1
|
Ma H, Kong L, Liu L, Du Y, Zhu X, Wang J, Zhao W. ENO1 contributes to the gemcitabine resistance of pancreatic cancer through the YAP1 signaling pathway. Mol Carcinog 2024; 63:1221-1234. [PMID: 38517039 DOI: 10.1002/mc.23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Pancreatic cancer (PC), a leading cause of cancer-related deaths, has a 5-year survival rate of approximately 10%. α-Enolase (ENO1) is a junction channel protein involved in tumor cell apoptosis and chemoresistance. However, the role of ENO1 in PC remains unclear. The expression and prognosis of ENO1 levels were determined in PC using public databases based on The Cancer Genome Atlas (TCGA) data sets. Cell viability, half maximal inhibitory concentration (IC50), autophagy, apoptosis, and autophagy markers were examined using cell counting kit-8 (CCK-8), transmission electron microscope, flow cytometry assays, and immunoblot, respectively. Using the Gene Expression Omnibus (GEO) and TCGA data sets, we found that ENO1 was significantly enriched in PC tumor tissues, and high expression levels of ENO1 were associated with an unfavorable prognosis. Whereas ENO1 silencing suppressed proliferation, autophagy, and induced cell apoptosis in PC cells, and inhibited tumor growth in vivo. Mechanistically, knockdown of ENO1 enhanced cellular cytotoxicity of gemcitabine (GEM), as well as reducing the expression of yes-associated protein 1 (YAP1), a major downstream effector of the Hippo pathway in vitro. YAP1 promoted autophagy and protected PC cells from GEM-induced apoptotic cell death. Furthermore, YAP1 overexpression attenuated the inhibition effects of ENO1 silencing. Our results suggest that ENO1 overexpression promotes cell growth and tumor progression by increasing the expression of YAP1 in PC. Further studies are required to understand the detailed mechanisms between ENO1 and YAP1 in PC.
Collapse
Affiliation(s)
- Hongqin Ma
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lulu Kong
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yusheng Du
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xinguo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ji Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenxing Zhao
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Gasparini G, Aleotti F, Palucci M, Belfiori G, Tamburrino D, Partelli S, Orsi G, Macchini M, Archibugi L, Capurso G, Arcidiacono PG, Crippa S, Reni M, Falconi M. The role of biliary events in treatment and survival of patients with advanced pancreatic ductal adenocarcinoma. Dig Liver Dis 2023; 55:1750-1756. [PMID: 37121820 DOI: 10.1016/j.dld.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Systemic chemotherapy (CT) is the treatment of choice for advanced pancreatic ductal adenocarcinoma (PDAC). Biliary obstruction is common in this setting and may interfere with CT administration due to jaundice or cholangitis related to biliary stent malfunction. AIMS To evaluate the impact of biliary events on CT administration and survival in patients with stage III-IV PDAC. METHODS Patients enrolled in a randomized trial of nab-paclitaxel plus gemcitabine with/without capecitabine and cisplatin in advanced PDAC were included. Data on management of jaundice, biliary stents/complications and CT were prospectively collected and retrospectively analyzed. Modified overall (mOS) and progression-free (mPFS) survival were evaluated. RESULTS Eighty-eight patients met the inclusion criteria (50% females; median age 65years). Seven of eight (87.5%) patients who placed plastic stents developed biliary complications versus 14/30 (46.7%) with metallic stents (p = 0.071). Patients without biliary complications completed planned CT in 64.2% versus 47.6% of cases (p = 0.207). CT completion was related to longer mOS (17 vs 12 months, p = 0.005) and mPFS (9 vs 6 months, p = 0.011). mOS was shorter when biliary complications occurred (12 vs 17 months, p = 0.937), as was mPFS (6 vs 8 months, p = 0.438). CONCLUSION Complications related to biliary obstruction influence chemotherapy completion and survival in patients with advanced PDAC.
Collapse
Affiliation(s)
- Giulia Gasparini
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Aleotti
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Palucci
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulio Belfiori
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Domenico Tamburrino
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Partelli
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy, Vita-Salute San Raffaele University, Milan, Italy
| | - Giulia Orsi
- Division of Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Macchini
- Division of Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Livia Archibugi
- Division of Pancreato-biliary Endoscopy and Endosonography, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gabriele Capurso
- Division of Pancreato-biliary Endoscopy and Endosonography, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy, Vita-Salute San Raffaele University, Milan, Italy
| | - Paolo Giorgio Arcidiacono
- Division of Pancreato-biliary Endoscopy and Endosonography, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy, Vita-Salute San Raffaele University, Milan, Italy
| | - Stefano Crippa
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy, Vita-Salute San Raffaele University, Milan, Italy.
| | - Michele Reni
- Division of Oncology, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Falconi
- Pancreatic and Transplant Surgery Unit, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
3
|
Lewis A, Nagrial A. Systematic Review of Single-Agent vs. Multi-Agent Chemotherapy for Advanced Pancreatic Adenocarcinoma in Elderly vs. Younger Patients. Cancers (Basel) 2023; 15:2289. [PMID: 37190218 PMCID: PMC10136963 DOI: 10.3390/cancers15082289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE To systematically review all studies comparing multi-agent to single-agent chemotherapy in the first and second-line setting for unresectable pancreatic adenocarcinoma, so as to compare the outcomes of young and elderly patients. METHODS This review searched three databases for relevant studies. The inclusion criteria were diagnosis of locally advanced or metastatic pancreatic adenocarcinoma, comparison of an elderly versus young population, comparison of single-agent versus multi-agent chemotherapy, data on survival outcomes, and randomised controlled trials. The exclusion criteria were phase I trials, incomplete studies, retrospective analyses, systematic reviews, and case reports. A meta-analysis was performed on second-line chemotherapy in elderly patients. RESULTS Six articles were included in this systematic review. Three of these studies explored first-line treatment and three explored second-line treatment. In the subgroup analysis, the meta-analysis showed statistically improved overall survival for elderly patients receiving single-agent second-line treatment. CONCLUSIONS This systematic review confirmed that combination chemotherapy improved survival in the first-line treatment of advanced pancreatic adenocarcinoma, regardless of age. The benefit of combination chemotherapy in second-line studies for elderly patients with advanced pancreas cancer was less clear.
Collapse
Affiliation(s)
- Alison Lewis
- School of Medicine, The University of Sydney, Camperdown, NSW 2006, Australia
| | | |
Collapse
|
4
|
Javed AA, Young RWC, Habib JR, Kinny-Köster B, Cohen SM, Fishman EK, Wolfgang CL. Cinematic Rendering: Novel Tool for Improving Pancreatic Cancer Surgical Planning. Curr Probl Diagn Radiol 2022; 51:878-883. [PMID: 35595587 DOI: 10.1067/j.cpradiol.2022.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2023]
Abstract
Pancreatic ductal adenocarcinoma is the third-leading cause of all cancer-related deaths in the US. While 20% of patients have resectable disease at diagnosis, improved control of systemic disease using effective chemotherapeutic regimens allows for aggressive operations involving complex vascular resection and reconstruction. A pancreas protocol computed tomography (PPCT) is the gold standard imaging modality in determining local resectability (degree of tumor-vessel involvement), however, it is limited by the inter-operator variability. While post-processing-3D-rendering helps, it does not allow for real-time dynamic assessment of resectability. A recent development in post-process-rendering called cinematic rendering (CR) overcomes this by utilizing advanced light modeling to generate photorealistic 3D images with enhanced details. Cinematic rendering allows for nuanced visualization of areas of interest. Our preliminary experience, as one of the first centers to incorporate the routine use of CR, has proven very useful in surgical planning. For local determination of resectability, vascular mapping allows for accurate assessment of major arteries and the portovenous system. For the portovenous anatomy it assists in determining the optimal surgical approach (extent of resection, appropriate technique for reconstruction, and need for mesocaval shunting). For arterial anatomy, vessel encasement either represents dissectible involvement via periadventitial dissection or true vessel invasion that is unresectable. CR could potentially provide superior ability than traditional PPCT to discern between the two. Additionally, CR allows for better 3D visualization of arterial anatomic variants which, if not appreciated preoperatively, increases risk of intraoperative ischemia and postoperative complications. Lastly, CR could help avoid unnecessary surgery by enhanced identification of occult metastatic disease that is metastatic disease that is otherwise not appreciated on a standard PPCT.
Collapse
Affiliation(s)
- Ammar A Javed
- Department of Surgery, The Johns Hopkins School of Medicine, Baltimore, MD; Department of Surgery, NYU Grossman School of Medicine, New York, NY
| | - Robert W C Young
- Department of Surgery, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Joseph R Habib
- Department of Surgery, The Johns Hopkins School of Medicine, Baltimore, MD
| | - Benedict Kinny-Köster
- Department of Surgery, The Johns Hopkins School of Medicine, Baltimore, MD; Department of Surgery, NYU Grossman School of Medicine, New York, NY
| | - Steven M Cohen
- Department of Surgery, NYU Grossman School of Medicine, New York, NY
| | - Elliot K Fishman
- Department of Radiology, The Johns Hopkins School of Medicine, Baltimore, MD
| | | |
Collapse
|
5
|
Rashid K, Röder C, Goumas F, Egberts JH, Kalthoff H. CD95L Inhibition Impacts Gemcitabine-Mediated Effects and Non-Apoptotic Signaling of TNF-α and TRAIL in Pancreatic Tumor Cells. Cancers (Basel) 2021; 13:cancers13215458. [PMID: 34771621 PMCID: PMC8582466 DOI: 10.3390/cancers13215458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the potential apoptotic functions, the CD95/CD95L system can stimulate survival as well as pro-inflammatory signaling, particularly through the activation of NFκB. This holds true for the TNF/TNFR and the TRAIL/TRAILR systems. Thus, signaling pathways of these three death ligands converge, yet the specific impact of the CD95/CD95L system in this crosstalk has not been well studied. In this study, we show that gemcitabine stimulates the expression of pro-inflammatory cytokines, such as IL6 and IL8, under the influence of the CD95/CD95L system and the pharmacological inhibitor, sCD95Fc, substantially reduced the expression in two PDAC cell lines, PancTuI-luc and A818-4. The stem cell phenotype was reduced when induced upon gemcitabine as well by sCD95Fc. Moreover, TNF-α as well as TRAIL up-regulate the expression of CD95 and CD95L in both cell lines. Conversely, we detected a significant inhibitory effect of sCD95Fc on the expression of both IL8 and IL6 induced upon TNF-α and TRAIL stimulation. In vivo, CD95L inhibition reduced xeno-transplanted recurrent PDAC growth. Thus, our findings indicate that inhibition of CD95 signaling altered the chemotherapeutic effects of gemcitabine, not only by suppressing the pro-inflammatory responses that arose from the CD95L-positive tumor cells but also from the TNF-α and TRAIL signaling in a bi-lateral crosstalk manner.
Collapse
Affiliation(s)
- Khalid Rashid
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
| | - Christian Röder
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
| | - Freya Goumas
- Department of General, Visceral-, Thoracic-, Transplantation- and Paediatric Surgery, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.G.); (J.-H.E.)
| | - Jan-Hendrik Egberts
- Department of General, Visceral-, Thoracic-, Transplantation- and Paediatric Surgery, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (F.G.); (J.-H.E.)
- Department of Visceral Surgery, Israelitisches Krankenhaus, 22297 Hamburg, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, University Medical Centre Schleswig-Holstein (UKSH), Campus Kiel, 24105 Kiel, Germany; (K.R.); (C.R.)
- Correspondence: ; Tel.: +49-171-9531643
| |
Collapse
|
6
|
Abstract
Although pancreatic cancer remains to be a leading cause of cancer-related deaths in many industrialized countries, there have been major advances in research over the past two decades that provided a detailed insight into the molecular and developmental processes that govern the genesis of this highly malignant tumor type. There is a continuous need for the development and analysis of preclinical and genetically engineered pancreatic cancer models to study the biological significance of new molecular targets that are identified using various genome-wide approaches and to better understand the mechanisms by which they contribute to pancreatic cancer onset and progression. Following an introduction into the etiology of pancreatic cancer, the molecular subtypes, and key signaling pathways, this review provides an overview of the broad spectrum of models for pancreatic cancer research. In addition to conventional and patient-derived xenografting, this review highlights major milestones in the development of chemical carcinogen-induced and genetically engineered animal models to study pancreatic cancer. Particular emphasis was placed on selected research findings of ligand-controlled tumor models and current efforts to develop genetically engineered strains to gain insight into the biological functions of genes at defined developmental stages during cancer initiation and metastatic progression.
Collapse
|
7
|
Pijnappel EN, Dijksterhuis WPM, van der Geest LG, de Vos-Geelen J, de Groot JWB, Homs MYV, Creemers GJ, Mohammad NH, Besselink MG, van Laarhoven HWM, Wilmink JW. First- and Second-Line Palliative Systemic Treatment Outcomes in a Real-World Metastatic Pancreatic Cancer Cohort. J Natl Compr Canc Netw 2021; 20:443-450.e3. [PMID: 34450595 DOI: 10.6004/jnccn.2021.7028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/17/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Metastatic pancreatic ductal adenocarcinoma (PDAC) is characterized by a poor survival rate, which can be improved by systemic treatment. Consensus on the most optimal first- and second-line palliative systemic treatment is lacking. The aim of this study was to describe the use of first- and second-line systemic treatment, overall survival (OS), and time to failure (TTF) of first- and second-line treatment in metastatic PDAC in a real-world setting. PATIENTS AND METHODS Patients with synchronous metastatic PDAC diagnosed between 2015 and 2018 who received systemic treatment were selected from the nationwide Netherlands Cancer Registry. OS and TTF were evaluated using Kaplan-Meier curves with log-rank test and multivariable Cox proportional hazard analyses. RESULTS The majority of 1,586 included patients received FOLFIRINOX (65%), followed by gemcitabine (18%), and gemcitabine + nab-paclitaxel (13%) in the first line. Median OS for first-line FOLFIRINOX, gemcitabine + nab-paclitaxel, and gemcitabine monotherapy was 6.6, 4.7, and 2.9 months, respectively. Compared to FOLFIRINOX, gemcitabine + nab-paclitaxel showed significantly inferior OS after adjustment for confounders (hazard ratio [HR], 1.20; 95% CI, 1.02-1.41), and gemcitabine monotherapy was independently associated with a shorter OS and TTF (HR, 1.98; 95% CI, 1.71-2.30 and HR, 2.31; 95% CI, 1.88-2.83, respectively). Of the 121 patients who received second-line systemic treatment, 33% received gemcitabine + nab-paclitaxel, followed by gemcitabine (31%) and FOLFIRINOX (10%). CONCLUSIONS Based on population-based data in patients with metastatic PDAC, treatment predominantly consists of FOLFIRINOX in the first line and gemcitabine with or without nab-paclitaxel in the second line. FOLFIRINOX in the first line shows superior OS compared with gemcitabine with or without nab-paclitaxel.
Collapse
Affiliation(s)
- Esther N Pijnappel
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam
| | - Willemieke P M Dijksterhuis
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam
- Netherlands Cancer Registry, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht
| | - Lydia G van der Geest
- Netherlands Cancer Registry, Netherlands Comprehensive Cancer Organisation (IKNL), Utrecht
| | - Judith de Vos-Geelen
- Department of Internal Medicine, Division of Medical Oncology, GROW-School for Oncology and Developmental Biology, Maastricht UMC+, Maastricht
| | | | | | | | - Nadia Haj Mohammad
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht; and
| | - Marc G Besselink
- Amsterdam UMC, University of Amsterdam, Department of Surgery, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam
| | - Johanna W Wilmink
- Amsterdam UMC, University of Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam
| |
Collapse
|
8
|
Mechanisms of drug resistance of pancreatic ductal adenocarcinoma at different levels. Biosci Rep 2021; 40:225827. [PMID: 32677676 PMCID: PMC7396420 DOI: 10.1042/bsr20200401] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/05/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related death worldwide, and the mortality of patients with PDAC has not significantly decreased over the last few decades. Novel strategies exhibiting promising effects in preclinical or phase I/II clinical trials are often situated in an embarrassing condition owing to the disappointing results in phase III trials. The efficacy of the current therapeutic regimens is consistently compromised by the mechanisms of drug resistance at different levels, distinctly more intractable than several other solid tumours. In this review, the main mechanisms of drug resistance clinicians and investigators are dealing with during the exploitation and exploration of the anti-tumour effects of drugs in PDAC treatment are summarized. Corresponding measures to overcome these limitations are also discussed.
Collapse
|
9
|
Zhang Z, Song J, Xie C, Pan J, Lu W, Liu M. Pancreatic Cancer: Recent Progress of Drugs in Clinical Trials. AAPS JOURNAL 2021; 23:29. [PMID: 33580411 DOI: 10.1208/s12248-021-00556-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer is a highly malignant tumor and one of the primary causes of cancer-related death. Because pancreatic cancer is difficult to diagnose in the early course of the disease, most patients present with advanced lesions at the time of diagnosis, and only 20% of patients are eligible for surgery. Consequently, drug treatment has become extremely important. At present, the main treatment regimens for pancreatic cancer are gemcitabine and the FORFIRINOX and MPACT regimens. However, none of these regimens substantially improves the prognosis of patients with pancreatic cancer. Extensive efforts have been dedicated to the study of pancreatic cancer in recent years. With the development and clinical application of biological targeted drugs, the biological targeted treatment of tumors has been widely accepted. Therefore, this article used relevant clinical trial data to summarize the research progress of traditional chemotherapy drugs and biological targeted drugs for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Zhiyi Zhang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jie Song
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Cao Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jun Pan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Weiyue Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Min Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
10
|
Paroha S, Verma J, Dubey RD, Dewangan RP, Molugulu N, Bapat RA, Sahoo PK, Kesharwani P. Recent advances and prospects in gemcitabine drug delivery systems. Int J Pharm 2021; 592:120043. [DOI: 10.1016/j.ijpharm.2020.120043] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/17/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022]
|
11
|
Forciniti S, Dalla Pozza E, Greco MR, Amaral Carvalho TM, Rolando B, Ambrosini G, Carmona-Carmona CA, Pacchiana R, Di Molfetta D, Donadelli M, Arpicco S, Palmieri M, Reshkin SJ, Dando I, Cardone RA. Extracellular Matrix Composition Modulates the Responsiveness of Differentiated and Stem Pancreatic Cancer Cells to Lipophilic Derivate of Gemcitabine. Int J Mol Sci 2020; 22:ijms22010029. [PMID: 33375106 PMCID: PMC7792955 DOI: 10.3390/ijms22010029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease. Gemcitabine (GEM) is used as the gold standard drug in PDAC treatment. However, due to its poor efficacy, it remains urgent to identify novel strategies to overcome resistance issues. In this context, an intense stroma reaction and the presence of cancer stem cells (CSCs) have been shown to influence PDAC aggressiveness, metastatic potential, and chemoresistance. METHODS We used three-dimensional (3D) organotypic cultures grown on an extracellular matrix composed of Matrigel or collagen I to test the effect of the new potential therapeutic prodrug 4-(N)-stearoyl-GEM, called C18GEM. We analyzed C18GEM cytotoxic activity, intracellular uptake, apoptosis, necrosis, and autophagy induction in both Panc1 cell line (P) and their derived CSCs. RESULTS PDAC CSCs show higher sensitivity to C18GEM treatment when cultured in both two-dimensional (2D) and 3D conditions, especially on collagen I, in comparison to GEM. The intracellular uptake mechanisms of C18GEM are mainly due to membrane nucleoside transporters' expression and fatty acid translocase CD36 in Panc1 P cells and to clathrin-mediated endocytosis and CD36 in Panc1 CSCs. Furthermore, C18GEM induces an increase in cell death compared to GEM in both cell lines grown on 2D and 3D cultures. Finally, C18GEM stimulated protective autophagy in Panc1 P and CSCs cultured on 3D conditions. CONCLUSION We propose C18GEM together with autophagy inhibitors as a valid alternative therapeutic approach in PDAC treatment.
Collapse
Affiliation(s)
- Stefania Forciniti
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
- Humanitas Clinical and Research Center, IRCCS, Department of Gastroenterology-Laboratory of Molecular Gastroenterology, 20089 Rozzano, Milan, Italy
| | - Elisa Dalla Pozza
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Tiago Miguel Amaral Carvalho
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (B.R.); (S.A.)
| | - Giulia Ambrosini
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Cristian Andres Carmona-Carmona
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Raffaella Pacchiana
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, 10124 Torino, Italy; (B.R.); (S.A.)
| | - Marta Palmieri
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, 37134 Verona, Italy; (S.F.); (E.D.P.); (G.A.); (C.A.C.-C.); (R.P.); (M.D.); (M.P.)
- Correspondence:
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (M.R.G.); (T.M.A.C.); (D.D.M.); (S.J.R.); (R.A.C.)
| |
Collapse
|
12
|
Targeted PARP Inhibition Combined with FGFR1 Blockade is Synthetically Lethal to Malignant Cells in Patients with Pancreatic Cancer. Cells 2020; 9:cells9040911. [PMID: 32276472 PMCID: PMC7226837 DOI: 10.3390/cells9040911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
The role and therapeutic promise of poly-ADP ribose polymerase (PARP) inhibitors in anticancer chemotherapy are increasingly being explored, particularly in adjuvant or maintenance therapy, considering their low efficacy as monotherapy agents and their potentiating effects on concurrently administered contemporary chemotherapeutics. Against the background of increasing acquired resistance to FGFR1 inhibitors and our previous work, which partially demonstrated the caspase-3/PARP-mediated antitumor and antimetastatic efficacy of PD173074, a selective FGFR1 inhibitor, against ALDH-high/FGFR1-rich pancreatic ductal adenocarcinoma (PDAC) cells, we investigated the probable synthetic lethality and therapeutic efficacy of targeted PARP inhibition combined with FGFR1 blockade in patients with PDAC. Using bioinformatics-based analyses of gene expression profiles, co-occurrence and mutual exclusivity, molecular docking, immunofluorescence staining, clonogenicity, Western blotting, cell viability or cytotoxicity screening, and tumorsphere formation assays, we demonstrated that FGFR1 and PARP co-occur, form a complex, and reduce survival in patients with PDAC. Furthermore, FGFR1 and PARP expression was upregulated in FGFR1 inhibitor (dasatinib)-resistant PDAC cell lines SU8686, MiaPaCa2, and PANC-1 compared with that in sensitive cell lines Panc0403, Panc0504, Panc1005, and SUIT-2. Compared with the limited effect of single-agent olaparib (PARP inhibitor) or PD173074 on PANC-1 and SUIT-2 cells, low-dose combination (olaparib + PD173074) treatment significantly, dose-dependently, and synergistically reduced cell viability, upregulated cleaved PARP, pro-caspase (CASP)-9, cleaved-CASP9, and cleaved-CASP3 protein expression, and downregulated Bcl-xL protein expression. Furthermore, combination treatment markedly suppressed the clonogenicity and tumorsphere formation efficiency of PDAC cells regardless of FGFR1 inhibitor-resistance status and enhanced RAD51 and γ-H2AX immunoreactivity. In vivo studies have shown that both early and late initiation of combination therapy markedly suppressed tumor xenograft growth and increase in weight, although the effect was more pronounced in the early initiation group. In conclusion, FGFR1 inhibitor-resistant PDAC cells exhibited sensitivity to PD173074 after olaparib-mediated loss of PARP signaling. The present FGFR1/PARP-mediated synthetic lethality proof-of-concept study provided preclinical evidence of the feasibility and therapeutic efficacy of combinatorial FGFR1/PARP1 inhibition in human PDAC cell lines.
Collapse
|
13
|
Patzak MS, Kari V, Patil S, Hamdan FH, Goetze RG, Brunner M, Gaedcke J, Kitz J, Jodrell DI, Richards FM, Pilarsky C, Gruetzmann R, Rümmele P, Knösel T, Hessmann E, Ellenrieder V, Johnsen SA, Neesse A. Cytosolic 5'-nucleotidase 1A is overexpressed in pancreatic cancer and mediates gemcitabine resistance by reducing intracellular gemcitabine metabolites. EBioMedicine 2019; 40:394-405. [PMID: 30709769 PMCID: PMC6413477 DOI: 10.1016/j.ebiom.2019.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cytosolic 5'-nucleotidase 1A (NT5C1A) dephosphorylates non-cyclic nucleoside monophosphates to produce nucleosides and inorganic phosphates. Here, we investigate NT5C1A expression in pancreatic ductal adenocarcinoma (PDAC) and its impact on gemcitabine metabolism and therapeutic efficacy. METHODS NT5C1A expression was determined by semiquantitative immunohistochemistry using tissue microarrays. Gemcitabine metabolites and response were assessed in several human and murine PDAC cell lines using crystal violet assays, Western blot, viability assays, and liquid chromatography tandem mass-spectrometry (LC-MS/MS). FINDINGS NT5C1A was strongly expressed in tumor cells of a large subgroup of resected PDAC patients in two independent patient cohorts (44-56% score 2 and 8-26% score 3, n = 414). In contrast, NT5C1A was expressed at very low levels in the tumor stroma, and neither stromal nor tumoral expression was a prognostic marker for postoperative survival. In vitro, NT5C1A overexpression increased gemcitabine resistance by reducing apoptosis levels and significantly decreased intracellular amounts of cytotoxic dFdCTP in +NT5C1A tumor cells. Co-culture experiments with conditioned media from +NT5C1A PSCs improved gemcitabine efficacy in tumor cells. In vivo, therapeutic efficacy of gemcitabine was significantly decreased and serum levels of the inactive gemcitabine metabolite dFdU significantly increased in mice bearing NT5C1A overexpressing tumors. INTERPRETATION NT5C1A is robustly expressed in tumor cells of resected PDAC patients. Moreover, NT5C1A mediates gemcitabine resistance by decreasing the amount of intracellular dFdCTP, leading to reduced tumor cell apoptosis and larger pancreatic tumors in mice. Further studies should clarify the role of NT5C1A as novel predictor for gemcitabine treatment response in patients with PDAC.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- Animals
- Biomarkers, Tumor
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacokinetics
- Deoxycytidine/pharmacology
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Gene Expression
- Humans
- Mice
- Mice, Transgenic
- Models, Biological
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Melanie S Patzak
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Vijayalakshmi Kari
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Shilpa Patil
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Feda H Hamdan
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Robert G Goetze
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Marius Brunner
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Jochen Gaedcke
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Julia Kitz
- University Medical Center Goettingen, Institute of Pathology, Goettingen, Germany
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Christian Pilarsky
- University Medical Center Erlangen, Department of Surgery, Erlangen, Germany
| | - Robert Gruetzmann
- University Medical Center Erlangen, Department of Surgery, Erlangen, Germany
| | - Petra Rümmele
- University Medical Center Erlangen, Institute of Pathology, Erlangen, Germany
| | - Thomas Knösel
- Ludwig Maximilian University Munich, Institute of Pathology, Munich, Germany
| | - Elisabeth Hessmann
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Volker Ellenrieder
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany
| | - Steven A Johnsen
- University Medical Center Goettingen, Department of General, Visceral and Pediatric Surgery, Goettingen, Germany
| | - Albrecht Neesse
- University Medical Center Goettingen, Department of Gastroenterology and Gastrointestinal Oncology, Goettingen, Germany.
| |
Collapse
|
14
|
Prognostic factors for survival with nab-paclitaxel plus gemcitabine in metastatic pancreatic cancer in real-life practice: the ANICE-PaC study. BMC Cancer 2018; 18:1185. [PMID: 30497432 PMCID: PMC6267080 DOI: 10.1186/s12885-018-5101-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/28/2022] Open
Abstract
Background Treatment with nab-paclitaxel plus gemcitabine increases survival in patients with metastatic pancreatic cancer. However, the assessment of treatment efficacy and safety in non-selected patients in a real-life setting may provide useful information to support decision-making processes in routine practice. Methods Retrospective, multicenter study including patients with metastatic pancreatic cancer, who started first-line treatment with nab-paclitaxel plus gemcitabine between December 2013 and June 2015 according to routine clinical practice. In addition to describing the treatment pattern, overall survival (OS) and progression-free survival (PFS) were assessed for the total sample and the exploratory subgroups based on the treatment and patients’ clinical characteristics. Results All 210 eligible patients had a median age of 65.0 years (range 37–81). Metastatic pancreatic adenocarcinoma was recurrent in 46 (21.9%) patients and de novo in 164 (78.1%); 38 (18%) patients had a biliary stent. At baseline, 33 (18.1%) patients had an ECOG performance status ≥2. Patients received a median of four cycles of treatment (range 1–21), with a median duration of 3.5 months; 137 (65.2%) patients had a dose reduction of nab-paclitaxel and/or gemcitabine during treatment, and 33 (17.2%) discontinued treatment due to toxicity. Relative dose intensity (RDI) for nab-paclitaxel, gemcitabine, and the combined treatment was 66.7%. Median OS was 7.2 months (95% CI 6.0–8.5), and median PFS was 5.0 months (95% CI 4.3–5.9); 50 patients achieved either a partial or complete response (ORR 24.6%). OS was influenced by baseline ECOG PS, NLR and CA 19.9, but not by age ≥ 70 years and/or the presence of hepatobiliary stent or RDI < 85%. All included variables, computed as dichotomous, showed a significant contribution to the Cox regression model to build a nomogram for predicting survival in these patients: baseline ECOG 0–1 vs. 2–3 (p = 0.030), baseline NLR > 3 vs. ≤ 3 (p = 0.043), and baseline CA 19.9 > 37 U/mL vs. ≤37 U/mL (p = 0.004). Conclusions Nab-Paclitaxel plus gemcitabine remain effective in a real-life setting, despite the high burden of dose reductions and poorer performance of these patients. A nomogram to predict survival using baseline ECOG performance status, NLR and CA 19.9 is proposed.
Collapse
|
15
|
Di Carlo C, Brandi J, Cecconi D. Pancreatic cancer stem cells: Perspectives on potential therapeutic approaches of pancreatic ductal adenocarcinoma. World J Stem Cells 2018; 10:172-182. [PMID: 30631392 PMCID: PMC6325076 DOI: 10.4252/wjsc.v10.i11.172] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive solid tumours of the pancreas, characterised by a five-year survival rate less than 8%. Recent reports that pancreatic cancer stem cells (PCSCs) contribute to the tumorigenesis, progression, and chemoresistance of pancreatic cancer have prompted the investigation of new therapeutic approaches able to directly target PCSCs. In the present paper the non-cancer related drugs that have been proposed to target CSCs that could potentially combat pancreatic cancer are reviewed and evaluated. The role of some pathways and deregulated proteins in PCSCs as new therapeutic targets are also discussed with a focus on selected specific inhibitors. Finally, advances in the development of nanoparticles for targeting PCSCs and site-specific drug delivery are highlighted, and their limitations considered.
Collapse
Affiliation(s)
- Claudia Di Carlo
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy
| | - Jessica Brandi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy.
| | - Daniela Cecconi
- Department of Biotechnology, Proteomics and Mass Spectrometry Laboratory, University of Verona, Verona 37134, Italy
| |
Collapse
|
16
|
The therapeutic targeting of the FGFR1/Src/NF-κB signaling axis inhibits pancreatic ductal adenocarcinoma stemness and oncogenicity. Clin Exp Metastasis 2018; 35:663-677. [PMID: 29987671 DOI: 10.1007/s10585-018-9919-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/28/2018] [Indexed: 01/05/2023]
Abstract
The aberrant activation of the FGFR signaling is detected in many solid tumors, including pancreatic ductal adenocarcinoma (PDAC), suggesting it as a potential therapeutic target. In this study, we investigated the antitumor and anti-metastasis efficacy of the selective FGFR1 inhibitor, PD173074 in PDAC. We used immunohistochemical and in situ hybridization analyses to demonstrate a strong correlation between FGFR1 amplification and/or expression and disease progression in PDAC patients. We showed that ALDHhigh (ALDH+) pancreatic cancer cells exhibited stem cell-like phenotype and expressed higher levels of FGFR1, Src, NF-κB, alongside stemness markers like Oct4 and Sox2, compared to their ALDHlow/null (ALDH-) counterparts, suggesting the preferential activation of the FGFR1/Src/NF-κB signaling axis in pancreatic cancer stem cells (panCSCs). Furthermore, treatment of the ALDHhigh/ FGFR1-rich pancreatic cancer cell lines with PD173074, a selective FGFR1 inhibitor, revealed that PD173074 inhibited the proliferation and self-renewal of the panCSCs, and induced their apoptosis by activating caspase-3 and cleaving Poly-ADP ribose Polymerase (PARP). The anti-CSCs effect of PD173074 was associated with decreased expression of Oct4, Sox-2, Nanog, and c-Myc, as well as suppression of XIAP, Bcl2, and survivin expression, dose-dependently. Additionally, activation of cMet, Src, ERK 1/2 and NFκB (p65) was also inhibited by PD173074. Also, of clinical relevance, the disruption of the FGFR1/Src/NF-κB signaling axis positively correlated with poor clinical prognosis among the PDAC patients. We concluded that PD173074 suppresses the tumorigenesis and CSCs-like phenotype of PDAC cells, highlighting its therapeutic efficacy and providing support for its potential use as a therapeutic option for the 'difficult-to-treat', 'quick-to-relapse' PDAC patients. Schematic abstract showing how PD173074 inhibits PDAC growth through selective targeting of FGFR1, suppression of cancer stemness, disruption of the FGFR1/Src/NF-κB signaling axis and activation of the cell death signaling pathway.
Collapse
|
17
|
Xie F, Huang M, Lin X, Liu C, Liu Z, Meng F, Wang C, Huang Q. The BET inhibitor I-BET762 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine. Sci Rep 2018; 8:8102. [PMID: 29802402 PMCID: PMC5970200 DOI: 10.1038/s41598-018-26496-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
As one of the most fatal malignancies, pancreatic ductal adenocarcinoma (PDAC) has significant resistance to the currently available treatment approaches. Gemcitabine, the standard chemotherapeutic agent for locally advanced and metastatic PDAC, has limited efficacy, which is attributed to innate/acquired resistance and the activation of prosurvival pathways. Here, we investigated the in vitro efficacy of I-BET762, an inhibitor of the bromodomain and extraterminal (BET) family of proteins, in treating PDAC cell lines alone and in combination with gemcitabine (GEM). The effect of these two agents was also examined in xenograft PDAC tumors in mice. We found that I-BET762 induced cell cycle arrest in the G0/G1 phase and cell death and suppressed cell proliferation and metastatic stem cell factors in PDAC cells. In addition, the BH3-only protein Bim, which is related to chemotherapy resistance, was upregulated by I-BET762, which increased the cell death triggered by GEM in PDAC cells. Moreover, GEM and I-BET762 exerted a synergistic effect on cytotoxicity both in vitro and in vivo. Furthermore, Bim is necessary for I-BET762 activity and modulates the synergistic effect of GEM and I-BET762 in PDAC. In conclusion, we investigated the effect of I-BET762 on PDAC and suggest an innovative strategy for PDAC treatment.
Collapse
Affiliation(s)
- Fang Xie
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui province, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
| | - Xiansheng Lin
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui province, China
| | - Chenhai Liu
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui province, China
| | - Zhen Liu
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui province, China
| | - Futao Meng
- Anhui Medical University Affiliated Provincial Hospital, No. 9, Lujiang Road, Hefei, Anhui province, China
| | - Chao Wang
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui province, China
| | - Qiang Huang
- Department of General Surgery, Anhui Provincial Hospital, No. 17, Lujiang Road, Hefei, Anhui province, China.
| |
Collapse
|
18
|
Dörrie J. Immune checkpoint blockade can synergize with radiation therapy, even in tumors resistant to checkpoint monotherapy. EMBO Mol Med 2018; 9:135-136. [PMID: 27965270 PMCID: PMC5286364 DOI: 10.15252/emmm.201607219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immunotherapy has evolved as a new pillar of cancer treatment during the last decade. The main breakthrough was the development of immune checkpoint blocking (ICB) antibodies, which antagonize inhibitory receptors on T cells and their ligands and thus unleash the cellular immune system against the tumor. ICB showed tremendous effects in several types of cancer. However, only a proportion of the patients suffering from tumors, which are in principle sensitive, benefit from this treatment and other kinds of neoplasia are completely resistant. Great effort is currently being undertaken to distinguish responders from non‐responders, and concepts to turn the latter into the former are urgently required. One approach is to combine ICB with already well‐established treatment strategies, that is, the other mainstays of cancer therapy such as surgery, radiation therapy (RT), and chemotherapy. Depending on the circumstances, both chemotherapy and RT may act either immune suppressively or immune stimulatingly. In this issue of EMBO Molecular Medicine, Azad et al (2017) show that indeed, pancreatic ductal adenocarcinoma, which is resistant to ICB monotherapy, becomes responsive to this treatment by simultaneous RT or chemotherapy.
Collapse
Affiliation(s)
- Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
Sagini MN, Zepp M, Bergmann F, Bozza M, Harbottle R, Berger MR. The expression of genes contributing to pancreatic adenocarcinoma progression is influenced by the respective environment. Genes Cancer 2018; 9:114-129. [PMID: 30108682 PMCID: PMC6086001 DOI: 10.18632/genesandcancer.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/16/2018] [Indexed: 01/26/2023] Open
Abstract
Pancreatic adenocarcinoma is a highly aggressive malignancy with dismal prognosis and limited curative options. We investigated the influence of organ environments on gene expression in RNU rats by orthotopic and intraportal infusion of Suit2-007luc cells into the pancreas, liver and lung respectively. Tumor tissues from these sites were analyzed by chip array and histopathology. Generated data was analyzed by Chipster and Ingenuity Pathway Analysis (±1.5 expression fold change and p<0.05). Further analysis of functional annotations derived from IPA, was based on selected genes with significant modulation of expression. Comparison of groups was performed by creating ratios from the mean expression values derived from pancreas and respective in vitro values, whereas those from liver and lung were related to pancreas, respectively. Genes of interest from three functional annotations for respective organs were identified by exclusion-overlap analyses. From the resulting six genes, transglutaminase2 (TGM2) was further investigated by various assays. Its knockdown with siRNA induced dose dependent inhibitory and stimulatory effects on cell proliferation and cell migration, respectively. DNA fragmentation indicated apoptotic cell death in response to TGM2 knockdown. Cell cycle analysis by FACS showed that TGM2 knockdown induced G1/S blockade. Therefore, TGM2 and its associated genes may be promising therapeutic targets.
Collapse
Affiliation(s)
- Micah N. Sagini
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Bergmann
- University Clinic of Heidelberg, Institute of Pathology, Heidelberg, Germany
| | - Matthias Bozza
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Richard Harbottle
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
20
|
Amrutkar M, Gladhaug IP. Pancreatic Cancer Chemoresistance to Gemcitabine. Cancers (Basel) 2017; 9:E157. [PMID: 29144412 PMCID: PMC5704175 DOI: 10.3390/cancers9110157] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), commonly referred to as pancreatic cancer, ranks among the leading causes of cancer-related deaths in the Western world due to disease presentation at an advanced stage, early metastasis and generally a very limited response to chemotherapy or radiotherapy. Gemcitabine remains a cornerstone of PDAC treatment in all stages of the disease despite suboptimal clinical effects primarily caused by molecular mechanisms limiting its cellular uptake and activation and overall efficacy, as well as the development of chemoresistance within weeks of treatment initiation. To circumvent gemcitabine resistance in PDAC, several novel therapeutic approaches, including chemical modifications of the gemcitabine molecule generating numerous new prodrugs, as well as new entrapment designs of gemcitabine in colloidal systems such as nanoparticles and liposomes, are currently being investigated. Many of these approaches are reported to be more efficient than the parent gemcitabine molecule when tested in cellular systems and in vivo in murine tumor model systems; however, although promising, their translation to clinical use is still in a very early phase. This review discusses gemcitabine metabolism, activation and chemoresistance entities in the gemcitabine cytotoxicity pathway and provides an overview of approaches to override chemoresistance in pancreatic cancer.
Collapse
Affiliation(s)
- Manoj Amrutkar
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, PO Box 1057 Blindern, 0316 Oslo, Norway.
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, PO Box 1171 Blindern, 0318 Oslo, Norway.
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, PO Box 1171 Blindern, 0318 Oslo, Norway.
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital Rikshospitalet, PO Box 4950 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
21
|
Different Survival Benefits of Chinese Medicine for Pancreatic Cancer: How to Choose? Chin J Integr Med 2017; 24:178-184. [PMID: 29063468 DOI: 10.1007/s11655-017-2971-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To assess the efficacy of Chinese medicine (CM) on patients with pancreatic cancer (PC) in a retrospective population-based study. METHODS Between January 1, 2013, and August 30, 2016, according to whether received Western medicine treatment, the patients were included into either integrative medicine (IM) group or CM group. All enrolled patients were orally administrated with Gexia Zhuyu Decoction () or Liujun Ermu Decoction () by syndrome differentiation, twice a day, last for at least 2 months. The primary end point was overall survival (OS). RESULTS A total of 174 patients with PC were enrolled in this study. In stage I/II, the median OS was 20.5 months in the IM group [95% confidence interval (CI), 12.499 to 28.501] and 11.17 months in the CM group (95% CI, 5.160 to 17.180, P=0.015). The 1- and 2-year survival rates for the two groups were 47.0%, 40.0% and 21.0%, 21.0%, respectively. In stage III/IV, median OS was 13.53 months (95% CI, 8.665 to 18.395) in the IM group versus 6.4 months (95% CI, 0.00 to 15.682) in the CM group, respectively (P=0.32). The 1- and 2-year survival rate for the IM and CM groups were 27.0%, 7.0% and 20.0%, 2.0%, respectively. CONCLUSIONS Intervention of CM contributes to the different survival benefits for PC in different stages. Multimodality treatment might be a promising strategy for PC patients in early stage. While, in advanced stage, CM might be an alternative candidate for PC patients.
Collapse
|
22
|
Shah F, Goossens E, Atallah NM, Grimard M, Kelley MR, Fishel ML. APE1/Ref-1 knockdown in pancreatic ductal adenocarcinoma - characterizing gene expression changes and identifying novel pathways using single-cell RNA sequencing. Mol Oncol 2017; 11:1711-1732. [PMID: 28922540 PMCID: PMC5709621 DOI: 10.1002/1878-0261.12138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/24/2017] [Accepted: 09/02/2017] [Indexed: 12/18/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1 or APE1) is a multifunctional protein that regulates numerous transcription factors associated with cancer-related pathways. Because APE1 is essential for cell viability, generation of APE1-knockout cell lines and determining a comprehensive list of genes regulated by APE1 has not been possible. To circumvent this challenge, we utilized single-cell RNA sequencing to identify differentially expressed genes (DEGs) in relation to APE1 protein levels within the cell. Using a straightforward yet novel statistical design, we identified 2837 genes whose expression is significantly changed following APE1 knockdown. Using this gene expression profile, we identified multiple new pathways not previously linked to APE1, including the EIF2 signaling and mechanistic target of Rapamycin pathways and a number of mitochondrial-related pathways. We demonstrate that APE1 has an effect on modifying gene expression up to a threshold of APE1 expression, demonstrating that it is not necessary to completely knockout APE1 in cells to accurately study APE1 function. We validated the findings using a selection of the DEGs along with siRNA knockdown and qRT-PCR. Testing additional patient-derived pancreatic cancer cells reveals particular genes (ITGA1, TNFAIP2, COMMD7, RAB3D) that respond to APE1 knockdown similarly across all the cell lines. Furthermore, we verified that the redox function of APE1 was responsible for driving gene expression of mitochondrial genes such as PRDX5 and genes that are important for proliferation such as SIPA1 and RAB3D by treating with APE1 redox-specific inhibitor, APX3330. Our study identifies several novel genes and pathways affected by APE1, as well as tumor subtype specificity. These findings will allow for hypothesis-driven approaches to generate combination therapies using, for example, APE1 inhibitor APX3330 with other approved FDA drugs in an innovative manner for pancreatic and other cancer treatments.
Collapse
Affiliation(s)
- Fenil Shah
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emery Goossens
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Nadia M Atallah
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Michelle Grimard
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark R Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa L Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
23
|
|
24
|
Lambert A, Gavoille C, Conroy T. Current status on the place of FOLFIRINOX in metastatic pancreatic cancer and future directions. Therap Adv Gastroenterol 2017; 10:631-645. [PMID: 28835777 PMCID: PMC5557187 DOI: 10.1177/1756283x17713879] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/09/2017] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) incidence rates are rapidly increasing in developed countries, with half the patients being metastatic at diagnosis. For decades, fluorouracil, then gemcitabine regimens were the preferred palliative first-line options for fit patients with metastatic PC. FOLFIRINOX (a combination of bolus and infusional fluorouracil, leucovorin, irinotecan and oxaliplatin) was introduced to clinical practice in 2010 due to the results of the phase II/III trial (PRODIGE 4/ACCORD 11) comparing FOLFIRINOX with single-agent gemcitabine as first-line treatment for patients with MPC. Median overall survival, progression-free survival, and objective response rate were superior with FOLFIRINOX over gemcitabine and there was prolonged time to definitive deterioration in quality of life. Although FOLFIRINOX was also associated with increased toxicity, mainly febrile neutropenia and diarrhea, there has been rapid uptake of this regimen. This review closely examines optimal management and prevention of toxicities, international recommendations for first-line treatment, and use of modified FOLFIRINOX protocols. In this review, we also look at the potential benefit of FOLFIRINOX in selected groups of patients: second-line therapy, adjuvant chemotherapy, induction therapy in patients with borderline resectable and locally advanced PC. Robust validation of the FOLFIRINOX regimen in these settings requires confirmation in further randomized trials.
Collapse
Affiliation(s)
- Aurélien Lambert
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | - Céline Gavoille
- Department of Medical Oncology, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, France
| | | |
Collapse
|
25
|
S D, L W, B GY, F YH, H SX, Q MZ, Hao C, W CQ, S LZ. Risk factors of liver metastasis from advanced pancreatic adenocarcinoma: a large multicenter cohort study. World J Surg Oncol 2017; 15:120. [PMID: 28673297 PMCID: PMC5496221 DOI: 10.1186/s12957-017-1175-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/23/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clinical prognostic parameters of liver metastasis from pancreatic adenocarcinoma have not been specifically identified.This study is to explore the risk factors of liver metastasis in advanced pancreatic adenocarcinoma (PDAC) patients in China. METHODS A multicenter cohort study was conducted to explore whether liver metastasis in locally advanced and metastatic PDAC could be reflected by some common laboratory indexes. We collected 1787 advanced PDAC patients from three participating hospitals between 2004 and 2014. The associations between some laboratory indexes and risks of liver metastases were analyzed. RESULTS Results have shown that 87% of stage IV patients developed synchronous liver metastasis. Primary tumor location (body/tail vs. head/neck, OR 0.55, 95% CI 0.36-0.83), primary tumor diameter (≥20 mm vs. <20 mm, OR 1.77, 95% CI 1.16-2.70), elevated ALT and AST (OR 1.62, 95% CI 0.92-2.83), and elevated CA19-9 (OR 2.72, 95% CI 1.85-3.99) upon diagnosis are significantly associated with risk of synchronous liver metastasis. Among stage III patients, 30.1% developed metachronous liver metastasis. However, no risk factors were identified among these patients. CONCLUSIONS Primary tumor location, diameter, elevated ALT and AST, and increased CA19-9 are independent risk factors of synchronous liver metastasis in PDAC patients.
Collapse
Affiliation(s)
- Dong S
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, 200032, Shanghai, China
| | - Wang L
- Digestive Endoscopy Center, Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, 169 Changhai Road, 200433, Shanghai, China
| | - Guo Y B
- Department of Integrative Medicine of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ying H F
- Department of Integrative Medicine of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shen X H
- Department of Integrative Medicine of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Meng Z Q
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, 200032, Shanghai, China
| | - Chen Hao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, 200032, Shanghai, China.
| | - Chen Q W
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong-An Road, 200032, Shanghai, China.
- Institute of Clinical Epidemiology, Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, 200032, Shanghai, China.
| | - Li Z S
- Digestive Endoscopy Center, Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, 169 Changhai Road, 200433, Shanghai, China.
| |
Collapse
|
26
|
Kuroda H, Tachikawa M, Uchida Y, Inoue K, Ohtsuka H, Ohtsuki S, Unno M, Terasaki T. All-trans retinoic acid enhances gemcitabine cytotoxicity in human pancreatic cancer cell line AsPC-1 by up-regulating protein expression of deoxycytidine kinase. Eur J Pharm Sci 2017; 103:116-121. [DOI: 10.1016/j.ejps.2017.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 02/08/2023]
|
27
|
Illiano M, Sapio L, Caiafa I, Chiosi E, Spina A, Naviglio S. Forskolin sensitizes pancreatic cancer cells to gemcitabine via Stat3 and Erk1/2 inhibition. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.2.224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|