and Services B.V., Research & Technology Centre, Boxmeer, Netherlands
| | - Henk Bovenhuis
- Animal Breeding and Genomics, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
41
|
Zlotina A, Dedukh D, Krasikova A. Amphibian and Avian Karyotype Evolution: Insights from Lampbrush Chromosome Studies. Genes (Basel) 2017; 8:genes8110311. [PMID: 29117127 PMCID: PMC5704224 DOI: 10.3390/genes8110311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 01/04/2023] Open
Abstract
Amphibian and bird karyotypes typically have a complex organization, which makes them difficult for standard cytogenetic analysis. That is, amphibian chromosomes are generally large, enriched with repetitive elements, and characterized by the absence of informative banding patterns. The majority of avian karyotypes comprise a small number of relatively large macrochromosomes and numerous tiny morphologically undistinguishable microchromosomes. A good progress in investigation of amphibian and avian chromosome evolution became possible with the usage of giant lampbrush chromosomes typical for growing oocytes. Due to the giant size, peculiarities of organization and enrichment with cytological markers, lampbrush chromosomes can serve as an opportune model for comprehensive high-resolution cytogenetic and cytological investigations. Here, we review the main findings on chromosome evolution in amphibians and birds that were obtained using lampbrush chromosomes. In particular, we discuss the data on evolutionary chromosomal rearrangements, accumulation of polymorphisms, evolution of sex chromosomes as well as chromosomal changes during clonal reproduction of interspecies hybrids.
Collapse
Affiliation(s)
- Anna Zlotina
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia.
| | - Dmitry Dedukh
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia.
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg 199034, Russia.
| |
Collapse
|
42
|
Komissarov AS, Galkina SA, Koshel EI, Kulak MM, Dyomin AG, O'Brien SJ, Gaginskaya ER, Saifitdinova AF. New high copy tandem repeat in the content of the chicken W chromosome. Chromosoma 2017; 127:73-83. [PMID: 28951974 DOI: 10.1007/s00412-017-0646-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
The content of repetitive DNA in avian genomes is considerably less than in other investigated vertebrates. The first descriptions of tandem repeats were based on the results of routine biochemical and molecular biological experiments. Both satellite DNA and interspersed repetitive elements were annotated using library-based approach and de novo repeat identification in assembled genome. The development of deep-sequencing methods provides datasets of high quality without preassembly allowing one to annotate repetitive elements from unassembled part of genomes. In this work, we search the chicken assembly and annotate high copy number tandem repeats from unassembled short raw reads. Tandem repeat (GGAAA)n has been identified and found to be the second after telomeric repeat (TTAGGG)n most abundant in the chicken genome. Furthermore, (GGAAA)n repeat forms expanded arrays on the both arms of the chicken W chromosome. Our results highlight the complexity of repetitive sequences and update data about organization of sex W chromosome in chicken.
Collapse
Affiliation(s)
- Aleksey S Komissarov
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Sredniy av. 41, 199034, Saint Petersburg, Russia
| | - Svetlana A Galkina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
- Saint Petersburg Association of Scientists and Scholars, Universitetskaya emb. 5, Saint Petersburg, 199034, Russia
| | - Elena I Koshel
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Maria M Kulak
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Aleksander G Dyomin
- Saint Petersburg Association of Scientists and Scholars, Universitetskaya emb. 5, Saint Petersburg, 199034, Russia
- Chromas Research Resource Center, Saint Petersburg State University, Oranienbaumskoye sh. 2, 198504, Saint Petersburg, Russia
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Sredniy av. 41, 199034, Saint Petersburg, Russia
- Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida, 33004, USA
| | - Elena R Gaginskaya
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034, Saint Petersburg, Russia
| | - Alsu F Saifitdinova
- Chromas Research Resource Center, Saint Petersburg State University, Oranienbaumskoye sh. 2, 198504, Saint Petersburg, Russia.
- International Centre of Reproductive Medicine, Komendantskiy av. 53-1, Saint Petersburg, 197350, Russia.
| |
Collapse
|
43
|
Lizio M, Deviatiiarov R, Nagai H, Galan L, Arner E, Itoh M, Lassmann T, Kasukawa T, Hasegawa A, Ros MA, Hayashizaki Y, Carninci P, Forrest ARR, Kawaji H, Gusev O, Sheng G. Systematic analysis of transcription start sites in avian development. PLoS Biol 2017; 15:e2002887. [PMID: 28873399 PMCID: PMC5600399 DOI: 10.1371/journal.pbio.2002887] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/15/2017] [Accepted: 08/18/2017] [Indexed: 01/07/2023] Open
Abstract
Cap Analysis of Gene Expression (CAGE) in combination with single-molecule sequencing technology allows precision mapping of transcription start sites (TSSs) and genome-wide capture of promoter activities in differentiated and steady state cell populations. Much less is known about whether TSS profiling can characterize diverse and non-steady state cell populations, such as the approximately 400 transitory and heterogeneous cell types that arise during ontogeny of vertebrate animals. To gain such insight, we used the chick model and performed CAGE-based TSS analysis on embryonic samples covering the full 3-week developmental period. In total, 31,863 robust TSS peaks (>1 tag per million [TPM]) were mapped to the latest chicken genome assembly, of which 34% to 46% were active in any given developmental stage. ZENBU, a web-based, open-source platform, was used for interactive data exploration. TSSs of genes critical for lineage differentiation could be precisely mapped and their activities tracked throughout development, suggesting that non-steady state and heterogeneous cell populations are amenable to CAGE-based transcriptional analysis. Our study also uncovered a large set of extremely stable housekeeping TSSs and many novel stage-specific ones. We furthermore demonstrated that TSS mapping could expedite motif-based promoter analysis for regulatory modules associated with stage-specific and housekeeping genes. Finally, using Brachyury as an example, we provide evidence that precise TSS mapping in combination with Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-on technology enables us, for the first time, to efficiently target endogenous avian genes for transcriptional activation. Taken together, our results represent the first report of genome-wide TSS mapping in birds and the first systematic developmental TSS analysis in any amniote species (birds and mammals). By facilitating promoter-based molecular analysis and genetic manipulation, our work also underscores the value of avian models in unravelling the complex regulatory mechanism of cell lineage specification during amniote development.
Collapse
Affiliation(s)
- Marina Lizio
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
| | - Ruslan Deviatiiarov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Hiroki Nagai
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- RIKEN Center for Developmental Biology, Kobe, Japan
| | - Laura Galan
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria-SODERCAN), Santander, Spain
| | - Erik Arner
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
| | - Masayoshi Itoh
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
| | - Timo Lassmann
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
| | - Takeya Kasukawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
| | - Akira Hasegawa
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
| | - Marian A. Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-Universidad de Cantabria-SODERCAN), Santander, Spain
| | - Yoshihide Hayashizaki
- RIKEN Omics Science Center (OSC), Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
| | - Alistair R. R. Forrest
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, Nedlands, Western Australia, Australia
| | - Hideya Kawaji
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- RIKEN Omics Science Center (OSC), Yokohama, Japan
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
- * E-mail: (GS); (HK); (OG)
| | - Oleg Gusev
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies (CLST), Yokohama, Japan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- RIKEN Preventive Medicine and Diagnosis Innovation Program, Yokohama, Japan
- RIKEN Innovation Center, Wako, Japan
- * E-mail: (GS); (HK); (OG)
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
- RIKEN Center for Developmental Biology, Kobe, Japan
- * E-mail: (GS); (HK); (OG)
| |
Collapse
|
44
|
Tollis M, DeNardo DF, Cornelius JA, Dolby GA, Edwards T, Henen BT, Karl AE, Murphy RW, Kusumi K. The Agassiz's desert tortoise genome provides a resource for the conservation of a threatened species. PLoS One 2017; 12:e0177708. [PMID: 28562605 PMCID: PMC5451010 DOI: 10.1371/journal.pone.0177708] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/02/2017] [Indexed: 12/30/2022] Open
Abstract
Agassiz's desert tortoise (Gopherus agassizii) is a long-lived species native to the Mojave Desert and is listed as threatened under the US Endangered Species Act. To aid conservation efforts for preserving the genetic diversity of this species, we generated a whole genome reference sequence with an annotation based on deep transcriptome sequences of adult skeletal muscle, lung, brain, and blood. The draft genome assembly for G. agassizii has a scaffold N50 length of 252 kbp and a total length of 2.4 Gbp. Genome annotation reveals 20,172 protein-coding genes in the G. agassizii assembly, and that gene structure is more similar to chicken than other turtles. We provide a series of comparative analyses demonstrating (1) that turtles are among the slowest-evolving genome-enabled reptiles, (2) amino acid changes in genes controlling desert tortoise traits such as shell development, longevity and osmoregulation, and (3) fixed variants across the Gopherus species complex in genes related to desert adaptations, including circadian rhythm and innate immune response. This G. agassizii genome reference and annotation is the first such resource for any tortoise, and will serve as a foundation for future analysis of the genetic basis of adaptations to the desert environment, allow for investigation into genomic factors affecting tortoise health, disease and longevity, and serve as a valuable resource for additional studies in this species complex.
Collapse
Affiliation(s)
- Marc Tollis
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Dale F. DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - John A. Cornelius
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Greer A. Dolby
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Taylor Edwards
- University of Arizona Genetics Core, University of Arizona, Tucson, Arizona, United States of America
| | - Brian T. Henen
- Natural Resources and Environmental Affairs, Marine Air Ground Task Force Training Command, Marine Corps Air Ground Combat Center, Twentynine Palms, California, United States of America
| | - Alice E. Karl
- Alice E. Karl and Associates, Davis, California, United States of America
| | - Robert W. Murphy
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, Canada
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
45
|
Kaya M, Preeyanon L, Dodgson JB, Cheng HH. Validation of Alternative Transcript Splicing in Chicken Lines that Differ in Genetic Resistance to Marek's Disease. Anim Biotechnol 2017; 27:238-44. [PMID: 27565867 DOI: 10.1080/10495398.2016.1178139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Utilizing RNA-seq data, 1,574 candidate genes with alternative splicing were previously identified between two chicken lines that differ in Marek's disease (MD) genetic resistance under control and Marek's disease virus infection conditions. After filtering out 1,530 genes with splice variants in the first or last exon, 44 genes were screened for possible exon loss or gain using PCR and gel electrophoresis. Consequently, 7 genes exhibited visually detectable differential expression of splice variants between lines 6 (MD resistant) and 7 (MD susceptible), and the resultant PCR products verified by DNA sequencing. Birds from inbred line 6 have transcripts that preferentially retain an exon compared to line 7 chickens for ITGB2, SGPL1, and COMMD5. Birds from inbred line 7 have alleles that preferentially retain an exon compared to line 6 for MOCS2. CCBL2 exon 1a is absent and ATAD1 exon 2 is truncated by 87 nucleotides in transcripts expressed by line 7 compared to those from line 6. For CHTF18, line 6 transcripts have an indel mutation with 7 additional nucleotides in exon 21 compared to line 7. The current study validates 7 genes with alternatively spliced isomers between the two chicken lines, which helps provide potential underlying mechanisms for the phenotypic differences.
Collapse
Affiliation(s)
- Muhammet Kaya
- a Eskişehir Osmangazi University, Faculty of Agriculture, Department of Agricultural Biotechnology , Eskisehir , Turkey.,b Michigan State University , East Lansing , Michigan , USA
| | | | | | - Hans H Cheng
- c USDA, ARS, Avian Disease & Oncology Laboratory , East Lansing , Michigan , USA
| |
Collapse
|
46
|
Goto T, Tsudzuki M. Genetic Mapping of Quantitative Trait Loci for Egg Production and Egg Quality Traits in Chickens: a Review. J Poult Sci 2017; 54:1-12. [PMID: 32908402 PMCID: PMC7477176 DOI: 10.2141/jpsa.0160121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
Chickens display a wide spectrum of phenotypic variations in quantitative traits such as egg-related traits. Quantitative trait locus (QTL) analysis is a statistical method used to understand the relationship between phenotypic (trait measurements) and genotypic data (molecular markers). We have performed QTL analyses for egg-related traits using an original resource population based on the Japanese Large Game (Oh-Shamo) and the White Leghorn breeds of chickens. In this article, we summarize the results of our extensive QTL analyses for 11 and 66 traits for egg production and egg quality, respectively. We reveal that at least 30 QTL regions on 17 different chromosomes affect phenotypic variation in egg-related traits. Each locus had an age-specific effect on traits, and a variety in effects was also apparent, such as additive, dominance, and epistatic-interaction effects. Although genome-wide association study (GWAS) is suitable for gene-level resolution mapping of GWAS loci with additive effects, QTL mapping studies enable us to comprehensively understand genetic control, such as chromosomal regions, genetic contribution to phenotypic variance, mode of inheritance, and age-specificity of both common and rare alleles. QTL analyses also describe the relationship between genotypes and phenotypes in experimental populations. Accumulation of QTL information, including GWAS loci, is also useful for studies of population genomics approached without phenotypic data in order to validate the identified genomic signatures of positive selection. The combination of QTL studies and next-generation sequencing techniques with uncharacterized genetic resources will enhance current understanding of the relationship between genotypes and phenotypes in livestock animals.
Collapse
Affiliation(s)
- Tatsuhiko Goto
- Genetics, Ecology and Evolution, School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- Present address: Department of Life Science and Agriculture, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Masaoki Tsudzuki
- Japanese Avian Bioresource Project Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
47
|
Warren WC, Hillier LW, Tomlinson C, Minx P, Kremitzki M, Graves T, Markovic C, Bouk N, Pruitt KD, Thibaud-Nissen F, Schneider V, Mansour TA, Brown CT, Zimin A, Hawken R, Abrahamsen M, Pyrkosz AB, Morisson M, Fillon V, Vignal A, Chow W, Howe K, Fulton JE, Miller MM, Lovell P, Mello CV, Wirthlin M, Mason AS, Kuo R, Burt DW, Dodgson JB, Cheng HH. A New Chicken Genome Assembly Provides Insight into Avian Genome Structure. G3 (BETHESDA, MD.) 2017; 7:109-117. [PMID: 27852011 PMCID: PMC5217101 DOI: 10.1534/g3.116.035923] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022]
Abstract
The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts.
Collapse
Affiliation(s)
- Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - LaDeana W Hillier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Milinn Kremitzki
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Tina Graves
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Chris Markovic
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108
| | - Nathan Bouk
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Kim D Pruitt
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Valerie Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | | | | | - Aleksey Zimin
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742
| | - Rachel Hawken
- Cobb-Vantress Inc., Siloam Springs, Arkansas 72761-1030
| | | | - Alexis B Pyrkosz
- United States Department of Agriculture-Agricultural Research Service, Avian Disease and Oncology, East Lansing, Michigan 48823
| | - Mireille Morisson
- Génétique Physiologie et Systèmes d'Elevage, Université de Toulouse, Institut National de la Recherche Agronomique, Auzeville Castanet Tolosan, France
| | - Valerie Fillon
- Génétique Physiologie et Systèmes d'Elevage, Université de Toulouse, Institut National de la Recherche Agronomique, Auzeville Castanet Tolosan, France
| | - Alain Vignal
- Génétique Physiologie et Systèmes d'Elevage, Université de Toulouse, Institut National de la Recherche Agronomique, Auzeville Castanet Tolosan, France
| | - William Chow
- Wellcome Trust Sanger Institute, Cambridgeshire CB10 1SA, United Kingdom
| | - Kerstin Howe
- Wellcome Trust Sanger Institute, Cambridgeshire CB10 1SA, United Kingdom
| | | | | | - Peter Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Morgan Wirthlin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon 97239-3098
| | - Andrew S Mason
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Richard Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, United Kingdom
| | - Jerry B Dodgson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Hans H Cheng
- United States Department of Agriculture-Agricultural Research Service, Avian Disease and Oncology, East Lansing, Michigan 48823
| |
Collapse
|
48
|
Trofimova I, Krasikova A. Transcription of highly repetitive tandemly organized DNA in amphibians and birds: A historical overview and modern concepts. RNA Biol 2016; 13:1246-1257. [PMID: 27763817 PMCID: PMC5207375 DOI: 10.1080/15476286.2016.1240142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022] Open
Abstract
Tandemly organized highly repetitive DNA sequences are crucial structural and functional elements of eukaryotic genomes. Despite extensive evidence, satellite DNA remains an enigmatic part of the eukaryotic genome, with biological role and significance of tandem repeat transcripts remaining rather obscure. Data on tandem repeats transcription in amphibian and avian model organisms is fragmentary despite their genomes being thoroughly characterized. Review systematically covers historical and modern data on transcription of amphibian and avian satellite DNA in somatic cells and during meiosis when chromosomes acquire special lampbrush form. We highlight how transcription of tandemly repetitive DNA sequences is organized in interphase nucleus and on lampbrush chromosomes. We offer LTR-activation hypotheses of widespread satellite DNA transcription initiation during oogenesis. Recent explanations are provided for the significance of high-yield production of non-coding RNA derived from tandemly organized highly repetitive DNA. In many cases the data on the transcription of satellite DNA can be extrapolated from lampbrush chromosomes to interphase chromosomes. Lampbrush chromosomes with applied novel technical approaches such as superresolution imaging, chromosome microdissection followed by high-throughput sequencing, dynamic observation in life-like conditions provide amazing opportunities for investigation mechanisms of the satellite DNA transcription.
Collapse
Affiliation(s)
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
49
|
Damas J, O'Connor R, Farré M, Lenis VPE, Martell HJ, Mandawala A, Fowler K, Joseph S, Swain MT, Griffin DK, Larkin DM. Upgrading short-read animal genome assemblies to chromosome level using comparative genomics and a universal probe set. Genome Res 2016; 27:875-884. [PMID: 27903645 PMCID: PMC5411781 DOI: 10.1101/gr.213660.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023]
Abstract
Most recent initiatives to sequence and assemble new species’ genomes de novo fail to achieve the ultimate endpoint to produce contigs, each representing one whole chromosome. Even the best-assembled genomes (using contemporary technologies) consist of subchromosomal-sized scaffolds. To circumvent this problem, we developed a novel approach that combines computational algorithms to merge scaffolds into chromosomal fragments, PCR-based scaffold verification, and physical mapping to chromosomes. Multigenome-alignment-guided probe selection led to the development of a set of universal avian BAC clones that permit rapid anchoring of multiple scaffolds to chromosomes on all avian genomes. As proof of principle, we assembled genomes of the pigeon (Columbia livia) and peregrine falcon (Falco peregrinus) to chromosome levels comparable, in continuity, to avian reference genomes. Both species are of interest for breeding, cultural, food, and/or environmental reasons. Pigeon has a typical avian karyotype (2n = 80), while falcon (2n = 50) is highly rearranged compared to the avian ancestor. By using chromosome breakpoint data, we established that avian interchromosomal breakpoints appear in the regions of low density of conserved noncoding elements (CNEs) and that the chromosomal fission sites are further limited to long CNE “deserts.” This corresponds with fission being the rarest type of rearrangement in avian genome evolution. High-throughput multiple hybridization and rapid capture strategies using the current BAC set provide the basis for assembling numerous avian (and possibly other reptilian) species, while the overall strategy for scaffold assembly and mapping provides the basis for an approach that (provided metaphases can be generated) could be applied to any animal genome.
Collapse
Affiliation(s)
- Joana Damas
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | - Rebecca O'Connor
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Marta Farré
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| | - Vasileios Panagiotis E Lenis
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Henry J Martell
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Anjali Mandawala
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom.,School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, United Kingdom
| | - Katie Fowler
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, CT1 1QU, United Kingdom
| | - Sunitha Joseph
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NY, United Kingdom
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, NW1 0TU, United Kingdom
| |
Collapse
|
50
|
Guizard S, Piégu B, Arensburger P, Guillou F, Bigot Y. Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools. BMC Genomics 2016; 17:659. [PMID: 27542599 PMCID: PMC4992247 DOI: 10.1186/s12864-016-3015-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 08/12/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The program RepeatMasker and the database Repbase-ISB are part of the most widely used strategy for annotating repeats in animal genomes. They have been used to show that avian genomes have a lower repeat content (8-12 %) than the sequenced genomes of many vertebrate species (30-55 %). However, the efficiency of such a library-based strategies is dependent on the quality and completeness of the sequences in the database that is used. An alternative to these library based methods are methods that identify repeats de novo. These alternative methods have existed for a least a decade and may be more powerful than the library based methods. We have used an annotation strategy involving several complementary de novo tools to determine the repeat content of the model genome galGal4 (1.04 Gbp), including identifying simple sequence repeats (SSRs), tandem repeats and transposable elements (TEs). RESULTS We annotated over one Gbp. of the galGal4 genome and showed that it is composed of approximately 19 % SSRs and TEs repeats. Furthermore, we estimate that the actual genome of the red jungle fowl contains about 31-35 % repeats. We find that library-based methods tend to overestimate TE diversity. These results have a major impact on the current understanding of repeats distributions throughout chromosomes in the red jungle fowl. CONCLUSIONS Our results are a proof of concept of the reliability of using de novo tools to annotate repeats in large animal genomes. They have also revealed issues that will need to be resolved in order to develop gold-standard methodologies for annotating repeats in eukaryote genomes.
Collapse
Affiliation(s)
- Sébastien Guizard
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
| | - Benoît Piégu
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
| | - Peter Arensburger
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
- Biological Sciences Department, California State Polytechnic University, Pomona, CA 91768 USA
| | - Florian Guillou
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
| | - Yves Bigot
- Physiologie de la Reproduction et des Comportements, UMR INRA-CNRS 7247, PRC, 37380 Nouzilly, France
| |
Collapse
|