1
|
Vievermanns K, Dierikx TH, Oldenburger NJ, Jamaludin FS, Niemarkt HJ, de Meij TGJ. Effect of probiotic supplementation on the gut microbiota in very preterm infants: a systematic review. Arch Dis Child Fetal Neonatal Ed 2024; 110:57-67. [PMID: 38925919 DOI: 10.1136/archdischild-2023-326691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE There is increasing evidence that probiotic supplementation in very preterm infants decreases the risk of necrotising enterocolitis (NEC), sepsis and mortality. The underlying mechanisms, including effects on the gut microbiota, are largely unknown. We aimed to systematically review the available literature on the effects of probiotic supplementation in very preterm infants on gut microbiota development. DESIGN A systematic review in Medline, Embase, Cochrane Library, CINAHL and Web of Science. SETTING Neonatal intensive care unit. PATIENTS Premature infants. INTERVENTION Probiotic supplementation. MAIN OUTCOME MEASURES Gut microbiota. RESULTS A total of 1046 articles were screened, of which 29 were included. There was a large heterogeneity in study design, dose and type of probiotic strains, timepoints of sample collection and analysing techniques. Bifidobacteria and lactobacilli were the most used probiotic strains. The effects of probiotics on alpha diversity were conflicting; however, beta diversity was significantly different between probiotic-supplemented infants and controls in the vast majority of studies. In most studies, probiotic supplementation led to increased relative abundance of the supplemented strains and decreased abundance of genera such as Clostridium, Streptococcus, Klebsiella and Escherichia. CONCLUSIONS Probiotic supplementation to preterm infants seems to increase the relative abundance of the supplemented strains with a concurrent decrease of potentially pathogenic species. These probiotic-induced microbial alterations may contribute to the decreased risk of health complications such as NEC. Future trials, including omics technologies to analyse both microbiota composition and function linked to health outcomes, are warranted to identify the optimal mixture and dosing of probiotic strains. PROSPERO REGISTRATION NUMBER CRD42023385204.
Collapse
Affiliation(s)
- Kayleigh Vievermanns
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Thomas H Dierikx
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Microbiology, Maastricht UMC+, Maastricht, The Netherlands
| | | | - Faridi S Jamaludin
- Medical Library AMC, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Hendrik J Niemarkt
- Neonatology, Maxima Medisch Centrum locatie Veldhoven, Veldhoven, The Netherlands
- Electrical Engineering, TU Eindhoven, Eindhoven, The Netherlands
| | - Tim G J de Meij
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Pediatric Gastroenterology, Emma children's hospital amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Yuu EY, Bührer C, Eckmanns T, Fulde M, Herz M, Kurzai O, Lindstedt C, Panagiotou G, Piro VC, Radonic A, Renard BY, Reuss A, Siliceo SL, Thielemann N, Thürmer A, Vorst KV, Wieler LH, Haller S. The gut microbiome, resistome, and mycobiome in preterm newborn infants and mouse pups: lack of lasting effects by antimicrobial therapy or probiotic prophylaxis. Gut Pathog 2024; 16:27. [PMID: 38735967 PMCID: PMC11089716 DOI: 10.1186/s13099-024-00616-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/13/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Enhancing our understanding of the underlying influences of medical interventions on the microbiome, resistome and mycobiome of preterm born infants holds significant potential for advancing infection prevention and treatment strategies. We conducted a prospective quasi-intervention study to better understand how antibiotics, and probiotics, and other medical factors influence the gut development of preterm infants. A controlled neonatal mice model was conducted in parallel, designed to closely reflect and predict exposures. Preterm infants and neonatal mice were stratified into four groups: antibiotics only, probiotics only, antibiotics followed by probiotics, and none of these interventions. Stool samples from both preterm infants and neonatal mice were collected at varying time points and analyzed by 16 S rRNA amplicon sequencing, ITS amplicon sequencing and whole genome shotgun sequencing. RESULTS The human infant microbiomes showed an unexpectedly high degree of heterogeneity. Little impact from medical exposure (antibiotics/probiotics) was observed on the strain patterns, however, Bifidobacterium bifidum was found more abundant after exposure to probiotics, regardless of prior antibiotic administration. Twenty-seven antibiotic resistant genes were identified in the resistome. High intra-variability was evident within the different treatment groups. Lastly, we found significant effects of antibiotics and probiotics on the mycobiome but not on the microbiome and resistome of preterm infants. CONCLUSIONS Although our analyses showed transient effects, these results provide positive motivation to continue the research on the effects of medical interventions on the microbiome, resistome and mycobiome of preterm infants.
Collapse
Affiliation(s)
- Elizabeth Y Yuu
- Data Analytics & Computational Statistics, Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Straße 2-3, 14482 , Potsdam, Germany
| | | | | | - Marcus Fulde
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195, Berlin, Germany
| | - Michaela Herz
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 , Jena, Germany
| | | | - Gianni Panagiotou
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 , Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, 07745, Jena, Germany
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vitor C Piro
- Data Analytics & Computational Statistics, Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Straße 2-3, 14482 , Potsdam, Germany
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195, Berlin, Germany
| | | | - Bernhard Y Renard
- Data Analytics & Computational Statistics, Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Straße 2-3, 14482 , Potsdam, Germany
| | - Annicka Reuss
- Robert Koch Institute, Berlin, Germany
- Ministry of Justice and Health, Schleswig-Holstein, Kiel , Germany
| | - Sara Leal Siliceo
- Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 , Jena, Germany
| | - Nadja Thielemann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | - Kira van Vorst
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195, Berlin, Germany
| | - Lothar H Wieler
- Data Analytics & Computational Statistics, Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Straße 2-3, 14482 , Potsdam, Germany
- Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
3
|
Ouyang Q, Xu Y, Ban Y, Li J, Cai Y, Wu B, Hao Y, Sun Z, Zhang M, Wang M, Wang W, Zhao Y. Probiotics and Prebiotics in Subclinical Hypothyroidism of Pregnancy with Small Intestinal Bacterial Overgrowth. Probiotics Antimicrob Proteins 2024; 16:579-588. [PMID: 37032411 PMCID: PMC10987341 DOI: 10.1007/s12602-023-10068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/11/2023]
Abstract
Evaluating efficacy of probiotics combined with prebiotics in small intestinal bacterial overgrowth (SIBO) in subclinical hypothyroidism (SCH) in the second trimester. We collected data from 78 pregnant women with SCH (SCH group) and 74 normal pregnant women (control group) in second trimester, compare the differences in high sensitivity C-reactive protein (hsCRP), result of lactulose methane-hydrogen breath test and gastrointestinal symptoms assessed by GSRS scale between two groups. In SCH group, 32 patients with SIBO were selected as intervention group. Treatment with probiotics + prebiotics for 21 days; The differences of lipid metabolism, hsCRP, thyroid function level, methane-hydrogen breath test results and GSRS scores before and after treatment were compared to evaluate the therapeutic effect. (1) The positive rate of SIBO and methane, hsCRP levels in SCH group were higher than those in control group (P < 0.05), the total score of GSRS scale, mean score of indigestion syndrome, and constipation syndrome in SCH group were higher (P < 0.05). (2) The mean abundance of hydrogen and methane were higher in SCH group. (3) After treatment, serum levels of thyrotropin(TSH), total cholesterol(TC), triglyceride(TG), low-density lipoprotein (LDL), and hsCRP in intervention group were decreased, and high-density lipoprotein (HDL) was increased compared with before treatment (P < 0.05). (4) After treatment, methane positive rate, total score of GSRS scale, mean score of diarrhea syndrome, dyspepsia syndrome, and constipation syndrome were decreased (P < 0.05). (5) The average abundance of methane and hydrogen were lower. Probiotics combined with prebiotics are effective in the treatment of SIBO in pregnant SCH patients.Clinical Trial Registration Number: ChiCTR1900026326.
Collapse
Affiliation(s)
- Qian Ouyang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajuan Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yanjie Ban
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanjun Cai
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Wu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingqi Hao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengqi Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wentao Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yinkai Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Vijayan S, Kandi V, Palacholla PS, Rajendran R, Jarugu C, Ca J, Pravallika M, Reddy SC, Sucharitha AS. Probiotics in Allergy and Immunological Diseases: A Comprehensive Review. Cureus 2024; 16:e55817. [PMID: 38590477 PMCID: PMC10999892 DOI: 10.7759/cureus.55817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Allergy and immunological disorders like autoimmune diseases are vastly prevalent worldwide. These conditions account for a substantial amount of personal and social burden. Such illnesses have lengthy, uncertain, and spotted courses with unpredictable exacerbations. A definite tendency for improving the overall quality of life of individuals suffering from such diseases is crucial to tackling these diseases, especially through diet or lifestyle modification. Further, interventions like microbiome-based therapeutics such as prebiotics or probiotics were explored. Changes in the microbial population were evident during the flare-up of autoimmune and allergic conditions. The realization that the human microbiome is a central player in immunological diseases is a hallmark of its potential usefulness in therapy for such illnesses. This review focuses on the intricate symphony in the orchestra of the human microbiome and the immune system. New therapeutic strategies involving probiotics appear to be the future of personalized medicine. Through this review, we explore the narrative of probiotics and reaffirm their use as therapeutic and preventive agents in immunological disorders.
Collapse
Affiliation(s)
- Swapna Vijayan
- Pediatrics, Sir Chandrasekhara Venkata (CV) Raman General Hospital, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Pratyusha S Palacholla
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | | | - Chandrasagar Jarugu
- General Practice, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Mundla Pravallika
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Shruthi C Reddy
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Atul S Sucharitha
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
5
|
Chang HY, Lin CY, Chiang Chiau JS, Chang JH, Hsu CH, Ko MHJ, Lee HC. Probiotic supplementation modifies the gut microbiota profile of very low birth weight preterm infants during hospitalization. Pediatr Neonatol 2024; 65:55-63. [PMID: 37500417 DOI: 10.1016/j.pedneo.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Probiotic supplementation is increasingly being given to very low birth weight (VLBW) preterm infants. This preliminary observational study aimed to investigate the effects of multiple-strain probiotics on the gut microbiota of VLBW preterm infants. METHODS We collected meconium and stool samples on days 14, 30, and 60 after birth from 49 VLBW infants with a gestational age of <32 weeks. The infants were divided into the probiotics (n = 24) and control (n = 25) groups. The microbial composition and diversity in the gut of the two groups were analyzed using 16 S rRNA gene sequencing. RESULTS The relative abundance of Bifidobacterium and Lactobacillus was significantly higher in the probiotics group than in the control group on days 14, 30, and 60 (Bifidobacterium: p = 0.002, p < 0.0001, and p < 0.0001, respectively; Lactobacillus: p = 0.012, p < 0.0001, and p < 0.0001, respectively). The control group exhibited a significantly higher proportion of participants with a low abundance (<1%) of Bifidobacterium or Lactobacillus on days 14, 30, and 60 than those in the probiotic group. Moreover, the probiotics group exhibited a significantly lower abundance of Klebsiella on days 14 and 30 (2.4% vs. 11.6%, p = 0.037; and 7.9% vs. 16.6%, p = 0.032, respectively) and of Escherichia-Shigella on day 60 than the control group (6.1% vs. 12.3%, p = 0.013). Beta diversity analysis revealed that the microbiota profile was clearly divided into two groups on days 30 and 60 (p = 0.001). CONCLUSION Probiotic supplementation significantly increased the relative abundance of Bifidobacterium and Lactobacillus and inhibited the growth of potential pathogens. Furthermore, probiotic supplementation led to a distinct gut microbiota profile. Further research is needed to identify probiotic strains that exert significant influence on the gut microbiome and their long-term health implications in preterm infants.
Collapse
Affiliation(s)
- Hung-Yang Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chia-Ying Lin
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan
| | | | - Jui-Hsing Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chyong-Hsin Hsu
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan
| | - Mary Hsin-Ju Ko
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu 300, Taiwan
| | - Hung-Chang Lee
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
6
|
Hugon AM, Deblois CL, Simmons HA, Mejia A, Schotzo ML, Czuprynski CJ, Suen G, Golos TG. Listeria monocytogenes infection in pregnant macaques alters the maternal gut microbiome†. Biol Reprod 2023; 109:618-634. [PMID: 37665249 PMCID: PMC10651077 DOI: 10.1093/biolre/ioad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES The bacterium Listeria monocytogenes (Lm) is associated with adverse pregnancy outcomes. Infection occurs through consumption of contaminated food that is disseminated to the maternal-fetal interface. The influence on the gastrointestinal microbiome during Lm infection remains unexplored in pregnancy. The objective of this study was to determine the impact of listeriosis on the gut microbiota of pregnant macaques. METHODS A non-human primate model of listeriosis in pregnancy has been previously described. Both pregnant and non-pregnant cynomolgus macaques were inoculated with Lm and bacteremia and fecal shedding were monitored for 14 days. Non-pregnant animal tissues were collected at necropsy to determine bacterial burden, and fecal samples from both pregnant and non-pregnant animals were evaluated by 16S rRNA next-generation sequencing. RESULTS Unlike pregnant macaques, non-pregnant macaques did not exhibit bacteremia, fecal shedding, or tissue colonization by Lm. Dispersion of Lm during pregnancy was associated with a significant decrease in alpha diversity of the host gut microbiome, compared to non-pregnant counterparts. The combined effects of pregnancy and listeriosis were associated with a significant loss in microbial richness, although there were increases in some genera and decreases in others. CONCLUSIONS Although pregnancy alone is not associated with gut microbiome disruption, we observed dysbiosis with listeriosis during pregnancy. The macaque model may provide an understanding of the roles that pregnancy and the gut microbiota play in the ability of Lm to establish intestinal infection and disseminate throughout the host, thereby contributing to adverse pregnancy outcomes and risk to the developing fetus.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Michele L Schotzo
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
7
|
Healy DB, Campbell-Green B, Livingstone V, Ryan CA, Ross RP, Stanton C, Dempsey EM. Neonatal outcomes following introduction of routine probiotic supplementation to very preterm infants. Acta Paediatr 2023; 112:2093-2101. [PMID: 37505464 DOI: 10.1111/apa.16923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
AIM To evaluate the combined outcome of death and/or severe grade necrotising enterocolitis (NEC) in very preterm infants admitted to Cork University Maternity Hospital, Ireland, before and after introduction of routine supplementation with Bifidobacterium bifidum and Lactobacillus acidophilus probiotics (Infloran®). METHODS A retrospective study of infants <32 weeks gestation and < 1500 g surviving beyond 72 h of life was performed. Two 6-year epochs; pre-probiotics (Epoch 1: 2008-2013) and with probiotics (Epoch 2: 2015-2020), were evaluated. The primary outcome was defined as death after 72 h or NEC Bell stage 2a or greater. RESULTS Seven-hundred-and-forty-four infants were included (Epoch 1: 391, Epoch 2: 353). The primary outcome occurred in 67 infants (Epoch 1: 37, Epoch 2: 30, p = 0.646). After adjustment, the difference was significant (OR [95% CI]: 0.53 [0.29 to 0.97], p = 0.038). Differences between epochs did not depend on gestational age group (<28 weeks; ≥28 weeks). CONCLUSION There was an associated reduction of the composite outcome of severe grade NEC and/or death, after adjustment for confounding variables, with introduction of routine administration of a B. bifidum and L. acidophilus probiotic at our institution.
Collapse
Affiliation(s)
- David B Healy
- APC Microbiome Ireland, UCC, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | | | - Vicki Livingstone
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| | - C Anthony Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- APC Microbiome Ireland, UCC, Cork, Ireland
- Teagasc Food Research Centre, Fermoy, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, UCC, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 2023; 7:CD005496. [PMID: 37493095 PMCID: PMC10370900 DOI: 10.1002/14651858.cd005496.pub6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
BACKGROUND Intestinal dysbiosis may contribute to the pathogenesis of necrotising enterocolitis (NEC) in very preterm or very low birth weight (VLBW) infants. Dietary supplementation with probiotics to modulate the intestinal microbiome has been proposed as a strategy to reduce the risk of NEC and associated mortality and morbidity in very preterm or VLBW infants. OBJECTIVES To determine the effect of supplemental probiotics on the risk of NEC and associated mortality and morbidity in very preterm or very low birth weight infants. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, the Maternity and Infant Care database, and CINAHL from inception to July 2022. We searched clinical trials databases and conference proceedings, and examined the reference lists of retrieved articles. SELECTION CRITERIA We included randomised controlled trials (RCTs) and quasi-RCTs comparing probiotics with placebo or no probiotics in very preterm infants (born before 32 weeks' gestation) and VLBW infants (weighing less than 1500 g at birth). DATA COLLECTION AND ANALYSIS Two review authors independently evaluated risk of bias of the trials, extracted data, and synthesised effect estimates using risk ratios (RRs), risk differences (RDs), and mean differences (MDs), with associated 95% confidence intervals (CIs). The primary outcomes were NEC and all-cause mortality; secondary outcome measures were late-onset invasive infection (more than 48 hours after birth), duration of hospitalisation from birth, and neurodevelopmental impairment. We used the GRADE approach to assess the certainty of the evidence. MAIN RESULTS We included 60 trials with 11,156 infants. Most trials were small (median sample size 145 infants). The main potential sources of bias were unclear reporting of methods for concealing allocation and masking caregivers or investigators in about half of the trials. The formulation of the probiotics varied across trials. The most common preparations contained Bifidobacterium spp., Lactobacillus spp., Saccharomyces spp., andStreptococcus spp., alone or in combination. Very preterm or very low birth weight infants Probiotics may reduce the risk of NEC (RR 0.54, 95% CI 0.46 to 0.65; I² = 17%; 57 trials, 10,918 infants; low certainty). The number needed to treat for an additional beneficial outcome (NNTB) was 33 (95% CI 25 to 50). Probiotics probably reduce mortality slightly (RR 0.77, 95% CI 0.66 to 0.90; I² = 0%; 54 trials, 10,484 infants; moderate certainty); the NNTB was 50 (95% CI 50 to 100). Probiotics probably have little or no effect on the risk of late-onset invasive infection (RR 0.89, 95% CI 0.82 to 0.97; I² = 22%; 49 trials, 9876 infants; moderate certainty). Probiotics may have little or no effect on neurodevelopmental impairment (RR 1.03, 95% CI 0.84 to 1.26; I² = 0%; 5 trials, 1518 infants; low certainty). Extremely preterm or extremely low birth weight infants Few data were available for extremely preterm or extremely low birth weight (ELBW) infants. In this population, probiotics may have little or no effect on NEC (RR 0.92, 95% CI 0.69 to 1.22, I² = 0%; 10 trials, 1836 infants; low certainty), all-cause mortality (RR 0.92, 95% CI 0.72 to 1.18; I² = 0%; 7 trials, 1723 infants; low certainty), or late-onset invasive infection (RR 0.93, 95% CI 0.78 to 1.09; I² = 0%; 7 trials, 1533 infants; low certainty). No trials provided data for measures of neurodevelopmental impairment in extremely preterm or ELBW infants. AUTHORS' CONCLUSIONS Given the low to moderate certainty of evidence for the effects of probiotic supplements on the risk of NEC and associated morbidity and mortality for very preterm or VLBW infants, and particularly for extremely preterm or ELBW infants, there is a need for further large, high-quality trials to provide evidence of sufficient validity and applicability to inform policy and practice.
Collapse
Key Words
- female
- humans
- infant
- infant, newborn
- enterocolitis, necrotizing
- enterocolitis, necrotizing/epidemiology
- fetal growth retardation
- infant, extremely premature
- infant, premature, diseases
- infant, premature, diseases/etiology
- infant, premature, diseases/prevention & control
- infant, very low birth weight
- probiotics
Collapse
Affiliation(s)
- Sahar Sharif
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Nicholas Meader
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Sam J Oddie
- Centre for Reviews and Dissemination, University of York, York, UK
- Bradford Neonatology, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Maria X Rojas-Reyes
- Institut d'Recerca Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Evaluation Unit of the Canary Islands Health Service (SESCS), Tenerife, Spain
| | - William McGuire
- Centre for Reviews and Dissemination, University of York, York, UK
| |
Collapse
|
9
|
Hugon AM, Golos TG. Non-human primate models for understanding the impact of the microbiome on pregnancy and the female reproductive tract†. Biol Reprod 2023; 109:1-16. [PMID: 37040316 PMCID: PMC10344604 DOI: 10.1093/biolre/ioad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
The microbiome has been shown, or implicated to be involved, in multiple facets of human health and disease, including not only gastrointestinal health but also metabolism, immunity, and neurology. Although the predominant focus of microbiome research has been on the gut, other microbial communities such as the vaginal or cervical microbiome are likely involved in physiological homeostasis. Emerging studies also aim to understand the role of different microbial niches, such as the endometrial or placental microbial communities, on the physiology and pathophysiology of reproduction, including their impact on reproductive success and the etiology of adverse pregnancy outcomes (APOs). The study of the microbiome during pregnancy, specifically how changes in maternal microbial communities can lead to dysfunction and disease, can advance the understanding of reproductive health and the etiology of APOs. In this review, we will discuss the current state of non-human primate (NHP) reproductive microbiome research, highlight the progress with NHP models of reproduction, and the diagnostic potential of microbial alterations in a clinical setting to promote pregnancy health. NHP reproductive biology studies have the potential to expand the knowledge and understanding of female reproductive tract microbial communities and host-microbe or microbe-microbe interactions associated with reproductive health through sequencing and analysis. Furthermore, in this review, we aim to demonstrate that macaques are uniquely suited as high-fidelity models of human female reproductive pathology.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
10
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
11
|
Abstract
The last decade has witnessed a meteoric rise in research focused on characterizing the human microbiome and identifying associations with disease risk. The advent of sequencing technology has all but eradicated gel-based fingerprinting approaches for studying microbial ecology, while at the same time traditional microbiological culture is undergoing a renaissance. Although multiplexed high-throughput sequencing is relatively new, the discoveries leading to this are nearly 50 years old, coinciding with the inaugural Microbiology Society Fleming Prize lecture. It was an honour to give the 2022 Fleming Prize lecture and this review will cover the topics from that lecture. The focus will be on the bacterial community in early life, beginning with term infants before moving on to infants delivered prematurely. The review will discuss recent work showing how human milk oligosaccharides (HMOs), an abundant but non-nutritious component of breast milk, can modulate infant microbiome and promote the growth of Bifidobacterium spp. This has important connotations for preterm infants at risk of necrotizing enterocolitis, a devastating intestinal disease representing the leading cause of death and long-term morbidity in this population. With appropriate mechanistic studies, it may be possible to harness the power of breast milk bioactive factors and infant gut microbiome to improve short- and long-term health in infants.
Collapse
|
12
|
Goodchild-Michelman IM, Church GM, Schubert MG, Tang TC. Light and carbon: Synthetic biology toward new cyanobacteria-based living biomaterials. Mater Today Bio 2023; 19:100583. [PMID: 36846306 PMCID: PMC9945787 DOI: 10.1016/j.mtbio.2023.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Cyanobacteria are ideal candidates to use in developing carbon neutral and carbon negative technologies; they are efficient photosynthesizers and amenable to genetic manipulation. Over the past two decades, researchers have demonstrated that cyanobacteria can make sustainable, useful biomaterials, many of which are engineered living materials. However, we are only beginning to see such technologies applied at an industrial scale. In this review, we explore the ways in which synthetic biology tools enable the development of cyanobacteria-based biomaterials. First we give an overview of the ecological and biogeochemical importance of cyanobacteria and the work that has been done using cyanobacteria to create biomaterials so far. This is followed by a discussion of commonly used cyanobacteria strains and synthetic biology tools that exist to engineer cyanobacteria. Then, three case studies-bioconcrete, biocomposites, and biophotovoltaics-are explored as potential applications of synthetic biology in cyanobacteria-based materials. Finally, challenges and future directions of cyanobacterial biomaterials are discussed.
Collapse
Affiliation(s)
- Isabella M. Goodchild-Michelman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
13
|
Neumann CJ, Mahnert A, Kumpitsch C, Kiu R, Dalby MJ, Kujawska M, Madl T, Kurath-Koller S, Urlesberger B, Resch B, Hall LJ, Moissl-Eichinger C. Clinical NEC prevention practices drive different microbiome profiles and functional responses in the preterm intestine. Nat Commun 2023; 14:1349. [PMID: 36906612 PMCID: PMC10008552 DOI: 10.1038/s41467-023-36825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/13/2023] [Indexed: 03/13/2023] Open
Abstract
Preterm infants with very low birthweight are at serious risk for necrotizing enterocolitis. To functionally analyse the principles of three successful preventive NEC regimens, we characterize fecal samples of 55 infants (<1500 g, n = 383, female = 22) longitudinally (two weeks) with respect to gut microbiome profiles (bacteria, archaea, fungi, viruses; targeted 16S rRNA gene sequencing and shotgun metagenomics), microbial function, virulence factors, antibiotic resistances and metabolic profiles, including human milk oligosaccharides (HMOs) and short-chain fatty acids (German Registry of Clinical Trials, No.: DRKS00009290). Regimens including probiotic Bifidobacterium longum subsp. infantis NCDO 2203 supplementation affect microbiome development globally, pointing toward the genomic potential to convert HMOs. Engraftment of NCDO 2203 is associated with a substantial reduction of microbiome-associated antibiotic resistance as compared to regimens using probiotic Lactobacillus rhamnosus LCR 35 or no supplementation. Crucially, the beneficial effects of Bifidobacterium longum subsp. infantis NCDO 2203 supplementation depends on simultaneous feeding with HMOs. We demonstrate that preventive regimens have the highest impact on development and maturation of the gastrointestinal microbiome, enabling the establishment of a resilient microbial ecosystem that reduces pathogenic threats in at-risk preterm infants.
Collapse
Affiliation(s)
- Charlotte J Neumann
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Alexander Mahnert
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Christina Kumpitsch
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria
| | - Raymond Kiu
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Matthew J Dalby
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Magdalena Kujawska
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health; Technical University of Munich, Freising, Bavaria, 85354, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology & Biochemistry, Medical University of Graz, Graz, Styria, 8010, Austria
- BioTechMed, Graz, Styria, 8010, Austria
| | - Stefan Kurath-Koller
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria
| | - Berndt Urlesberger
- Division of Neonatology; Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Styria, 8036, Austria
| | - Bernhard Resch
- Division of Neonatology; Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Graz, Styria, 8036, Austria.
- Research Unit for Neonatal Infectious Diseases and Epidemiology, Medical University of Graz, Graz, Styria, 8036, Austria.
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Chair of Intestinal Microbiome, School of Life Sciences, ZIEL-Institute for Food & Health; Technical University of Munich, Freising, Bavaria, 85354, Germany
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Christine Moissl-Eichinger
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine; Medical University of Graz, Graz, Styria, 8010, Austria.
- BioTechMed, Graz, Styria, 8010, Austria.
| |
Collapse
|
14
|
Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life (Basel) 2023; 13:life13020561. [PMID: 36836917 PMCID: PMC9959300 DOI: 10.3390/life13020561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Short chain fatty acids (SCFAs), the principle end-products produced by the anaerobic gut microbial fermentation of complex carbohydrates (CHO) in the colon perform beneficial roles in metabolic health. Butyrate, acetate and propionate are the main SCFA metabolites, which maintain gut homeostasis and host immune responses, enhance gut barrier integrity and reduce gut inflammation via a range of epigenetic modifications in DNA/histone methylation underlying these effects. The infant gut microbiota composition is characterized by higher abundances of SCFA-producing bacteria. A large number of in vitro/vivo studies have demonstrated the therapeutic implications of SCFA-producing bacteria in infant inflammatory diseases, such as obesity and asthma, but the application of gut microbiota and its metabolite SCFAs to necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns, is scarce. Indeed, the beneficial health effects attributed to SCFAs and SCFA-producing bacteria in neonatal NEC are still to be understood. Thus, this literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal NEC using the PubMed/MEDLINE database.
Collapse
|
15
|
Srinivasjois R, Gebremedhin A, Silva D, Rao S, Pereira G. Probiotic supplementation in neonates and long-term gut colonisation: A systematic review of randomised controlled trials. J Paediatr Child Health 2023; 59:212-217. [PMID: 36629072 DOI: 10.1111/jpc.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Probiotic supplementation in the neonatal period results in improved gut colonisation with probiotic bacteria in the short term. There is limited information on the long-term sustainability of this colonisation. AIMS To evaluate whether oral probiotic supplementation in the neonatal period results in sustained gut colonisation with probiotic bacteria at or beyond 6 months after its cessation. METHODS A systematic review of neonatal probiotic randomised controlled trials (RCTs) that reported on the stool microbiota during post-discharge follow-up was carried out using guidelines of the Cochrane neonatal group. RESULTS Four RCTs (n = 605 infants) were included in the review. The studies were heterogeneous in case selection, choice of probiotics, duration of supplementation, timing and the method of stool microbial analysis. Three RCTs (n = 471) showed the presence of intestinal probiotic bacteria at 6-12 months. The overall certainty of evidence was very low in view of small sample size, heterogeneity and identification only to the genus/species level. CONCLUSION Low certainty of evidence suggests that probiotic supplementation in the neonatal period may result in sustained gut colonisation 6-12 months post-cessation, but not at 24 months. Adequately powered, well-designed RCTs with strain-specific assays are needed in this area.
Collapse
Affiliation(s)
- Ravisha Srinivasjois
- Curtin School of Population Health, Curtin University, Bentley, Western Australia, Australia.,Department of Paediatrics and Neonatology, Joondalup Health Campus, Perth, Western Australia, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Division of Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Amanuel Gebremedhin
- Curtin School of Population Health, Curtin University, Bentley, Western Australia, Australia.,Enable Institute, Curtin University, Bentley, Western Australia, Australia
| | - Desiree Silva
- Department of Paediatrics and Neonatology, Joondalup Health Campus, Perth, Western Australia, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Shripada Rao
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Department of Neonatology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Gavin Pereira
- Curtin School of Population Health, Curtin University, Bentley, Western Australia, Australia.,Enable Institute, Curtin University, Bentley, Western Australia, Australia.,Centre for Fertility and Health (CeFH), Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
16
|
Mercer EM, Arrieta MC. Probiotics to improve the gut microbiome in premature infants: are we there yet? Gut Microbes 2023; 15:2201160. [PMID: 37122152 PMCID: PMC10153018 DOI: 10.1080/19490976.2023.2201160] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Gut microbiome maturation in infants born prematurely is uniquely influenced by the physiological, clinical, and environmental factors surrounding preterm birth and early life, leading to altered patterns of microbial succession relative to term infants during the first months of life. These differences in microbiome composition are implicated in acute clinical conditions that disproportionately affect preterm infants, including necrotizing enterocolitis (NEC) and late-onset sepsis (LOS). Probiotic supplementation initiated early in life is an effective prophylactic measure for preventing NEC, LOS, and other clinical concerns relevant to preterm infants. In parallel, reported benefits of probiotics on the preterm gut microbiome, metabolome, and immune function are beginning to emerge. This review summarizes the current literature on the influence of probiotics on the gut microbiome of preterm infants, outlines potential mechanisms by which these effects are exerted, and highlights important clinical considerations for determining the best practices for probiotic use in premature infants.
Collapse
Affiliation(s)
- Emily M. Mercer
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Multi-strain probiotics for extremely preterm infants: a randomized controlled trial. Pediatr Res 2022; 92:1663-1670. [PMID: 35314794 DOI: 10.1038/s41390-022-02004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Effects of probiotics on intestinal microbiota and feeding tolerance remain unclear in extremely low-birth-weight (ELBW) infants. METHODS ELBW infants were randomly assigned to receive probiotics or no intervention. Stool samples were collected prior to, 2 and 4 weeks after initiation, and 2 weeks after probiotics cessation for infants in the probiotics group, and at matched postnatal age time points for infants in the control group. RESULTS Of the 102 infants assessed for eligibility, sixty-two were included. Infants who received probiotics reached full enteral feeds sooner (Mean difference (MD) -1.8; 95% CI:-3.7 to -0.01 day), had a tendency toward lower incidence of hematochezia before hospital discharge (22.6% vs 3.2%; P = 0.053), and were less likely to require extensively hydrolyzed- or amino acids-based formulas to alleviate signs of cow's milk protein intolerance in the first 6 months of life (19.4% vs 51.6%; P = 0.008). Infants on probiotics were more likely to receive wide-spectrum antibiotics (64.5% vs 32.2%; P = 0.01). Multi-strain probiotics resulted in significant increase in fecal Bifidobacterium (P < 0.001) and Lactobacillus (P = 0.005), and marked reduction in fecal candida abundance (P = 0.04). CONCLUSION Probiotics sustained intestinal Bifidobacterium and reduced time to achieve full enteral feeds in extremely preterm infants. Probiotics might improve tolerance for cow's milk protein supplements. CLINICAL TRIAL REGISTRATION This trial has been registered at www. CLINICALTRIALS gov (identifier NCT03422562). IMPACT Probiotics may help extremely preterm infants achieve full enteral feeds sooner. Probiotics may improve tolerance for cow's milk protein supplements. Multi-strain probiotics can sustain intestinal Bifidobacterium and Lactobacillus until hospital discharge.
Collapse
|
18
|
Beck LC, Masi AC, Young GR, Vatanen T, Lamb CA, Smith R, Coxhead J, Butler A, Marsland BJ, Embleton ND, Berrington JE, Stewart CJ. Strain-specific impacts of probiotics are a significant driver of gut microbiome development in very preterm infants. Nat Microbiol 2022; 7:1525-1535. [PMID: 36163498 PMCID: PMC9519454 DOI: 10.1038/s41564-022-01213-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/25/2022] [Indexed: 12/23/2022]
Abstract
The development of the gut microbiome from birth plays important roles in short- and long-term health, but factors influencing preterm gut microbiome development are poorly understood. In the present study, we use metagenomic sequencing to analyse 1,431 longitudinal stool samples from 123 very preterm infants (<32 weeks' gestation) who did not develop intestinal disease or sepsis over a study period of 10 years. During the study period, one cohort had no probiotic exposure whereas two cohorts were given different probiotic products: Infloran (Bifidobacterium bifidum and Lactobacillus acidophilus) or Labinic (B. bifidum, B. longum subsp. infantis and L. acidophilus). Mothers' own milk, breast milk fortifier, antibiotics and probiotics were significantly associated with the gut microbiome, with probiotics being the most significant factor. Probiotics drove microbiome transition into different preterm gut community types (PGCTs), each enriched in a different Bifidobacterium sp. and significantly associated with increased postnatal age. Functional analyses identified stool metabolites associated with PGCTs and, in preterm-derived organoids, sterile faecal supernatants impacted intestinal, organoid monolayer, gene expression in a PGCT-specific manner. The present study identifies specific influencers of gut microbiome development in very preterm infants, some of which overlap with those impacting term infants. The results highlight the importance of strain-specific differences in probiotic products and their impact on host interactions in the preterm gut.
Collapse
Affiliation(s)
- Lauren C Beck
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Gregory R Young
- Hub for Biotechnology in the Built Environment, Northumbria University, Newcastle, UK
| | - Tommi Vatanen
- Liggins Institute, University of Auckland, Auckland, New Zealand
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher A Lamb
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
- Department of Gastroenterology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK
| | - Rachel Smith
- Bioscience Institute, Newcastle University, Newcastle, UK
| | | | - Alana Butler
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Benjamin J Marsland
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicholas D Embleton
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK
- Population Health Sciences Institute, Newcastle University, Newcastle, UK
| | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.
- Newcastle Neonatal Service, Newcastle Hospitals NHS Trust, Newcastle, UK.
| | | |
Collapse
|
19
|
Moschino L, Verlato G, Duci M, Cavicchiolo ME, Guiducci S, Stocchero M, Giordano G, Fascetti Leon F, Baraldi E. The Metabolome and the Gut Microbiota for the Prediction of Necrotizing Enterocolitis and Spontaneous Intestinal Perforation: A Systematic Review. Nutrients 2022; 14:nu14183859. [PMID: 36145235 PMCID: PMC9506026 DOI: 10.3390/nu14183859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is the most devastating gastrointestinal emergency in preterm neonates. Research on early predictive biomarkers is fundamental. This is a systematic review of studies applying untargeted metabolomics and gut microbiota analysis to evaluate the differences between neonates affected by NEC (Bell’s stage II or III), and/or by spontaneous intestinal perforation (SIP) versus healthy controls. Five studies applying metabolomics (43 cases, 95 preterm controls) and 20 applying gut microbiota analysis (254 cases, 651 preterm controls, 22 term controls) were selected. Metabolomic studies utilized NMR spectroscopy or mass spectrometry. An early urinary alanine/histidine ratio >4 showed good sensitivity and predictive value for NEC in one study. Samples collected in proximity to NEC diagnosis demonstrated variable pathways potentially related to NEC. In studies applying untargeted gut microbiota analysis, the sequencing of the V3−V4 or V3 to V5 regions of the 16S rRNA was the most used technique. At phylum level, NEC specimens were characterized by increased relative abundance of Proteobacteria compared to controls. At genus level, pre-NEC samples were characterized by a lack or decreased abundance of Bifidobacterium. Finally, at the species level Bacteroides dorei, Clostridium perfringens and perfringens-like strains dominated early NEC specimens, whereas Clostridium butyricum, neonatale and Propionibacterium acnei those at disease diagnosis. Six studies found a lower Shannon diversity index in cases than controls. A clear separation of cases from controls emerged based on UniFrac metrics in five out of seven studies. Importantly, no studies compared NEC versus SIP. Untargeted metabolomics and gut microbiota analysis are interrelated strategies to investigate NEC pathophysiology and identify potential biomarkers. Expression of quantitative measurements, data sharing via biorepositories and validation studies are fundamental to guarantee consistent comparison of results.
Collapse
Affiliation(s)
- Laura Moschino
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Correspondence: ; Tel.: +39-049-821-3548
| | - Giovanna Verlato
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Miriam Duci
- Paediatric Surgery, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Maria Elena Cavicchiolo
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Silvia Guiducci
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Matteo Stocchero
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Giuseppe Giordano
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
- Laboratory of Mass Spectrometry and Metabolomics, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Francesco Fascetti Leon
- Paediatric Surgery, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Women’s and Children’s Health, Padova University Hospital, 35128 Padova, Italy
- Institute of Paediatric Research, Città della Speranza, Laboratory of Mass Spectrometry and Metabolomics, 35127 Padova, Italy
| |
Collapse
|
20
|
Chang CM, Tsai MH, Liao WC, Yang PH, Li SW, Chu SM, Huang HR, Chiang MC, Hsu JF. Effects of Probiotics on Gut Microbiomes of Extremely Preterm Infants in the Neonatal Intensive Care Unit: A Prospective Cohort Study. Nutrients 2022; 14:3239. [PMID: 35956415 PMCID: PMC9370381 DOI: 10.3390/nu14153239] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 01/04/2023] Open
Abstract
Background: Probiotics have been previously reported to reduce the incidence of necrotizing enterocolitis (NEC) in extremely preterm infants, but the mechanisms by which the probiotics work remain unknown. We aimed to investigate the effects of probiotics on the gut microbiota of extremely preterm infants. Methods: A prospective cohort study was conducted on 120 extremely preterm neonates (gestational age ≤ 28 weeks) between August 2019 and December 2021. All neonates were divided into the study (receiving probiotics) and the control (no probiotics) groups. Multivariate logistic regression analysis was performed to investigate the significantly different compositions of gut microbiota between these two groups. The effects of probiotics on the occurrence of NEC and late-onset sepsis were also investigated. Results: An increased abundance of Lactobacillus was noted in neonates who received the probiotics (AOR 4.33; 95% CI, 1.89-9.96, p = 0.009) when compared with the control group. Subjects in the probiotic group had significantly fewer days of total parenteral nutrition (median [interquartile range, IQR]) 29.0 (26.8-35.0) versus 35.5 (27.8-45.0), p = 0.004) than those in the control group. The probiotic group had a significantly lower rate of late-onset sepsis than the control group (47.1% versus 70.0%, p = 0.015), but the rate of NEC, duration of hospitalization and the final in-hospital mortality rates were comparable between these two groups. Conclusions: Probiotic supplementation of extremely preterm infants soon after the initiation of feeding increased the abundance of Lactobacillus. Probiotics may reduce the risk of late-onset sepsis, but further randomized controlled trials are warranted in the future.
Collapse
Affiliation(s)
- Ching-Min Chang
- Division of Pediatric Gastrointestinal Disease, Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
| | - Ming-Horng Tsai
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 244, Taiwan
| | - Peng-Hong Yang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Shiao-Wen Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 244, Taiwan
| | - Shih-Ming Chu
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Hsuan-Rong Huang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Ming-Chou Chiang
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| | - Jen-Fu Hsu
- College of Medicine, Chang Gung University, Taoyuan 244, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 244, Taiwan
| |
Collapse
|
21
|
Ke A, Parreira VR, Farber JM, Goodridge L. Inhibition of Cronobacter sakazakii in an infant simulator of the human intestinal microbial ecosystem using a potential synbiotic. Front Microbiol 2022; 13:947624. [PMID: 35910651 PMCID: PMC9335077 DOI: 10.3389/fmicb.2022.947624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Powdered infant formula (PIF) can be contaminated with Cronobacter sakazakii, which can cause severe illnesses in infants. Synbiotics, a combination of probiotics and prebiotics, could act as an alternative control measure for C. sakazakii contamination in PIF and within the infant gut, but synbiotics have not been well studied for their ability to inhibit C. sakazakii. Using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) inoculated with infant fecal matter, we demonstrated that a potential synbiotic, consisting of six lactic acid bacteria (LAB) strains and Vivinal GOS, can inhibit the growth of C. sakazakii in an infant possibly through either the production of antimicrobial metabolites like acetate, increasing species diversity within the SHIME compartments to compete for nutrients or a combination of mechanisms. Using a triple SHIME set-up, i.e., three identical SHIME compartments, the first SHIME (SHIME 1) was designated as the control SHIME in the absence of a treatment, whereas SHIME 2 and 3 were the treated SHIME over 2, 1-week treatment periods. The addition of the potential synbiotic (LAB + VGOS) resulted in a significant decrease in C. sakazakii levels within 1 week (p < 0.05), but in the absence of a treatment the significant decline took 2 weeks (p < 0.05), and the LAB treatment did not decrease C. sakazakii levels (p ≥ 0.05). The principal component analysis showed a distinction between metabolomic profiles for the control and LAB treatment, but similar profiles for the LAB + VGOS treatment. The addition of the potential synbiotic (LAB + VGOS) in the first treatment period slightly increased species diversity (p ≥ 0.05) compared to the control and LAB, which may have had an effect on the survival of C. sakazakii throughout the treatment period. Our results also revealed that the relative abundance of Bifidobacterium was negatively correlated with Cronobacter when no treatments were added (ρ = −0.96; p < 0.05). These findings suggest that C. sakazakii could be inhibited by the native gut microbiota, and inhibition can be accelerated by the potential synbiotic treatment.
Collapse
|
22
|
Aguilar-Lopez M, Dinsmoor AM, Ho TTB, Donovan SM. A systematic review of the factors influencing microbial colonization of the preterm infant gut. Gut Microbes 2022; 13:1-33. [PMID: 33818293 PMCID: PMC8023245 DOI: 10.1080/19490976.2021.1884514] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prematurity coupled with the necessary clinical management of preterm (PT) infants introduces multiple factors that can interfere with microbial colonization. This study aimed to review the perinatal, physiological, pharmacological, dietary, and environmental factors associated with gut microbiota of PT infants. A total of 587 articles were retrieved from a search of multiple databases. Sixty studies were included in the review after removing duplicates and articles that did not meet the inclusion criteria. Review of this literature revealed that evidence converged on the effect of postnatal age, mode of delivery, use of antibiotics, and consumption of human milk in the composition of gut microbiota of PT infants. Less evidence was found for associations with race, sex, use of different fortifiers, macronutrients, and other medications. Future studies with rich metadata are needed to further explore the impact of the PT exposome on the development of the microbiota in this high-risk population.
Collapse
Affiliation(s)
- Miriam Aguilar-Lopez
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Andrew M. Dinsmoor
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Thao T. B. Ho
- Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, USA,Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, USA,CONTACT Sharon M. Donovan Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, 339 Bevier Hall 905 S. Goodwin Avenue, Urbana, IL61801, USA
| |
Collapse
|
23
|
Exploring the long-term colonisation and persistence of probiotic-prophylaxis species on the gut microbiome of preterm infants: a pilot study. Eur J Pediatr 2022; 181:3389-3400. [PMID: 35796792 PMCID: PMC9395480 DOI: 10.1007/s00431-022-04548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022]
Abstract
Preterm infants suffer from a higher incidence of acute diseases such as necrotising enterocolitis and sepsis. This risk can be mitigated through probiotic prophylaxis during admission. This reduction in risk is likely the result of acute modulation of the gut microbiome induced by probiotic species, which has been observed to occur up until discharge. We aimed to determine if this modulation, and the associated probiotic species, persisted beyond discharge. We conducted both a cross-sectional analysis (n = 18), at ~ 18 months of age, and a longitudinal analysis (n = 6), from admission to 18 months of the gut microbiome of preterm infants using both shotgun metagenomics and 16S rRNA profiling respectively. The 16S amplicon sequencing revealed that the microbial composition of the probiotic-supplemented infants changed dramatically over time, stabilising at discharge. However, species from the probiotic Infloran®, as well as positive modulatory effects previously associated with supplementation, do not appear to persist beyond discharge and once prophylaxis has stopped. Conclusions: Although differences exist between supplemented and non-supplemented groups, the implications of these differences remain unclear. Additionally, despite a lack of long-term colonisation, the presence of probiotics during early neonatal life may still have modulatory effects on the microbiome assembly and immune system training. What is Known: • Evidence suggests modulation of the microbiome occurs during probiotic prophylaxis, which may support key taxa that exert positive immunological benefits. • Some evidence suggests that this modulation can persist post-prophylaxis. What is New: • We present support for long-term modulation in association with probiotic prophylaxis in a cohort of infants from North Queensland Australia. • We also observed limited persistence of the probiotic species post-discharge.
Collapse
|
24
|
Westaway JAF, Huerlimann R, Kandasamy Y, Miller CM, Norton R, Watson D, Infante-Vilamil S, Rudd D. To Probiotic or Not to Probiotic: A Metagenomic Comparison of the Discharge Gut Microbiome of Infants Supplemented With Probiotics in NICU and Those Who Are Not. Front Pediatr 2022; 10:838559. [PMID: 35345612 PMCID: PMC8957066 DOI: 10.3389/fped.2022.838559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Preterm birth is associated with the development of both acute and chronic disease, and the disruption of normal gut microbiome development. Recent studies have sought to both characterize and understand the links between disease and the microbiome. Probiotic treatment may correct for these microbial imbalances and, in turn, mitigate disease. However, the criteria for probiotic supplementation in NICU's in North Queensland, Australia limits its usage to the most premature (<32 weeks gestation) and small for gestational age infants (<1,500 g). Here we use a combination of amplicon and shotgun metagenomic sequencing to compare the gut microbiome of infants who fulfill the criteria for probiotic-treatment and those who do not. The aims of this study were to determine if probiotic-supplemented preterm infants have significantly different taxonomic and functional profiles when compared to non-supplemented preterm infants at discharge. METHODS Preterm infants were recruited in North Queensland, Australia, with fecal samples collected just prior to discharge (36 ± 0.5 weeks gestation), to capture potential changes that could be probiotic induced. All samples underwent 16S rRNA gene amplicon sequencing, with a subset also used for shotgun metagenomics. Mixed effects models were used to assess the effect of probiotics on alpha diversity, beta diversity and taxonomic abundance, whilst accounting for other known covariates. RESULTS Mixed effects modeling demonstrated that probiotic treatment had a significant effect on overall community composition (beta diversity), characterized by greater alpha diversity and differing abundances of several taxa, including Bifidobacterium and Lactobacillus, in supplemented infants. CONCLUSION Late preterm-infants who go without probiotic-supplementation may be missing out on stabilizing-effects provided through increased alpha diversity and the presence of commensal microbes, via the use of probiotic-treatment. These findings suggest that late-preterm infants may benefit from probiotic supplementation. More research is needed to both understand the consequences of the differences observed and the long-term effects of this probiotic-treatment.
Collapse
Affiliation(s)
- Jacob A F Westaway
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia
| | - Roger Huerlimann
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.,Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), Onna, Japan.,Center for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Yoga Kandasamy
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia.,Neonatology, Townsville University Hospital, Townsville, QLD, Australia
| | - Catherine M Miller
- College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, QLD, Australia
| | - Robert Norton
- Microbiology, Pathology Queensland, Herston, QLD, Australia.,Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David Watson
- Maternal-Fetal Medicine, Townsville University Hospital, Townsville, QLD, Australia
| | - Sandra Infante-Vilamil
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD, Australia.,Center for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Donna Rudd
- College of Public Health, Medical and Veterinary Science, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
25
|
Westaway JAF, Huerlimann R, Kandasamy Y, Miller CM, Norton R, Staunton KM, Watson D, Rudd D. The bacterial gut microbiome of probiotic-treated very-preterm infants: changes from admission to discharge. Pediatr Res 2022; 92:142-150. [PMID: 34621029 PMCID: PMC9411061 DOI: 10.1038/s41390-021-01738-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/23/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preterm birth is associated with the development of acute and chronic disease, potentially, through the disruption of normal gut microbiome development. Probiotics may correct for microbial imbalances and mitigate disease risk. Here, we used amplicon sequencing to characterise the gut microbiome of probiotic-treated premature infants. We aimed to identify and understand variation in bacterial gut flora from admission to discharge and in association with clinical variables. METHODS Infants born <32 weeks gestation and <1500 g, and who received probiotic treatment, were recruited in North Queensland Australia. Meconium and faecal samples were collected at admission and discharge. All samples underwent 16S rRNA short amplicon sequencing, and subsequently, a combination of univariate and multivariate analyses. RESULTS 71 admission and 63 discharge samples were collected. Univariate analyses showed significant changes in the gut flora from admission to discharge. Mixed-effects modelling showed significantly lower alpha diversity in infants diagnosed with either sepsis or retinopathy of prematurity (ROP) and those fed formula. In addition, chorioamnionitis, preeclampsia, sepsis, necrotising enterocolitis and ROP were also all associated with the differential abundance of several taxa. CONCLUSIONS The lower microbial diversity seen in infants with diagnosed disorders or formula-fed, as well as differing abundances of several taxa across multiple variables, highlights the role of the microbiome in the development of health and disease. This study supports the need for promoting healthy microbiome development in preterm neonates. IMPACT Low diversity and differing taxonomic abundances in preterm gut microbiota demonstrated in formula-fed infants and those identified with postnatal conditions, as well as differences in taxonomy associated with preeclampsia and chorioamnionitis, reinforcing the association of the microbiome composition changes due to maternal and infant disease. The largest study exploring an association between the preterm infant microbiome and ROP. A novel association between the preterm infant gut microbiome and preeclampsia in a unique cohort of very-premature probiotic-supplemented infants.
Collapse
Affiliation(s)
- Jacob A. F. Westaway
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia ,grid.1011.10000 0004 0474 1797Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| | - Roger Huerlimann
- grid.1011.10000 0004 0474 1797Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia ,grid.250464.10000 0000 9805 2626Marine Climate Change Unit, Okinawa Institute of Science and Technology (OIST), 1919-1 Tancha, Onna-son Okinawa, 904-0495 Japan ,grid.1011.10000 0004 0474 1797College of Science and Engineering, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| | - Yoga Kandasamy
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia ,grid.417216.70000 0000 9237 0383Department of neonatology, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD 4814 Australia
| | - Catherine M. Miller
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia ,grid.1011.10000 0004 0474 1797Australian Institute for Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia
| | - Robert Norton
- Department of Microbiology, Pathology Queensland, 100 Angus Smith Drive, Douglas, QLD 4814 Australia
| | - Kyran M. Staunton
- grid.1011.10000 0004 0474 1797Australian Institute for Tropical Health and Medicine, James Cook University, 1/14-88 McGregor Road, Smithfield, QLD 4878 Australia
| | - David Watson
- grid.417216.70000 0000 9237 0383Department of Maternal-Fetal Medicine, Townsville University Hospital, 100 Angus Smith Drive, Douglas, 4814 Australia
| | - Donna Rudd
- grid.1011.10000 0004 0474 1797College of Public Health, Medical and Veterinary Science, James Cook University, 1 James Cook Drive, Douglas, QLD 4811 Australia
| |
Collapse
|
26
|
Healy DB, Ryan CA, Ross RP, Stanton C, Dempsey EM. Clinical implications of preterm infant gut microbiome development. Nat Microbiol 2022; 7:22-33. [PMID: 34949830 DOI: 10.1038/s41564-021-01025-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022]
Abstract
Perturbations to the infant gut microbiome during the first weeks to months of life affect growth, development and health. In particular, assembly of an altered intestinal microbiota during infant development results in an increased risk of immune and metabolic diseases that can persist into childhood and potentially into adulthood. Most research into gut microbiome development has focused on full-term babies, but health-related outcomes are also important for preterm babies. The systemic physiological immaturity of very preterm gestation babies (born earlier than 32 weeks gestation) results in numerous other microbiome-organ interactions, the mechanisms of which have yet to be fully elucidated or in some cases even considered. In this Perspective, we compare assembly of the intestinal microbiome in preterm and term infants. We focus in particular on the clinical implications of preterm infant gut microbiome composition and discuss the prospects for microbiome diagnostics and interventions to improve the health of preterm babies.
Collapse
Affiliation(s)
- David B Healy
- APC Microbiome Ireland, University College Cork, Cork, Ireland. .,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| | - C Anthony Ryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,INFANT Research Centre, Cork University Hospital, Cork, Ireland
| |
Collapse
|
27
|
Plummer EL, Danielewski JA, Garland SM, Su J, Jacobs SE, Murray GL. The effect of probiotic supplementation on the gut microbiota of preterm infants. J Med Microbiol 2021; 70. [PMID: 34431764 PMCID: PMC8513625 DOI: 10.1099/jmm.0.001403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Probiotic supplementation of preterm infants may prevent serious morbidities associated with prematurity.Aim. To investigate the impact of probiotic supplementation on the gut microbiota and determine factors associated with detection of probiotic species in the infant gut.Hypothesis/Gap Statement. Probiotic supplementation increases the long-term colonization of probiotic species in the gut of preterm infants.Methodology. Longitudinal stool samples were collected from a cohort of very preterm infants participating in a blinded randomized controlled trial investigating the impact of probiotic supplementation (containing Bifidobacterium longum subsp. infantis BB-02, Bifidobacterium animalis subsp. lactis BB-12 and Streptococcus thermophilus TH-4) for prevention of late-onset sepsis. The presence of B. longum subsp. infantis, B. animalis subsp. lactis and S. thermophilus was determined for up to 23 months after supplementation ended using real-time PCR. Logistic regression was used to investigate the impact of probiotic supplementation on the presence of each species.Results. Detection of B. longum subsp. infantis [odds ratio (OR): 53.1; 95 % confidence interval (CI): 35.6-79.1; P < 0.001], B. animalis subsp. lactis (OR: 89.1; 95 % CI: 59.0-134.5; P < 0.001) and S. thermophilus (OR: 5.66; 95 % CI: 4.35-7.37; P < 0.001) was increased during the supplementation period in infants receiving probiotic supplementation. Post-supplementation, probiotic-supplemented infants had increased detection of B. longum subsp. infantis (OR: 2.53; 95 % CI: 1.64-3.90; P < 0.001) and B. animalis subsp. lactis (OR: 1.59; 95 % CI: 1.05-2.41; P=0.030). Commencing probiotic supplementation before 5 days from birth was associated with increased detection of the probiotic species over the study period (B. longum subsp. infantis, OR: 1.20; B. animalis subsp. lactis, OR: 1.28; S. thermophilus, OR: 1.45).Conclusion. Probiotic supplementation with B. longum subsp. infantis BB-02, B. animalis subsp. lactis BB-12 and S. thermophilus TH-4 enhances the presence of probiotic species in the gut microbiota of very preterm infants during and after supplementation. Commencing probiotic supplementation shortly after birth may be important for improving the long-term colonization of probiotic species.
Collapse
Affiliation(s)
- Erica L Plummer
- Centre for Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Infection & Immunity Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jennifer A Danielewski
- Centre for Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Infection & Immunity Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Suzanne M Garland
- Centre for Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Infection & Immunity Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Jenny Su
- Centre for Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Infection & Immunity Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Susan E Jacobs
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia.,Neonatal Services, The Royal Women's Hospital, Parkville, Victoria, Australia.,Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gerald L Murray
- Centre for Women's Infectious Diseases Research, The Royal Women's Hospital, Parkville, Victoria, Australia.,Infection & Immunity Theme, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Westaway JAF, Huerlimann R, Miller CM, Kandasamy Y, Norton R, Rudd D. Methods for exploring the faecal microbiome of premature infants: a review. Matern Health Neonatol Perinatol 2021; 7:11. [PMID: 33685524 PMCID: PMC7941982 DOI: 10.1186/s40748-021-00131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The premature infant gut microbiome plays an important part in infant health and development, and recognition of the implications of microbial dysbiosis in premature infants has prompted significant research into these issues. The approaches to designing investigations into microbial populations are many and varied, each with its own benefits and limitations. The technique used can influence results, contributing to heterogeneity across studies. This review aimed to describe the most common techniques used in researching the preterm infant microbiome, detailing their various limitations. The objective was to provide those entering the field with a broad understanding of available methodologies, so that the likely effects of their use can be factored into literature interpretation and future study design. We found that although many techniques are used for characterising the premature infant microbiome, 16S rRNA short amplicon sequencing is the most common. 16S rRNA short amplicon sequencing has several benefits, including high accuracy, discoverability and high throughput capacity. However, this technique has limitations. Each stage of the protocol offers opportunities for the injection of bias. Bias can contribute to variability between studies using 16S rRNA high throughout sequencing. Thus, we recommend that the interpretation of previous results and future study design be given careful consideration.
Collapse
Affiliation(s)
- Jacob A F Westaway
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia.
| | - Roger Huerlimann
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| | - Catherine M Miller
- James Cook University, 1 McGregor Road, Smithfield, QLD, 4878, Australia
| | - Yoga Kandasamy
- Townsville University Hospital, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Robert Norton
- Pathology Queensland, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia
| | - Donna Rudd
- James Cook University, 1 James Cook Dr, Douglas, QLD, 4811, Australia
| |
Collapse
|
29
|
Castro-Herrera VM, Fisk HL, Wootton M, Lown M, Owen-Jones E, Lau M, Lowe R, Hood K, Gillespie D, Hobbs FDR, Little P, Butler CC, Miles EA, Calder PC. Combination of the Probiotics Lacticaseibacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis, BB-12 Has Limited Effect on Biomarkers of Immunity and Inflammation in Older People Resident in Care Homes: Results From the Probiotics to Reduce Infections iN CarE home reSidentS Randomized, Controlled Trial. Front Immunol 2021; 12:643321. [PMID: 33746986 PMCID: PMC7969511 DOI: 10.3389/fimmu.2021.643321] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with a decline in many components of the immune system (immunosenescence). Probiotics may improve the immune response in older people. The objective was to determine the effect of the combination of two probiotic organisms [Lacticaseibacillus (previously known as Lactobacillus) rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12)] on a range of immune biomarkers measured in the blood of older people resident in care homes in the UK. In a randomized controlled trial, older people [aged 67-97 (mean 86) years] resident in care homes received the combination of LGG+BB-12 (1.3-1.6 × 109 CFU per day) or placebo for up to 12 months. Full blood count, blood immune cell phenotypes, plasma immune mediator concentrations, phagocytosis, and blood culture responses to immune stimulation were all measured. Response to seasonal influenza vaccination was measured in a subset of participants. Paired samples (i.e., before and after intervention) were available for 30 participants per group. LGG and BB-12 were more likely to be present in feces in the probiotic group and were present at higher numbers. There was no significant effect of the probiotics on components of the full blood count, blood immune cell phenotypes, plasma immune mediator concentrations, phagocytosis by neutrophils and monocytes, and blood culture responses to immune stimulation. There was an indication that the probiotics improved the response to seasonal influenza vaccination with significantly (p = 0.04) higher seroconversion to the A/Michigan/2015 vaccine strain in the probiotic group than in the placebo group (47 vs. 15%).
Collapse
Affiliation(s)
- Vivian M Castro-Herrera
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Helena L Fisk
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Mark Lown
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eleri Owen-Jones
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Mandy Lau
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Rachel Lowe
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Kerenza Hood
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - David Gillespie
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - F D Richard Hobbs
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Paul Little
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Christopher C Butler
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Elizabeth A Miles
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| |
Collapse
|
30
|
Imdad A, Rehman F, Davis E, Ranjit D, Surin GSS, Attia SL, Lawler S, Smith AA, Bhutta ZA. Effects of neonatal nutrition interventions on neonatal mortality and child health and development outcomes: A systematic review. CAMPBELL SYSTEMATIC REVIEWS 2021; 17:e1141. [PMID: 37133295 PMCID: PMC8356300 DOI: 10.1002/cl2.1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background The last two decades have seen a significant decrease in mortality for children <5 years of age in low and middle-income countries (LMICs); however, neonatal (age, 0-28 days) mortality has not decreased at the same rate. We assessed three neonatal nutritional interventions that have the potential of reducing morbidity and mortality during infancy in LMICs. Objectives To determine the efficacy and effectiveness of synthetic vitamin A, dextrose oral gel, and probiotic supplementation during the neonatal period. Search Methods We conducted electronic searches for relevant studies on the following databases: PubMed, CINAHL, LILACS, SCOPUS, and CENTRAL, Cochrane Central Register for Controlled Trials, up to November 27, 2019. Selection Criteria We aimed to include randomized and quasi-experimental studies. The target population was neonates in LMICs. The interventions included synthetic vitamin A supplementation, oral dextrose gel supplementation, and probiotic supplementation during the neonatal period. We included studies from the community and hospital settings irrespective of the gestational age or birth weight of the neonate. Data Collection and Analysis Two authors screened the titles and extracted the data from selected studies. The risk of bias (ROB) in the included studies was assessed according to the Cochrane Handbook of Systematic Reviews. The primary outcome was all-cause mortality. The secondary outcomes were neonatal sepsis, necrotizing enterocolitis (NEC), prevention and treatment of neonatal hypoglycaemia, adverse events, and neurodevelopmental outcomes. Data were meta-analyzed by random effect models to obtain relative risk (RR) and 95% confidence interval (CI) for dichotomous outcomes and mean difference with 95% CI for continuous outcomes. The overall rating of evidence was determined by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Main Results Sixteen randomized studies (total participants 169,366) assessed the effect of vitamin A supplementation during the neonatal period. All studies were conducted in low- and middle-income (LMIC) countries. Thirteen studies were conducted in the community setting and three studies were conducted in the hospital setting, specifically in neonatal intensive care units. Studies were conducted in 10 different countries including India (four studies), Guinea-Bissau (three studies), Bangladesh (two studies), and one study each in China, Ghana, Indonesia, Nepal, Pakistan, Tanzania, and Zimbabwe. The overall ROB was low in most of the included studies for neonatal vitamin A supplementation. The pooled results from the community based randomized studies showed that there was no significant difference in all-cause mortality in the vitamin A (intervention) group compared to controls at 1 month (RR, 0.99; 95% CI, 0.90-1.08; six studies with 126,548 participants, statistical heterogeneity I 2 0%, funnel plot symmetrical, grade rating high), 6 months (RR, 0.98; 95% CI, 0.89-1.07; 12 studies with 154,940 participants, statistical heterogeneity I 2 43%, funnel plot symmetrical, GRADE quality high) and 12 months of age (RR, 1.04; 95% CI, 0.94-1.14; eight studies with 118,376 participants, statistical heterogeneity I 2 46%, funnel plot symmetrical, GRADE quality high). Neonatal vitamin A supplementation increased the incidence of bulging fontanelle by 53% compared to control (RR, 1.53; 95% CI, 1.12-2.09; six studies with 100,256 participants, statistical heterogeneity I 2 65%, funnel plot symmetrical, GRADE quality high). We did not identify any experimental study that addressed the use of dextrose gel for the prevention and/or treatment of neonatal hypoglycaemia in LMIC. Thirty-three studies assessed the effect of probiotic supplementation during the neonatal period (total participants 11,595; probiotics: 5854 and controls: 5741). All of the included studies were conducted in LMIC and were randomized. Most of the studies were done in the hospital setting and included participants who were preterm (born < 37 weeks gestation) and/or low birth weight (<2500 g birth weight). Studies were conducted in 13 different countries with 10 studies conducted in India, six studies in Turkey, three studies each in China and Iran, two each in Mexico and South Africa, and one each in Bangladesh, Brazil, Colombia, Indonesia, Nepal, Pakistan, and Thailand. Three studies were at high ROB due to lack of appropriate randomization sequence or allocation concealment. Combined data from 25 studies showed that probiotic supplementation reduced all-cause mortality by 20% compared to controls (RR, 0.80; 95% CI, 0.66-0.96; total number of participants 10,998, number needed to treat 100, statistical heterogeneity I 2 0%, funnel plot symmetrical, GRADE quality high). Twenty-nine studies reported the effect of probiotics on the incidence of NEC, and the combined results showed a relative reduction of 54% in the intervention group compared to controls (RR, 0.46; 95% CI, 0.35-0.59; total number of participants 5574, number needed to treat 17, statistical heterogeneity I 2 24%, funnel plot symmetrical, GRADE quality high). Twenty-one studies assessed the effect of probiotic supplementation during the neonatal period on neonatal sepsis, and the combined results showed a relative reduction of 22% in the intervention group compared to controls (RR, 0.78; 95% CI, 0.70-0.86; total number of participants 9105, number needed to treat 14, statistical heterogeneity I 2 23%, funnel plot symmetrical, GRADE quality high). Authors' Conclusions Vitamin A supplementation during the neonatal period does not reduce all-cause neonatal or infant mortality in LMICs in the community setting. However, neonatal vitamin A supplementation increases the risk of Bulging Fontanelle. No experimental or quasi-experimental studies were available from LMICs to assess the effect of dextrose gel supplementation for the prevention or treatment of neonatal hypoglycaemia. Probiotic supplementation during the neonatal period seems to reduce all-cause mortality, NEC, and sepsis in babies born with low birth weight and/or preterm in the hospital setting. There was clinical heterogeneity in the use of probiotics, and we could not recommend any single strain of probiotics for wider use based on these results. There was a lack of studies on probiotic supplementation in the community setting. More research is needed to assess the effect of probiotics administered to neonates in-home/community setting in LMICs.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and NutritionSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Faseeha Rehman
- Department of MedicineRaritan Bay Medical CenterPerth AmboyNew YorkUSA
| | - Evans Davis
- Roswell Park Comprehensive Cancer Center, Department of Cancer Prevention and ControlUniversity of BuffaloBuffaloNew YorkUSA
| | - Deepika Ranjit
- College of MedicineSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | | | - Suzanna L. Attia
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Sarah Lawler
- Health Science LibrarySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Abigail A. Smith
- Health Science LibraraySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Zulfiqar A. Bhutta
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| |
Collapse
|
31
|
Splichalova A, Donovan SM, Tlaskalova-Hogenova H, Stranak Z, Splichalova Z, Splichal I. Monoassociation of Preterm Germ-Free Piglets with Bifidobacterium animalis Subsp. lactis BB-12 and Its Impact on Infection with Salmonella Typhimurium. Biomedicines 2021; 9:biomedicines9020183. [PMID: 33670419 PMCID: PMC7917597 DOI: 10.3390/biomedicines9020183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Preterm germ-free piglets were monoassociated with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) to verify its safety and to investigate possible protection against subsequent infection with Salmonella Typhimurium strain LT2 (LT2). Clinical signs of salmonellosis, bacterial colonization in the intestine, bacterial translocation to mesenteric lymph nodes (MLN), blood, liver, spleen, and lungs, histopathological changes in the ileum, claudin-1 and occludin mRNA expression in the ileum and colon, intestinal and plasma concentrations of IL-8, TNF-α, and IL-10 were evaluated. Both BB12 and LT2 colonized the intestine of the monoassociated piglets. BB12 did not translocate in the BB12-monoassociated piglets. BB12 was detected in some cases in the MLN of piglets, consequently infected with LT2, but reduced LT2 counts in the ileum and liver of these piglets. LT2 damaged the luminal structure of the ileum, but a previous association with BB12 mildly alleviated these changes. LT2 infection upregulated claudin-1 mRNA in the ileum and colon and downregulated occludin mRNA in the colon. Infection with LT2 increased levels of IL-8, TNF-α, and IL-10 in the intestine and plasma, and BB12 mildly downregulated them compared to LT2 alone. Despite reductions in bacterial translocation and inflammatory cytokines, clinical signs of LT2 infection were not significantly affected by the probiotic BB12. Thus, we hypothesize that multistrain bacterial colonization of preterm gnotobiotic piglets may be needed to enhance the protective effect against the infection with S. Typhimurium LT2.
Collapse
Affiliation(s)
- Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
| | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology, Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Zbynek Stranak
- Department of Neonatology, Institute for the Care of Mother and Child, 147 00 Prague, Czech Republic;
| | - Zdislava Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
| | - Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic; (A.S.); (Z.S.)
- Correspondence: ; Tel.: +420-491-418-539
| |
Collapse
|
32
|
An overview of the level of dietary support in the gut microbiota at different stages of life: A systematic review. Clin Nutr ESPEN 2021; 42:41-52. [PMID: 33745615 DOI: 10.1016/j.clnesp.2021.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The gut microbiome is an essential factor for the health of the host. Several factors may alter the gut's microbiota composition, including genetic factors, lifestyle, aging, and dietary intervention. This process can be an essential element in the prevention and treatment of diseases associated with microbiome dysfunction through appropriate dietary interventions. Based on this context, a systematic review was carried out in order to assess the effect of dietary intervention on the profile of the gut microbiota throughout different stages of life. METHODS The systematic review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA), with the eligibility criteria following the principle of PICOS. The literature search was carried out in 2019 throughout PubMed/MEDLINE, Scopus, and Science Direct. Thus, 1237 studies were selected, and 40 articles were included by criteria. RESULTS According to the level of evidence of Centre for Evidence-Based Medicine (OCEBM), 21 studies reached the level of evidence B1, 15 articles were classified with B2, and four articles with B3. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. No dietary intervention was applied at all stages of life, nor with similar proportions of intervention. On the other hand, dietary interventions alter the intestinal microbiota in different pathological realities. CONCLUSIONS Different dietary interventions change the microbiome composition at all stages of life in healthy and pathological individuals. However, more clinical studies are needed to identify the specifics of each stage in response to interventions.
Collapse
|
33
|
Granger CL, Embleton ND, Palmer JM, Lamb CA, Berrington JE, Stewart CJ. Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatr 2021; 110:450-457. [PMID: 33245565 DOI: 10.1111/apa.15534] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
Abstract
AIM This narrative review summarises the benefits of maternal breastmilk to both the infant and the mother, specifically the benefits that relate to modification of the infant microbiome, and how this might vary in the preterm infant. METHODS We used PubMed to primarily identify papers, reviews, case series and editorials published in English until May 2020. Based on this, we report on the components of breastmilk, their associated hypothesised benefits and the implications for clinical practice. RESULTS Breastmilk is recommended as the exclusive diet for newborn infants because it has numerous nutritional and immunological benefits. Additionally, exposure to the maternal breastmilk microbiome may confer a lasting effect on gut health. In the preterm infant, breastmilk is associated with a significant reduction in necrotising enterocolitis, an inflammatory gastrointestinal disease and reduction in other key morbidities, together with improved neurodevelopmental outcomes. CONCLUSION These impacts have long-term benefits for the child (and the mother) even after weaning. This benefit is likely due, in part, to modification of the infant gut microbiome by breastmilk microbes and bioactive components, and provide potential areas for research and novel therapies in preterm and other high-risk infants.
Collapse
Affiliation(s)
- Claire L. Granger
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
- Department of Neonatal Medicine Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Nicholas D. Embleton
- Department of Neonatal Medicine Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
- Population Health Sciences Institute Newcastle University Newcastle upon Tyne UK
| | - Jeremy M. Palmer
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
| | - Christopher A. Lamb
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
- Department of Gastroenterology Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Janet E. Berrington
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
- Department of Neonatal Medicine Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Christopher J. Stewart
- Clinical and Translational Research Institute Newcastle University Newcastle upon Tyne UK
| |
Collapse
|
34
|
Effects of Antibiotics upon the Gut Microbiome: A Review of the Literature. Biomedicines 2020; 8:biomedicines8110502. [PMID: 33207631 PMCID: PMC7696078 DOI: 10.3390/biomedicines8110502] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract carries a large number of microorganisms associated with complex metabolic processes and interactions. Although antibiotic treatment is crucial for combating infections, its negative effects on the intestinal microbiota and host immunity have been shown to be of the utmost importance. Multiple studies have recognized the adverse consequences of antibiotic use upon the gut microbiome in adults and neonates, causing dysbiosis of the microbiota. Repeated antibiotic treatments in clinical care or low-dosage intake from food could be contributing factors in this issue. Researchers in both human and animal studies have strived to explain this multifaceted relationship. The present review intends to elucidate the axis of the gastrointestinal microbiota and antibiotics resistance and to highlight the main aspects of the issue.
Collapse
|
35
|
van Best N, Trepels-Kottek S, Savelkoul P, Orlikowsky T, Hornef MW, Penders J. Influence of probiotic supplementation on the developing microbiota in human preterm neonates. Gut Microbes 2020; 12:1-16. [PMID: 33095113 PMCID: PMC7588225 DOI: 10.1080/19490976.2020.1826747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Oral administration of probiotic bacteria to preterm neonates has been recommended to prevent the development of necrotizing enterocolitis (NEC). The influence of probiotics on the endogenous microbiome, however, has remained incompletely understood. STUDY DESIGN & METHODS Here, we performed an observational study including 80 preterm neonates born at a gestational age <32-weeks to characterize the persistence of probiotic bacteria after no treatment or oral administration of two different probiotic formula and their influence on the microbial ecosystem during and after the intervention and their association with the development of NEC. Weekly fecal samples were profiled by 16S rRNA sequencing and monitored for the presence of the probiotic bacteria by quantitative PCR. RESULTS Microbiota profiles differed significantly between the control group and both probiotic groups. Probiotic supplementation was associated with lower temporal variation as well as higher relative abundance of Bifidobacterium and Enterobacter combined with reduced abundance of Escherichia, Enterococcus, and Klebsiella. Colonization by probiotic bifidobacteria was observed in approximately 50% of infants although it remained transient in the majority of cases. A significantly reduced monthly incidence of NEC was observed in neonates supplemented with probiotics. CONCLUSION Our results demonstrate successful transient colonization by probiotic bacteria and a significant influence on the endogenous microbiota with a reduced abundance of bacterial taxa associated with the development of NEC. These results emphasize that probiotic supplementation may allow targeted manipulation of the enteric microbiota and confer a clinical benefit. (Clinical Trial Registry accession number: DRKS/GCTR 00021034).
Collapse
Affiliation(s)
- Niels van Best
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University Aachen, Aachen, Germany,Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | | | - Paul Savelkoul
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | | | - Mathias W. Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, RWTH University Aachen, Aachen, Germany
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands,School of Public Health and Primary Care, Maastricht University, Maastricht, The Netherlands,CONTACT John Penders Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, HX6229, Maastricht, The Netherlands; Mathias Hornef Institute for Medical Microbiology; RWTH University Hospital; Pauwelsstr. 30, Aachen D-52074, Germany; Thorsten Orlikoswsky, Section of Neonatology, University Children’s Hospital, Pauwelsstr. 30, Aachen 52074, Germany
| |
Collapse
|
36
|
Sharif S, Meader N, Oddie SJ, Rojas-Reyes MX, McGuire W. Probiotics to prevent necrotising enterocolitis in very preterm or very low birth weight infants. Cochrane Database Syst Rev 2020; 10:CD005496. [PMID: 33058137 PMCID: PMC8094746 DOI: 10.1002/14651858.cd005496.pub5] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intestinal dysbiosis may contribute to the pathogenesis of necrotising enterocolitis (NEC) in very preterm or very low birth weight infants. Dietary supplementation with probiotics to modulate the intestinal microbiome has been proposed as a strategy to reduce the risk of NEC and associated mortality and morbidity. OBJECTIVES: To determine the effect of supplemental probiotics on the risk of NEC and mortality and morbidity in very preterm or very low birth weight infants. SEARCH METHODS We searched Cochrane Central Register of Controlled Trials (CENTRAL; 2020, Issue 2) in the Cochrane Library; MEDLINE Ovid (1946 to 17 Feb 2020), Embase Ovid (1974 to 17 Feb 2020), Maternity & Infant Care Database Ovid (1971 to 17 Feb 2020), the Cumulative Index to Nursing and Allied Health Literature (1982 to 18 Feb 2020). We searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials (RCTs) and quasi-RCTs. SELECTION CRITERIA We included RCTs and quasi-RCTs comparing probiotic supplementation with placebo or no probiotics in very preterm or very low birth weight infants. DATA COLLECTION AND ANALYSIS We used the standard methods of Cochrane Neonatal. Two review authors separately evaluated trial quality, extracted data, and synthesised effect estimates using risk ratio (RR), risk difference (RD), and mean difference. We used the GRADE approach to assess the certainty of evidence for effects on NEC, all-cause mortality, late-onset infection, and severe neurodevelopmental impairment. MAIN RESULTS We included 56 trials in which 10,812 infants participated. Most trials were small (median sample size 149). Lack of clarity on methods to conceal allocation and mask caregivers or investigators were the main potential sources of bias in about half of the trials. Trials varied by the formulation of the probiotics. The most commonly used preparations contained Bifidobacterium spp., Lactobacillus spp., Saccharomyces spp., and Streptococcus spp. alone or in combinations. Meta-analysis showed that probiotics may reduce the risk of NEC: RR 0.54, 95% CI 0.45 to 0.65 (54 trials, 10,604 infants; I² = 17%); RD -0.03, 95% CI -0.04 to -0.02; number needed to treat for an additional beneficial outcome (NNTB) 33, 95% CI 25 to 50. Evidence was assessed as low certainty because of the limitations in trials design, and the presence of funnel plot asymmetry consistent with publication bias. Sensitivity meta-analysis of trials at low risk of bias showed a reduced risk of NEC: RR 0.70, 95% CI 0.55 to 0.89 (16 trials, 4597 infants; I² = 25%); RD -0.02, 95% CI -0.03 to -0.01; NNTB 50, 95% CI 33 to 100. Meta-analyses showed that probiotics probably reduce mortality (RR 0.76, 95% CI 0.65 to 0.89; (51 trials, 10,170 infants; I² = 0%); RD -0.02, 95% CI -0.02 to -0.01; NNTB 50, 95% CI 50 to 100), and late-onset invasive infection (RR 0.89, 95% CI 0.82 to 0.97; (47 trials, 9762 infants; I² = 19%); RD -0.02, 95% CI -0.03 to -0.01; NNTB 50, 95% CI 33 to 100). Evidence was assessed as moderate certainty for both these outcomes because of the limitations in trials design. Sensitivity meta-analyses of 16 trials (4597 infants) at low risk of bias did not show an effect on mortality or infection. Meta-analysis showed that probiotics may have little or no effect on severe neurodevelopmental impairment (RR 1.03, 95% CI 0.84 to 1.26 (five trials, 1518 infants; I² = 0%). The certainty on this evidence is low because of limitations in trials design and serious imprecision of effect estimate. Few data (from seven of the trials) were available for extremely preterm or extremely low birth weight infants. Meta-analyses did not show effects on NEC, death, or infection (low-certainty evidence). AUTHORS' CONCLUSIONS Given the low to moderate level of certainty about the effects of probiotic supplements on the risk of NEC and associated morbidity and mortality for very preterm or very low birth weight infants, and particularly for extremely preterm or extremely low birth weight infants, further, large, high-quality trials are needed to provide evidence of sufficient quality and applicability to inform policy and practice.
Collapse
Affiliation(s)
- Sahar Sharif
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Nicholas Meader
- Centre for Reviews and Dissemination, University of York, York, UK
| | - Sam J Oddie
- Centre for Reviews and Dissemination, University of York, York, UK
- Bradford Neonatology, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Maria Ximena Rojas-Reyes
- Department of Clinical Epidemiology and Public Health, Institut de Recerca Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - William McGuire
- Centre for Reviews and Dissemination, University of York, York, UK
| |
Collapse
|
37
|
Yousuf EI, Carvalho M, Dizzell SE, Kim S, Gunn E, Twiss J, Giglia L, Stuart C, Hutton EK, Morrison KM, Stearns JC. Persistence of Suspected Probiotic Organisms in Preterm Infant Gut Microbiota Weeks After Probiotic Supplementation in the NICU. Front Microbiol 2020; 11:574137. [PMID: 33117319 PMCID: PMC7552907 DOI: 10.3389/fmicb.2020.574137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are becoming a prevalent supplement to prevent necrotizing enterocolitis in infants born preterm. However, little is known about the ability of these live bacterial supplements to colonize the gut or how they affect endogenous bacterial strains and the overall gut community. We capitalized on a natural experiment resulting from a policy change that introduced the use of probiotics to preterm infants in a single Neonatal Intensive Care Unit. We used amplicon sequence variants (ASVs) derived from the v3 region of the 16S rRNA gene to compare the prevalence and abundance of Bifidobacterium and Lactobacillus in the gut of preterm infants who were and were not exposed to a probiotic supplement in-hospital. Infants were followed to 5 months corrected age. In the probiotic-exposed infants, ASVs belonging to species of Bifidobacterium appeared at high relative abundance during probiotic supplementation and persisted for up to 5 months. In regression models that controlled for the confounding effects of age and antibiotic exposure, probiotic-exposed infants had a higher abundance of the suspected probiotic bifidobacteria than unexposed infants. Conversely, the relative abundance of Lactobacillus was similar between preterm groups over time. Lactobacillus abundance was inversely related to antibiotic exposure. Furthermore, the overall gut microbial community of the probiotic-exposed preterm infants at term corrected age clustered more closely to samples collected from 10-day old full-term infants than to samples from unexposed preterm infants at term age. In conclusion, routine in-hospital administration of probiotics to preterm infants resulted in the potential for colonization of the gut with probiotic organisms post-discharge and effects on the gut microbiome as a whole. Further research is needed to fully discriminate probiotic bacterial strains from endogenous strains and to explore their functional role in the gut microbiome and in infant health.
Collapse
Affiliation(s)
- Efrah I Yousuf
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Marilia Carvalho
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada
| | - Sara E Dizzell
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada
| | - Stephanie Kim
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Elizabeth Gunn
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jennifer Twiss
- Department of Pediatrics, Division of Neonatology, McMaster University, Hamilton, ON, Canada
| | - Lucy Giglia
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada
| | - Connie Stuart
- Neonatal Follow Up Clinic, McMaster Children's Hospital, Hamilton, ON, Canada
| | - Eileen K Hutton
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.,Department of Obstetrics & Gynecology, McMaster University, Hamilton, ON, Canada
| | - Katherine M Morrison
- Department of Pediatrics, McMaster University, Hamilton, ON, Canada.,Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Jennifer C Stearns
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.,Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
38
|
Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, Sim K, Lawson MA, Kiu R, Leclaire C, Chalklen L, Kujawska M, Mitra S, Fardus-Reid F, Belteki G, McColl K, Swann JR, Kroll JS, Clarke P, Hall LJ. Microbiota Supplementation with Bifidobacterium and Lactobacillus Modifies the Preterm Infant Gut Microbiota and Metabolome: An Observational Study. CELL REPORTS MEDICINE 2020; 1:100077. [PMID: 32904427 PMCID: PMC7453906 DOI: 10.1016/j.xcrm.2020.100077] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/28/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
Supplementation with members of the early-life microbiota as “probiotics” is increasingly used in attempts to beneficially manipulate the preterm infant gut microbiota. We performed a large observational longitudinal study comprising two preterm groups: 101 infants orally supplemented with Bifidobacterium and Lactobacillus (Bif/Lacto) and 133 infants non-supplemented (control) matched by age, sex, and delivery method. 16S rRNA gene profiling on fecal samples (n = 592) showed a predominance of Bifidobacterium and a lower abundance of pathobionts in the Bif/Lacto group. Metabolomic analysis showed higher fecal acetate and lactate and a lower fecal pH in the Bif/Lacto group compared to the control group. Fecal acetate positively correlated with relative abundance of Bifidobacterium, consistent with the ability of the supplemented Bifidobacterium strain to metabolize human milk oligosaccharides into acetate. This study demonstrates that microbiota supplementation is associated with a Bifidobacterium-dominated preterm microbiota and gastrointestinal environment more closely resembling that of full-term infants. Bifidobacterium dominates the gut microbiota in supplemented preterm infants Supplemented preterm infants have lower abundance of potential pathobionts Metabolomic analysis show higher fecal acetate and lower pH in supplemented infants In vitro and genomic analysis confirm HMO metabolism in Bifidobacterium supplement
Collapse
Affiliation(s)
- Cristina Alcon-Giner
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Matthew J. Dalby
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Shabhonam Caim
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jennifer Ketskemety
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Alex Shaw
- Department of Medicine, Section of Pediatrics, Imperial College London, London, UK
| | - Kathleen Sim
- Department of Medicine, Section of Pediatrics, Imperial College London, London, UK
| | - Melissa A.E. Lawson
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Raymond Kiu
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Charlotte Leclaire
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Lisa Chalklen
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Magdalena Kujawska
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Suparna Mitra
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Fahmina Fardus-Reid
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Gustav Belteki
- Neonatal Intensive Care Unit, The Rosie Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Katherine McColl
- Neonatal Intensive Care Unit, Norfolk and Norwich University Hospital, Norwich, UK
| | - Jonathan R. Swann
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - J. Simon Kroll
- Department of Medicine, Section of Pediatrics, Imperial College London, London, UK
| | - Paul Clarke
- Neonatal Intensive Care Unit, Norfolk and Norwich University Hospital, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Chair of Intestinal Microbiome, School of Life Sciences, Technical University of Munich, Freising, Germany
- ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Corresponding author
| |
Collapse
|
39
|
O'Connell TM. The Application of Metabolomics to Probiotic and Prebiotic Interventions in Human Clinical Studies. Metabolites 2020; 10:metabo10030120. [PMID: 32213886 PMCID: PMC7143099 DOI: 10.3390/metabo10030120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022] Open
Abstract
There is an ever-increasing appreciation for our gut microbiota that plays a crucial role in the maintenance of health, as well as the development of disease. Probiotics are live bacteria that are consumed to increase the population of beneficial bacteria and prebiotics are dietary substrates intended to promote the propagation of beneficial bacteria. In order to optimize the use of probiotics and prebiotics, a more complete biochemical understanding of the impact that these treatments have on the community and functioning of the gut microbiota is required. Nucleic acid sequencing methods can provide highly detailed information on the composition of the microbial communities but provide less information on the actual function. As bacteria impart much of their influence on the host through the production of metabolites, there is much to be learned by the application of metabolomics. The focus of this review is on the use of metabolomics in the study of probiotic and prebiotic treatments in the context of human clinical trials. Assessment of the current state of this research will help guide the design of future studies to further elucidate the biochemical mechanism by which probiotics and prebiotics function and pave the way toward more personalized applications.
Collapse
Affiliation(s)
- Thomas M O'Connell
- Department of Otolaryngology-Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
40
|
Misra BB. The Connection and Disconnection Between Microbiome and Metabolome: A Critical Appraisal in Clinical Research. Biol Res Nurs 2020; 22:561-576. [PMID: 32013533 DOI: 10.1177/1099800420903083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Big data-driven omics research has led to a steep rise in investigations involving two of the most functional omes, the metabolome and microbiome. The former is touted as the closest to the phenotype, and the latter is implicated in general well-being and a plethora of human diseases. Although some research publications have integrated the concepts of the two domains, most focus their analyses on evidence solely originating from one or the other. With a growing interest in connecting the microbiome and metabolome in the context of disease, researchers must also appreciate the disconnect between the two domains. In the present review, drawing examples from the current literature, tools, and resources, I discuss the connections between the microbiome and metabolome and highlight challenges and opportunities in linking them together for the basic, translational, clinical, and nursing research communities.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, 12279Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
41
|
González-Riano C, Dudzik D, Garcia A, Gil-de-la-Fuente A, Gradillas A, Godzien J, López-Gonzálvez Á, Rey-Stolle F, Rojo D, Ruperez FJ, Saiz J, Barbas C. Recent Developments along the Analytical Process for Metabolomics Workflows. Anal Chem 2019; 92:203-226. [PMID: 31625723 DOI: 10.1021/acs.analchem.9b04553] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina González-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Danuta Dudzik
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy , Medical University of Gdańsk , 80-210 Gdańsk , Poland
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Alberto Gil-de-la-Fuente
- Department of Information Technology, Escuela Politécnica Superior , Universidad San Pablo-CEU , 28003 Madrid , Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Clinical Research Centre , Medical University of Bialystok , 15-089 Bialystok , Poland
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Francisco J Ruperez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Jorge Saiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| |
Collapse
|
42
|
Abstract
Late-onset sepsis (LOS) and necrotising enterocolitis (NEC) account for the highest number of deaths in premature infants and often cause severe morbidity in survivors. NEC is an inflammatory mediated condition, but its pathophysiology remains poorly understood. There is increasing evidence that in LOS the causative organism most often translocates from the gut. No causative microorganism has been consistently associated with either LOS or NEC, but an aberrant gut microbiome development could play a pivotal role. A low bacterial diversity and a delay in anaerobic bacteria colonization may predispose preterm infants to disease development. Conversely, a predominance of Bifidobacterium species and breast milk feeding might help to prevent disease onset. With numerous studies reporting conflicting results, further research is needed to better understand the role of microorganisms and type of feeding in the health status of preterm infants.
Collapse
Affiliation(s)
- Andrea C Masi
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | |
Collapse
|
43
|
Jarrett P, Meczner A, Costeloe K, Fleming P. Historical aspects of probiotic use to prevent necrotising enterocolitis in preterm babies. Early Hum Dev 2019; 135:51-57. [PMID: 31153726 DOI: 10.1016/j.earlhumdev.2019.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the last few decades, numerous studies have evaluated probiotic use for the prevention of necrotising enterocolitis in preterm babies. Early 'proof of concept' studies evaluating whether probiotics are capable of colonising the preterm gut have translated into multiple observational studies, small and large randomised controlled trials. Some show evidence of benefit while others have produced disappointing results. In this paper, we review the history of probiotic use in preterm babies for NEC prevention in an attempt to explain why uncertainty exists and why this intervention has not been universally adopted into routine neonatal practice.
Collapse
Affiliation(s)
- Prudence Jarrett
- Homerton University Hospital, NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland.
| | - Andras Meczner
- Homerton University Hospital, NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
| | - Kate Costeloe
- Barts and the London School of Medicine and Dentistry, London, United Kingdom of Great Britain and Northern Ireland
| | - Paul Fleming
- Homerton University Hospital, NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland; Barts and the London School of Medicine and Dentistry, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
44
|
Altered Stool Microbiota of Infants with Cystic Fibrosis Shows a Reduction in Genera Associated with Immune Programming from Birth. J Bacteriol 2019; 201:JB.00274-19. [PMID: 31209076 DOI: 10.1128/jb.00274-19] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/24/2019] [Indexed: 12/28/2022] Open
Abstract
Previous work from our group indicated an association between the gastrointestinal microbiota of infants with cystic fibrosis (CF) and airway disease in this population. Here we report that stool microbiota of infants with CF demonstrates an altered but largely unchanging within-individual bacterial diversity (alpha diversity) over the first year of life, in contrast to the infants without CF (control cohort), which showed the expected increase in alpha diversity over the first year. The beta diversity, or between-sample diversity, of these two cohorts was significantly different over the first year of life and was statistically significantly associated with airway exacerbations, confirming our earlier findings. Compared with control infants, infants with CF had reduced levels of Bacteroides, a bacterial genus associated with immune modulation, as early as 6 weeks of life, and this significant reduction of Bacteroides spp. in the cohort with CF persisted over the entire first year of life. Only two other genera were significantly different across the first year of life: Roseburia was significantly reduced and Veillonella was significantly increased. Other genera showed differences between the two cohorts but only at selected time points. In vitro studies demonstrated that exposure of the apical face of polarized intestinal cell lines to Bacteroides species supernatants significantly reduced production of interleukin 8 (IL-8), suggesting a mechanism whereby changes in the intestinal microbiota could impact inflammation in CF. This work further establishes an association between gastrointestinal microbiota, inflammation, and airway disease in infants with CF and presents a potential opportunity for therapeutic interventions beginning in early life.IMPORTANCE There is growing evidence for a link between gastrointestinal bacterial communities and airway disease progression in CF. We demonstrate that infants with CF ≤1 year of age show a distinct stool microbiota versus that of control infants of a comparable age. We detected associations between the gut microbiome and airway exacerbation events in the cohort of infants with CF, and in vitro studies provided one possible mechanism for this observation. These data clarify that current therapeutics do not establish in infants with CF a gastrointestinal microbiota like that in healthy infants, and we suggest that interventions that direct the gastrointestinal microbiota closer to a healthy state may provide systemic benefits to these patients during a critical window of immune programming that might have implications for lifelong health.
Collapse
|
45
|
Stewart CJ, Fatemizadeh R, Parsons P, Lamb CA, Shady DA, Petrosino JF, Hair AB. Using formalin fixed paraffin embedded tissue to characterize the preterm gut microbiota in necrotising enterocolitis and spontaneous isolated perforation using marginal and diseased tissue. BMC Microbiol 2019; 19:52. [PMID: 30832576 PMCID: PMC6398254 DOI: 10.1186/s12866-019-1426-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Necrotising enterocolitis (NEC) is a common cause of death in preterm infants and is closely linked to the gut microbiota. Spontaneous intestinal perforation (SIP) also occurs in preterm neonates, but results in lower mortality and less adverse neonatal outcomes than NEC. Existing studies are largely limited to non-invasive stool samples, which may not be reflective of the anatomical site of disease. Therefore, we analysed historical formalin-fixed paraffin-embedded (FFPE) tissue from NEC and SIP preterm infants. A total of 13 NEC and 16 SIP infants were included. Extracted DNA from FFPE tissue blocks underwent 16S rRNA gene sequencing. For a subset of infants, diseased tissue and marginal healthy tissue from the same infant were compared. Results Xylene provided a cost and time effective means of deparaffinization. Tissue from the site of disease was highly comparable to adjacent healthier tissue. Comparing only diseased tissue from all infants showed significantly lower Shannon diversity in NEC (P = 0.026). The overall bacterial communities were also significantly different in NEC samples compared to SIP (P = 0.038), and large variability within NEC infants was observed. While no single OTU or genus was significantly associated with NEC or SIP, at the phylum level Proteobacteria (P = 0.045) and Bacteroidetes (P = 0.024) were significantly higher in NEC and SIP infants, respectively. Conclusions Existing banks of intestinal FFPE blocks provide a robust and specific sample for profiling the microbiota at the site of disease. We showed preterm infants with NEC have lower diversity and different bacterial communities when compared to SIP controls. Electronic supplementary material The online version of this article (10.1186/s12866-019-1426-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher J Stewart
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA. .,Institute of Cellular Medicine, Newcastle University, Medical School, Leech Building, M3.121, Newcastle upon Tyne, NE2 4HH, UK.
| | - Roxana Fatemizadeh
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Pamela Parsons
- Texas Medical Center Digestive Diseases Center, Core B Cellular and Molecular Morphology, Houston, TX, USA
| | - Christopher A Lamb
- Institute of Cellular Medicine, Newcastle University, Medical School, Leech Building, M3.121, Newcastle upon Tyne, NE2 4HH, UK.,Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Deborah A Shady
- Texas Medical Center Digestive Diseases Center, Core B Cellular and Molecular Morphology, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Amy B Hair
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
46
|
Watkins C, Murphy K, Dempsey EM, O'Shea CA, Murphy BP, O'Toole PW, Ross RP, Stanton C, Ryan CA. Dose-interval study of a dual probiotic in preterm infants. Arch Dis Child Fetal Neonatal Ed 2019; 104:F159-F164. [PMID: 29925539 DOI: 10.1136/archdischild-2017-313468] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 03/15/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The objective of this study was to investigate the appropriate dosing interval of a probiotic (Infloran) given daily, biweekly and weekly in preterm infants <32 weeks' gestation. METHODS There were 8 infants in the daily group, 8 infants in the biweekly group and 10 infants in the weekly group, all born between 25 and 32 weeks' gestation. The control group consisted of 12 preterm infants who did not receive the probiotic. Infloran (250 mg/capsule), containing Bifidobacterium bifidum (1×109 colony-forming unit (CFU)) and Lactobacillus acidophilus (1×109 CFU), was administered in 2.5 mL of breast milk per kilogram weight of the infant (2×109 CFU of bacteria in total), until 34 weeks postmenstrual age (PMA). Stool samples were collected at 31, 34, 41 and 44 weeks PMA and frozen at -20°C. RESULTS After administration of the probiotic at 31 weeks PMA, Bifidobacterium were significantly higher in the daily group (45%) in comparison with the biweekly (17%) and weekly (9%) groups. At 34 weeks PMA, Bifidobacterium were significantly higher again in the daily (60%) group in comparison with the biweekly (21%), weekly (23%) and control (15%) groups. At 41 weeks PMA a decrease in the relative abundances of Streptococcaceae and Enterococcaceae was found in all three probiotic groups, and by 44 weeks PMA significantly higher levels of Lactobacillus were found in the biweekly group (16.5%) in comparison with the weekly group (2.1%). CONCLUSION Our results indicate that a daily dose of Infloran is a suitable dosage for preterm infants in the neonatal intensive care unit, with significantly higher levels of Bifidobacterium found in the daily probiotic group up to 44 weeks PMA.
Collapse
Affiliation(s)
- Claire Watkins
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kiera Murphy
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Eugene M Dempsey
- Infant Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Carol Anne O'Shea
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Brendan Paul Murphy
- Infant Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Paul W O'Toole
- Department of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,College of Science Engineering and Food Science, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - C Anthony Ryan
- Infant Centre and Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.,Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| |
Collapse
|
47
|
Plummer EL, Bulach DM, Murray GL, Jacobs SE, Tabrizi SN, Garland SM. Gut microbiota of preterm infants supplemented with probiotics: sub-study of the ProPrems trial. BMC Microbiol 2018; 18:184. [PMID: 30424728 PMCID: PMC6234596 DOI: 10.1186/s12866-018-1326-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/25/2018] [Indexed: 12/15/2022] Open
Abstract
Background The ProPrems trial, a multi-center, double-blind, placebo-controlled randomized trial, previously reported a 54% reduction in necrotizing enterocolitis (NEC) of Bell stage 2 or more from 4.4 to 2.0% in 1099 infants born before 32 completed weeks’ gestation and weighing < 1500 g, receiving probiotic supplementation (with Bifidobacterium longum subsp. infantis BB-02, Streptococcus thermophilus TH-4 and Bifidobacterium animalis subsp. lactis BB-12). This sub-study investigated the effect of probiotic supplementation on the gut microbiota in a cohort of very preterm infants in ProPrems. Results Bifidobacterium was found in higher abundance in infants who received the probiotics (AOR 17.22; 95% CI, 3.49–84.99, p < 0.001) as compared to the placebo group, and Enterococcus was reduced in infants receiving the probiotic during the supplementation period (AOR 0.27; 95% CI, 0.09–0.82, p = 0.02). Conclusion Probiotic supplementation with BB-02, TH-4 and BB-12 from soon after birth increased the abundance of Bifidobacterium in the gut microbiota of very preterm infants. Increased abundance of Bifidobacterium soon after birth may be associated with reducing the risk of NEC in very preterm infants. Electronic supplementary material The online version of this article (10.1186/s12866-018-1326-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erica L Plummer
- The Royal Women's Hospital, Parkville, VIC, 3052, Australia. .,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.
| | - Dieter M Bulach
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia.,The University of Melbourne, Parkville, VIC, 3050, Australia.,Victorian Life Sciences Computation Initiative, The University of Melbourne, Parkville Campus, LAB-14, 700 Swanston St, Carlton, VIC, 3053, Australia
| | - Gerald L Murray
- The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, 3800, Australia
| | - Susan E Jacobs
- The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,The University of Melbourne, Parkville, VIC, 3050, Australia
| | - Sepehr N Tabrizi
- The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,The University of Melbourne, Parkville, VIC, 3050, Australia.,The Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Suzanne M Garland
- The Royal Women's Hospital, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,The University of Melbourne, Parkville, VIC, 3050, Australia.,The Royal Children's Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia
| | | |
Collapse
|
48
|
Stewart CJ, Ajami NJ, O'Brien JL, Hutchinson DS, Smith DP, Wong MC, Ross MC, Lloyd RE, Doddapaneni H, Metcalf GA, Muzny D, Gibbs RA, Vatanen T, Huttenhower C, Xavier RJ, Rewers M, Hagopian W, Toppari J, Ziegler AG, She JX, Akolkar B, Lernmark A, Hyoty H, Vehik K, Krischer JP, Petrosino JF. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018; 562:583-588. [PMID: 30356187 PMCID: PMC6415775 DOI: 10.1038/s41586-018-0617-x] [Citation(s) in RCA: 1138] [Impact Index Per Article: 162.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
The development of the microbiome from infancy to childhood is dependent on a range of factors, with microbial-immune crosstalk during this time thought to be involved in the pathobiology of later life diseases1-9 such as persistent islet autoimmunity and type 1 diabetes10-12. However, to our knowledge, no studies have performed extensive characterization of the microbiome in early life in a large, multi-centre population. Here we analyse longitudinal stool samples from 903 children between 3 and 46 months of age by 16S rRNA gene sequencing (n = 12,005) and metagenomic sequencing (n = 10,867), as part of the The Environmental Determinants of Diabetes in the Young (TEDDY) study. We show that the developing gut microbiome undergoes three distinct phases of microbiome progression: a developmental phase (months 3-14), a transitional phase (months 15-30), and a stable phase (months 31-46). Receipt of breast milk, either exclusive or partial, was the most significant factor associated with the microbiome structure. Breastfeeding was associated with higher levels of Bifidobacterium species (B. breve and B. bifidum), and the cessation of breast milk resulted in faster maturation of the gut microbiome, as marked by the phylum Firmicutes. Birth mode was also significantly associated with the microbiome during the developmental phase, driven by higher levels of Bacteroides species (particularly B. fragilis) in infants delivered vaginally. Bacteroides was also associated with increased gut diversity and faster maturation, regardless of the birth mode. Environmental factors including geographical location and household exposures (such as siblings and furry pets) also represented important covariates. A nested case-control analysis revealed subtle associations between microbial taxonomy and the development of islet autoimmunity or type 1 diabetes. These data determine the structural and functional assembly of the microbiome in early life and provide a foundation for targeted mechanistic investigation into the consequences of microbial-immune crosstalk for long-term health.
Collapse
Affiliation(s)
- Christopher J Stewart
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jacqueline L O'Brien
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Diane S Hutchinson
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Daniel P Smith
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew C Wong
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew C Ross
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Richard E Lloyd
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Ginger A Metcalf
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Tommi Vatanen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | | | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
- Forschergruppe Diabetes, Technische Universität München, Klinikum Rechts der Isar, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - Ake Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö, Sweden
| | - Heikki Hyoty
- Department of Virology, Faculty of Medicine and Biosciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
49
|
Relationships Between Perinatal Interventions, Maternal-Infant Microbiomes, and Neonatal Outcomes. Clin Perinatol 2018; 45:339-355. [PMID: 29747892 DOI: 10.1016/j.clp.2018.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The human microbiome acquires its vastness and diversity over a relatively short time period during development. Much is unknown, however, about the precise prenatal versus postnatal timing or its sources and determinants. Given early evidence of a role for influences during pregnancy and early neonatal and infant life on the microbiome and subsequent metabolic health, research investigating the development and shaping of the microbiome in the fetus and neonate is an important arena for study. This article reviews the relevant available literature and future questions on what shapes the microbiome during early development and mechanisms for doing so.
Collapse
|
50
|
Pace RM, Prince AL, Ma J, Belfort BDW, Harvey AS, Hu M, Baquero K, Blundell P, Takahashi D, Dean T, Kievit P, Sullivan EL, Friedman JE, Grove K, Aagaard KM. Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiol 2018; 18:28. [PMID: 29621980 PMCID: PMC5887201 DOI: 10.1186/s12866-018-1169-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background We and others have previously shown that alterations in the mammalian gut microbiome are associated with diet, notably early life exposure to a maternal high fat diet (HFD). Here, we aimed to further these studies by examining alterations in the gut microbiome of juvenile Japanese macaques (Macaca fuscata) that were exposed to a maternal HFD, weaned onto a control diet, and later supplemented with a synbiotic comprised of psyllium seed and Enterococcus and Lactobacillus species. Results Eighteen month old offspring (n = 7) of 36% HFD fed dams were fed a control (14% fat) diet post weaning, then were synbiotic supplemented for 75 days and longitudinal stool and serum samples were obtained. All stool samples were subjected to 16S rRNA metagenomic sequencing, and microbiome profiles and serum lipids and triglycerides were compared to untreated, healthy age matched and diet matched controls (n = 7). Overall, 16S-based metagenomic analysis revealed that supplementation exerted minimal alterations to the gut microbiome including transient increased abundance of Lactobacillus species and decreased abundance of few bacterial genera, including Faecalibacterium and Anaerovibrio. However, serum lipid analysis revealed significant decreases in triglycerides, cholesterol, and LDL (p < 0.05). Nevertheless, supplemented juveniles challenged 4 months later were not protected from HFD-induced gut dysbiosis. Conclusions Synbiotic supplementation is temporally associated with alterations in the gut microbiome and host lipid profiles of juvenile Japanese macaques that were previously exposed to a maternal HFD. Despite these presumptive temporal benefits, a protective effect against later HFD-challenge gut dysbiosis was not observed. Electronic supplementary material The online version of this article (10.1186/s12866-018-1169-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan M Pace
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amanda L Prince
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jun Ma
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Benjamin D W Belfort
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alexia S Harvey
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Min Hu
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Karalee Baquero
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97239, USA
| | - Peter Blundell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97239, USA
| | - Diana Takahashi
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97239, USA
| | - Tyler Dean
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97239, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97239, USA
| | - Elinor L Sullivan
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97239, USA.,Biology Department, University of Portland, Portland, OR, 97203, USA
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kevin Grove
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97239, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97239, USA.
| |
Collapse
|