1
|
Whiddon ZD, Marshall JB, Alston DC, McGee AW, Krimm RF. Rapid structural remodeling of peripheral taste neurons is independent of taste cell turnover. PLoS Biol 2023; 21:e3002271. [PMID: 37651406 PMCID: PMC10499261 DOI: 10.1371/journal.pbio.3002271] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 09/13/2023] [Accepted: 07/22/2023] [Indexed: 09/02/2023] Open
Abstract
Taste bud cells are constantly replaced in taste buds as old cells die and new cells migrate into the bud. The perception of taste relies on new taste bud cells integrating with existing neural circuitry, yet how these new cells connect with a taste ganglion neuron is unknown. Do taste ganglion neurons remodel to accommodate taste bud cell renewal? If so, how much of the structure of taste axons is fixed and how much remodels? Here, we measured the motility and branching of individual taste arbors (the portion of the axon innervating taste buds) in mice over time with two-photon in vivo microscopy. Terminal branches of taste arbors continuously and rapidly remodel within the taste bud. This remodeling is faster than predicted by taste bud cell renewal, with terminal branches added and lost concurrently. Surprisingly, blocking entry of new taste bud cells with chemotherapeutic agents revealed that remodeling of the terminal branches on taste arbors does not rely on the renewal of taste bud cells. Although terminal branch remodeling was fast and intrinsically controlled, no new arbors were added to taste buds, and few were lost over 100 days. Taste ganglion neurons maintain a stable number of arbors that are each capable of high-speed remodeling. We propose that terminal branch plasticity permits arbors to locate new taste bud cells, while stability of arbor number supports constancy in the degree of connectivity and function for each neuron over time.
Collapse
Affiliation(s)
- Zachary D. Whiddon
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Jaleia B. Marshall
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - David C. Alston
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Aaron W. McGee
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Robin F. Krimm
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| |
Collapse
|
2
|
Dong G, Kogan S, Venugopal N, Chang E, He L, Faal F, Shi Y, Phillips McCluskey L. Interleukin (IL)-1 Receptor Signaling Is Required for Complete Taste Bud Regeneration and the Recovery of Neural Taste Responses following Axotomy. J Neurosci 2023; 43:3439-3455. [PMID: 37015809 PMCID: PMC10184746 DOI: 10.1523/jneurosci.1355-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 04/06/2023] Open
Abstract
Experimental or traumatic nerve injury causes the degeneration of associated taste buds. Unlike most sensory systems, the sectioned nerve and associated taste buds can then regenerate, restoring neural responses to tastants. It was previously unknown whether injury-induced immune factors mediate this process. The proinflammatory cytokines, interleukin (IL)-1α and IL-1β, and their requisite receptor are strongly expressed by anterior taste buds innervated by the chorda tympani nerve. We tested taste bud regeneration and functional recovery in mice lacking the IL-1 receptor. After axotomy, the chorda tympani nerve regenerated but was initially unresponsive to tastants in both WT and Il1r KO mice. In the absence of Il1r signaling, however, neural taste responses remained minimal even >8 weeks after injury in both male and female mice, whereas normal taste function recovered by 3 weeks in WT mice. Failed recovery was because of a 57.8% decrease in regenerated taste buds in Il1r KO compared with WT axotomized mice. Il1a gene expression was chronically dysregulated, and the subset of regenerated taste buds were reinnervated more slowly and never reached full volume as progenitor cell proliferation lagged in KO mice. Il1r signaling is thus required for complete taste bud regeneration and the recovery of normal taste transmission, likely by impairing taste progenitor cell proliferation. This is the first identification of a cytokine response that promotes taste recovery. The remarkable plasticity of the taste system makes it ideal for identifying injury-induced mechanisms mediating successful regeneration and recovery.SIGNIFICANCE STATEMENT Taste plays a critical role in nutrition and quality of life. The adult taste system is highly plastic and able to regenerate following the disappearance of most taste buds after experimental nerve injury. Several growth factors needed for taste bud regeneration have been identified, but we demonstrate the first cytokine pathway required for the recovery of taste function. In the absence of IL-1 cytokine signaling, taste bud regeneration is incomplete, preventing the transmission of taste activity to the brain. These results open a new direction in revealing injury-specific mechanisms that could be harnessed to promote the recovery of taste perception after trauma or disease.
Collapse
Affiliation(s)
- Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Schuyler Kogan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Natasha Venugopal
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Eddy Chang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Fama Faal
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Yang Shi
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
3
|
Nomdedeu-Sancho G, Alsina B. Wiring the senses: Factors that regulate peripheral axon pathfinding in sensory systems. Dev Dyn 2023; 252:81-103. [PMID: 35972036 PMCID: PMC10087148 DOI: 10.1002/dvdy.523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory neurons of the head are the ones that transmit the information about the external world to our brain for its processing. Axons from cranial sensory neurons sense different chemoattractant and chemorepulsive molecules during the journey and in the target tissue to establish the precise innervation with brain neurons and/or receptor cells. Here, we aim to unify and summarize the available information regarding molecular mechanisms guiding the different afferent sensory axons of the head. By putting the information together, we find the use of similar guidance cues in different sensory systems but in distinct combinations. In vertebrates, the number of genes in each family of guidance cues has suffered a great expansion in the genome, providing redundancy, and robustness. We also discuss recently published data involving the role of glia and mechanical forces in shaping the axon paths. Finally, we highlight the remaining questions to be addressed in the field.
Collapse
Affiliation(s)
- Gemma Nomdedeu-Sancho
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Berta Alsina
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Hoshino N, Altarshan Y, Alzein A, Fernando AM, Nguyen HT, Majewski EF, Chen VCF, William Rochlin M, Yu WM. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem. J Comp Neurol 2021; 529:3633-3654. [PMID: 34235739 PMCID: PMC8490280 DOI: 10.1002/cne.25213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 01/09/2023]
Abstract
Tonotopy is a prominent feature of the vertebrate auditory system and forms the basis for sound discrimination, but the molecular mechanism that underlies its formation remains largely elusive. Ephrin/Eph signaling is known to play important roles in axon guidance during topographic mapping in other sensory systems, so we investigated its possible role in the establishment of tonotopy in the mouse cochlear nucleus. We found that ephrin-A3 molecules are differentially expressed along the tonotopic axis in the cochlear nucleus during innervation. Ephrin-A3 forward signaling is sufficient to repel auditory nerve fibers in a developmental stage-dependent manner. In mice lacking ephrin-A3, the tonotopic map is degraded and isofrequency bands of neuronal activation upon pure tone exposure become imprecise in the anteroventral cochlear nucleus. Ephrin-A3 mutant mice also exhibit a delayed second wave in auditory brainstem responses upon sound stimuli and impaired detection of sound frequency changes. Our findings establish an essential role for ephrin-A3 in forming precise tonotopy in the auditory brainstem to ensure accurate sound discrimination.
Collapse
Affiliation(s)
- Natalia Hoshino
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Yazan Altarshan
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Ahmad Alzein
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Amali M. Fernando
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Hieu T. Nguyen
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Emma F. Majewski
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | | | | | - Wei-Ming Yu
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| |
Collapse
|
5
|
Ohman LC, Krimm RF. Variation in taste ganglion neuron morphology: insights into taste function and plasticity. CURRENT OPINION IN PHYSIOLOGY 2021; 20:134-139. [DOI: 10.1016/j.cophys.2020.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Hirose F, Takai S, Takahashi I, Shigemura N. Expression of protocadherin-20 in mouse taste buds. Sci Rep 2020; 10:2051. [PMID: 32029864 PMCID: PMC7005180 DOI: 10.1038/s41598-020-58991-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/23/2020] [Indexed: 11/25/2022] Open
Abstract
Taste information is detected by taste cells and then transmitted to the brain through the taste nerve fibers. According to our previous data, there may be specific coding of taste quality between taste cells and nerve fibers. However, the molecular mechanisms underlying this coding specificity remain unclear. The purpose of this study was to identify candidate molecules that may regulate the specific coding. GeneChip analysis of mRNA isolated from the mice taste papillae and taste ganglia revealed that 14 members of the cadherin superfamily, which are important regulators of synapse formation and plasticity, were expressed in both tissues. Among them, protocadherin-20 (Pcdh20) was highly expressed in a subset of taste bud cells, and co-expressed with taste receptor type 1 member 3 (T1R3, a marker of sweet- or umami-sensitive taste cells) but not gustducin or carbonic anhydrase-4 (markers of bitter/sweet- and sour-sensitive taste cells, respectively) in circumvallate papillae. Furthermore, Pcdh20 expression in taste cells occurred later than T1R3 expression during the morphogenesis of taste papillae. Thus, Pcdh20 may be involved in taste quality-specific connections between differentiated taste cells and their partner neurons, thereby acting as a molecular tag for the coding of sweet and/or umami taste.
Collapse
Affiliation(s)
- Fumie Hirose
- Section of Oral Neuroscience, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ichiro Takahashi
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Faculty of Dental Science, Kyushu University, Fukuoka, Japan. .,Division of Sensory Physiology, Research and Development Center for Five-Sense Devices Taste and Odor Sensing, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
7
|
Lamb-Echegaray ID, Noftz WA, Stinson JPC, Gabriele ML. Shaping of discrete auditory inputs to extramodular zones of the lateral cortex of the inferior colliculus. Brain Struct Funct 2019; 224:3353-3371. [PMID: 31729553 DOI: 10.1007/s00429-019-01979-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022]
Abstract
The multimodal lateral cortex of the inferior colliculus (LCIC) exhibits a modular-extramodular micro-organization that is evident early in development. In addition to a set of neurochemical markers that reliably highlight its modular-extramodular organization (e.g. modules: GAD67-positive, extramodular zones: calretinin-positive, CR), mature projection patterns suggest that major LCIC afferents recognize and adhere to such a framework. In adult mice, distinct afferent projections appear segregated, with somatosensory inputs targeting LCIC modules and auditory inputs surrounding extramodular fields. Currently lacking is an understanding regarding the development and shaping of multimodal LCIC afferents with respect to its emerging modular-extramodular microarchitecture. Combining living slice tract-tracing and immunocytochemical approaches in GAD67-GFP knock-in mice, the present study characterizes the critical period of projection shaping for LCIC auditory afferents arising from its neighboring central nucleus (CNIC). Both crossed and uncrossed projection patterns exhibit LCIC extramodular mapping characteristics that emerge from initially diffuse distributions. Projection mismatch with GAD-defined modules and alignment with encompassing extramodular zones becomes increasingly clear over the early postnatal period (birth to postnatal day 12). CNIC inputs terminate almost exclusively in extramodular zones that express CR. These findings suggest multimodal LCIC inputs may initially be sparse and intermingle, prior to segregation into distinct processing streams. Future experiments are needed to determine the likely complex interactions and mechanisms (e.g. activity-dependent and independent) responsible for shaping early modality-specific LCIC circuits.
Collapse
Affiliation(s)
- Isabel D Lamb-Echegaray
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - William A Noftz
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jeremiah P C Stinson
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA
| | - Mark L Gabriele
- Department of Biology, James Madison University, MSC 7801, 951 Carrier Drive, Harrisonburg, VA, 22807, USA.
| |
Collapse
|