1
|
Pozzi FE, Conti E, Appollonio I, Ferrarese C, Tremolizzo L. Predictors of response to acetylcholinesterase inhibitors in dementia: A systematic review. Front Neurosci 2022; 16:998224. [PMID: 36203811 PMCID: PMC9530658 DOI: 10.3389/fnins.2022.998224] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Background The mainstay of therapy for many neurodegenerative dementias still relies on acetylcholinesterase inhibitors (AChEI); however, there is debate on various aspects of such treatment. A huge body of literature exists on possible predictors of response, but a comprehensive review is lacking. Therefore, our aim is to perform a systematic review of the predictors of response to AChEI in neurodegenerative dementias, providing a categorization and interpretation of the results. Methods We conducted a systematic review of the literature up to December 31st, 2021, searching five different databases and registers, including studies on rivastigmine, donepezil, and galantamine, with clearly defined criteria for the diagnosis of dementia and the response to AChEI therapy. Records were identified through the string: predict * AND respon * AND (acetylcholinesterase inhibitors OR donepezil OR rivastigmine OR galantamine). The results were presented narratively. Results We identified 1,994 records in five different databases; after exclusion of duplicates, title and abstract screening, and full-text retrieval, 122 studies were finally included. Discussion The studies show high heterogeneity in duration, response definition, drug dosage, and diagnostic criteria. Response to AChEI seems associated with correlates of cholinergic deficit (hallucinations, fluctuating cognition, substantia innominate atrophy) and preserved cholinergic neurons (faster alpha on REM sleep EEG, increased anterior frontal and parietal lobe perfusion after donepezil); white matter hyperintensities in the cholinergic pathways have shown inconsistent results. The K-variant of butyrylcholinesterase may correlate with better response in late stages of disease, while the role of polymorphisms in other genes involved in the cholinergic system is controversial. Factors related to drug availability may influence response; in particular, low serum albumin (for donepezil), CYP2D6 variants associated with reduced enzymatic activity and higher drug doses are the most consistent predictors, while AChEI concentration influence on clinical outcomes is debatable. Other predictors of response include faster disease progression, lower serum cholesterol, preserved medial temporal lobes, apathy, absence of concomitant diseases, and absence of antipsychotics. Short-term response may predict subsequent cognitive response, while higher education might correlate with short-term good response (months), and long-term poor response (years). Age, gender, baseline cognitive and functional levels, and APOE relationship with treatment outcome is controversial.
Collapse
Affiliation(s)
| | - Elisa Conti
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Ildebrando Appollonio
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Carlo Ferrarese
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| | - Lucio Tremolizzo
- Neurology Department, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
2
|
Teipel SJ, Cavedo E, Hampel H, Grothe MJ. Basal Forebrain Volume, but Not Hippocampal Volume, Is a Predictor of Global Cognitive Decline in Patients With Alzheimer's Disease Treated With Cholinesterase Inhibitors. Front Neurol 2018; 9:642. [PMID: 30158893 PMCID: PMC6104491 DOI: 10.3389/fneur.2018.00642] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 07/17/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Predicting the progression of cognitive decline in Alzheimer's disease (AD) is important for treatment selection and patient counseling. Structural MRI markers such as hippocampus or basal forebrain volumes might represent useful instruments for the prediction of cognitive decline. The primary objective was to determine the predictive value of hippocampus and basal forebrain volumes for global and domain specific cognitive decline in AD dementia during cholinergic treatment. Methods: We used MRI and cognitive data from 124 patients with the clinical diagnosis of AD dementia, derived from the ADNI-1 cohort, who were on standard of care cholinesterase inhibitor treatment during a follow-up period between 0.4 and 3.1 years. We used linear mixed effects models with cognitive function as outcome to assess the main effects as well as two-way interactions between baseline volumes and time controlling for age, sex, and total intracranial volume. This model accounts for individual variation in follow-up times. Results: Basal forebrain volume, but not hippocampus volume, was a significant predictor of rates of global cognitive decline. Larger volumes were associated with smaller rates of cognitive decline. Left hippocampus volume had a modest association with rates of episodic memory decline. Baseline performance in global cognition and memory was significantly associated with hippocampus and basal forebrain volumes; in addition, basal forebrain volume was associated with baseline performance in executive function. Conclusions: Our findings indicate that in AD dementia patients, basal forebrain volume may be a useful marker to predict subsequent cognitive decline during cholinergic treatment.
Collapse
Affiliation(s)
- Stefan J. Teipel
- German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University of Rostock, Rostock, Germany
| | - Enrica Cavedo
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'Hôpital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'Hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
- IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Harald Hampel
- AXA Research Fund and Sorbonne University Chair, Paris, France
- Sorbonne University, GRC n° 21, Alzheimer Precision Medicine, AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'Hôpital, Paris, France
- Brain and Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'Hôpital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer's Disease (IM2A), Pitié-Salpêtrière Hospital, AP-HP, Boulevard de l'Hôpital, Paris, France
| | - Michel J. Grothe
- German Center for Neurodegenerative Diseases-Rostock/Greifswald, Rostock, Germany
| | | |
Collapse
|
4
|
Murphy MC, Conner IP, Teng CY, Lawrence JD, Safiullah Z, Wang B, Bilonick RA, Kim SG, Wollstein G, Schuman JS, Chan KC. Retinal Structures and Visual Cortex Activity are Impaired Prior to Clinical Vision Loss in Glaucoma. Sci Rep 2016; 6:31464. [PMID: 27510406 PMCID: PMC4980591 DOI: 10.1038/srep31464] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide and its pathogenesis remains unclear. In this study, we measured the structure, metabolism and function of the visual system by optical coherence tomography and multi-modal magnetic resonance imaging in healthy subjects and glaucoma patients with different degrees of vision loss. We found that inner retinal layer thinning, optic nerve cupping and reduced visual cortex activity occurred before patients showed visual field impairment. The primary visual cortex also exhibited more severe functional deficits than higher-order visual brain areas in glaucoma. Within the visual cortex, choline metabolism was perturbed along with increasing disease severity in the eye, optic radiation and visual field. In summary, this study showed evidence that glaucoma deterioration is already present in the eye and the brain before substantial vision loss can be detected clinically using current testing methods. In addition, cortical cholinergic abnormalities are involved during trans-neuronal degeneration and can be detected non-invasively in glaucoma. The current results can be of impact for identifying early glaucoma mechanisms, detecting and monitoring pathophysiological events and eye-brain-behavior relationships, and guiding vision preservation strategies in the visual system, which may help reduce the burden of this irreversible but preventable neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew C Murphy
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA
| | - Ian P Conner
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Cindy Y Teng
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jesse D Lawrence
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zaid Safiullah
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo Wang
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Richard A Bilonick
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, PA, USA
| | - Seong-Gi Kim
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Korea
| | - Gadi Wollstein
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA
| | - Joel S Schuman
- UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kevin C Chan
- NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, USA.,UPMC Eye Center, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, PA, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
5
|
van Amelsvoort T, Hernaus D. Effect of Pharmacological Interventions on the Fronto-Cingulo-Parietal Cognitive Control Network in Psychiatric Disorders: A Transdiagnostic Systematic Review of fMRI Studies. Front Psychiatry 2016; 7:82. [PMID: 27242552 PMCID: PMC4870274 DOI: 10.3389/fpsyt.2016.00082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/26/2016] [Indexed: 01/10/2023] Open
Abstract
Executive function deficits, such as working memory, decision-making, and attention problems, are a common feature of several psychiatric disorders for which no satisfactory treatment exists. Here, we transdiagnostically investigate the effects of pharmacological interventions (other than methylphenidate) on the fronto-cingulo-parietal cognitive control network, in order to identify functional brain markers for future procognitive pharmacological interventions. Twenty-nine manuscripts investigated the effect of pharmacological treatment on executive function-related brain correlates in psychotic disorders (n = 11), depression (n = 4), bipolar disorder (n = 4), ADHD (n = 4), OCD (n = 2), smoking dependence (n = 2), alcohol dependence (n = 1), and pathological gambling (n = 1). In terms of impact on the fronto-cingulo-parietal network, the preliminary evidence for catechol-O-methyl-transferase inhibitors, nicotinic receptor agonists, and atomoxetine was relatively consistent, the data for atypical antipsychotics and anticonvulsants moderate, and interpretation of the data for antidepressants was hampered by the employed study designs. Increased activity in task-relevant areas and decreased activity in task-irrelevant areas were the most common transdiagnostic effects of pharmacological treatment. These markers showed good positive and moderate negative predictive value. It is concluded that fronto-cingulo-parietal activity changes can serve as a marker for future procognitive interventions. Future recommendations include the use of randomized double-blind designs and selective cholinergic and glutamatergic compounds.
Collapse
Affiliation(s)
- Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University , Maastricht , Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, South Limburg Mental Health Research and Teaching Network, EURON, School for Mental Health and NeuroScience MHeNS Maastricht University , Maastricht , Netherlands
| |
Collapse
|