1
|
Pisani S, Gunasekera B, Lu Y, Vignando M, Ffytche D, Aarsland D, Chaudhuri KR, Ballard C, Lee JY, Kim YK, Velayudhan L, Bhattacharyya S. Functional and connectivity correlates associated with Parkinson's disease psychosis: a systematic review. Brain Commun 2024; 6:fcae358. [PMID: 39507273 PMCID: PMC11538965 DOI: 10.1093/braincomms/fcae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/24/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024] Open
Abstract
Neural underpinnings of Parkinson's disease psychosis remain unclear to this day with relatively few studies and reviews available. Using a systematic review approach, here, we aimed to qualitatively synthesize evidence from studies investigating Parkinson's psychosis-specific alterations in brain structure, function or chemistry using different neuroimaging modalities. PubMed, Web of Science and Embase databases were searched for functional MRI (task-based and resting state), diffusion tensor imaging, PET and single-photon emission computed tomography studies comparing Parkinson's disease psychosis patients with Parkinson's patients without psychosis. We report findings from 29 studies (514 Parkinson's psychosis patients, mean age ± SD = 67.92 ± 4.37 years; 51.36% males; 853 Parkinson's patients, mean age ± SD = 66.75 ± 4.19 years; 55.81% males). Qualitative synthesis revealed widespread patterns of altered brain function across task-based and resting-state functional MRI studies in Parkinson's psychosis patients compared with Parkinson's patients without psychosis. Similarly, white matter abnormalities were reported in parietal, temporal and occipital regions. Hypo-metabolism and reduced dopamine transporter binding were also reported whole brain and in sub-cortical areas. This suggests extensive alterations affecting regions involved in high-order visual processing and attentional networks.
Collapse
Affiliation(s)
- Sara Pisani
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Brandon Gunasekera
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Yining Lu
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Miriam Vignando
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Dominic Ffytche
- Division of Academic Psychiatry, Department of Psychological Medicine, Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Dag Aarsland
- Division of Academic Psychiatry, Department of Psychological Medicine, Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger 4011, Norway
| | - K R Chaudhuri
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, and Parkinson’s Foundation Centre of Excellence, King’s College Hospital, London SE5 9RS, UK
| | - Clive Ballard
- Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, UK
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government, Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government, Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Latha Velayudhan
- Division of Academic Psychiatry, Department of Psychological Medicine, Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Sagnik Bhattacharyya
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| |
Collapse
|
2
|
Bhome R, Thomas GEC, Zarkali A, Weil RS. Structural and Functional Imaging Correlates of Visual Hallucinations in Parkinson's Disease. Curr Neurol Neurosci Rep 2023; 23:287-299. [PMID: 37126201 PMCID: PMC10257588 DOI: 10.1007/s11910-023-01267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE OF REVIEW To review recent structural and functional MRI studies of visual hallucinations in Parkinson's disease. RECENT FINDINGS Previously, neuroimaging had shown inconsistent findings in patients with Parkinson's hallucinations, especially in studies examining grey matter volume. However, recent advances in structural and functional MRI techniques allow better estimates of structural connections, as well as the direction of connectivity in functional MRI. These provide more sensitive measures of changes in structural connectivity and allow models of the changes in directional functional connectivity to be tested. We identified 27 relevant studies and found that grey matter imaging continues to show heterogeneous findings in Parkinson's patients with visual hallucinations. Newer approaches in diffusion imaging and functional MRI are consistent with emerging models of Parkinson's hallucinations, suggesting shifts in attentional networks. In particular, reduced bottom-up, incoming sensory information, and over-weighting of top-down signals appear to be important drivers of visual hallucinations in Parkinson's disease.
Collapse
Affiliation(s)
- Rohan Bhome
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK.
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK.
| | | | - Angeliki Zarkali
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
| | - Rimona Sharon Weil
- Dementia Research Centre, University College London, 8-11 Queen Square, London, WC1N 3AR, UK
- Wellcome Centre for Human Neuroimaging, University College London, 12 Queen Square, London, WC1N 3AR, UK
- Movement Disorders Centre, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3AR, UK
| |
Collapse
|
3
|
Pisani S, Gunasekera B, Lu Y, Vignando M, Ffytche D, Aarsland D, Chaudhuri KR, Ballard C, Lee JY, Kim YK, Velayudhan L, Bhattacharyya S. Grey matter volume loss in Parkinson's disease psychosis and its relationship with serotonergic gene expression: A meta-analysis. Neurosci Biobehav Rev 2023; 147:105081. [PMID: 36775084 DOI: 10.1016/j.neubiorev.2023.105081] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/14/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND Neuroanatomical alterations underlying psychosis in Parkinson's Disease (PDP) remain unclear. We carried out a meta-analysis of MRI studies investigating the neural correlates of PDP and examined its relation with dopaminergic and serotonergic receptor gene expression. METHODS PubMed, Web of Science and Embase were searched for MRI studies (k studies = 10) of PDP compared to PD patients without psychosis (PDnP). Seed-based d Mapping with Permutation of Subject Images and multiple linear regression analyses was used to examine the relationship between pooled estimates of grey matter volume (GMV) loss in PDP and D1/D2 and 5-HT1a/5-HT2a receptor gene expression estimates from Allen Human Brain Atlas. RESULTS We observed lower grey matter volume in parietal-temporo-occipital regions (PDP n = 211, PDnP, n = 298). GMV loss in PDP was associated with local expression of 5-HT1a (b = 0.109, p = 0.012) and 5-HT2a receptors (b= -0.106, p = 0.002) but not dopaminergic receptors. CONCLUSION Widespread GMV loss in the parieto-temporo-occipital regions may underlie PDP. Association between grey matter volume and local expression of serotonergic receptor genes may suggest a role for serotonergic receptors in PDP.
Collapse
Affiliation(s)
- Sara Pisani
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Brandon Gunasekera
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Yining Lu
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Miriam Vignando
- Centre for Neuroimaging Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Dominic Ffytche
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Dag Aarsland
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway.
| | - K Ray Chaudhuri
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, and Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Clive Ballard
- Medical School, Medical School Building, St Luke's Campus, Magdalen Road, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government, Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea.
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government, Boramae Medical Center, 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, Republic of Korea.
| | - Latha Velayudhan
- Division of Academic Psychiatry, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Population Health Sciences, University of Leicester, United Kingdom.
| | - Sagnik Bhattacharyya
- Division of Academic Psychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| |
Collapse
|
4
|
Haghshomar M, Shobeiri P, Seyedi SA, Abbasi-Feijani F, Poopak A, Sotoudeh H, Kamali A, Aarabi MH. Cerebellar Microstructural Abnormalities in Parkinson's Disease: a Systematic Review of Diffusion Tensor Imaging Studies. CEREBELLUM (LONDON, ENGLAND) 2022; 21:545-571. [PMID: 35001330 DOI: 10.1007/s12311-021-01355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Diffusion tensor imaging (DTI) is now having a strong momentum in research to evaluate the neural fibers of the CNS. This technique can study white matter (WM) microstructure in neurodegenerative disorders, including Parkinson's disease (PD). Previous neuroimaging studies have suggested cerebellar involvement in the pathogenesis of PD, and these cerebellum alterations can correlate with PD symptoms and stages. Using the PRISMA 2020 framework, PubMed and EMBASE were searched to retrieve relevant articles. Our search revealed 472 articles. After screening titles and abstracts, and full-text review, and implementing the inclusion criteria, 68 papers were selected for synthesis. Reviewing the selected studies revealed that the patterns of reduction in cerebellum WM integrity, assessed by fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity measures can differ symptoms and stages of PD. Cerebellar diffusion tensor imaging (DTI) changes in PD patients with "postural instability and gait difficulty" are significantly different from "tremor dominant" PD patients. Freezing of the gate is strongly related to cerebellar involvement depicted by DTI. The "reduced cognition," "visual disturbances," "sleep disorders," "depression," and "olfactory dysfunction" are not related to cerebellum microstructural changes on DTI, while "impulsive-compulsive behavior" can be linked to cerebellar WM alteration. Finally, higher PD stages and longer disease duration are associated with cerebellum white matter alteration depicted by DTI. Depiction of cerebellar white matter involvement in PD is feasible by DTI. There is an association with disease duration and severity and several clinical presentations with DTI findings. This clinical-imaging association may eventually improve disease management.
Collapse
Affiliation(s)
- Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, No. 10, Al-e-Ahmad and Chamran Highway intersection, Tehran, 1411713137, Iran.
| | | | | | - Amirhossein Poopak
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center-PNC, University of Padova, Padua, Italy
| |
Collapse
|
5
|
Nikitina A, Melnikova N, Moshetova L, Levin O. Visual disturbances in Parkinson’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:5-11. [DOI: 10.17116/jnevro20221221125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Pezzoli S, Sánchez-Valle R, Solanes A, Kempton MJ, Bandmann O, Shin JI, Cagnin A, Goldman JG, Merkitch D, Firbank MJ, Taylor JP, Pagonabarraga J, Kulisevsky J, Blanc F, Verdolini N, Venneri A, Radua J. Neuroanatomical and cognitive correlates of visual hallucinations in Parkinson's disease and dementia with Lewy bodies: Voxel-based morphometry and neuropsychological meta-analysis. Neurosci Biobehav Rev 2021; 128:367-382. [PMID: 34171324 DOI: 10.1016/j.neubiorev.2021.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/30/2021] [Accepted: 06/19/2021] [Indexed: 02/04/2023]
Abstract
Visual hallucinations (VH) are common in Parkinson's disease and dementia with Lewy bodies, two forms of Lewy body disease (LBD), but the neural substrates and mechanisms involved are still unclear. We conducted meta-analyses of voxel-based morphometry (VBM) and neuropsychological studies investigating the neuroanatomical and cognitive correlates of VH in LBD. For VBM (12 studies), we used Seed-based d Mapping with Permutation of Subject Images (SDM-PSI), including statistical parametric maps for 50% of the studies. For neuropsychology (35 studies), we used MetaNSUE to consider non-statistically significant unreported effects. VH were associated with smaller grey matter volume in occipital, frontal, occipitotemporal, and parietal areas (peak Hedges' g -0.34 to -0.49). In patients with Parkinson's disease without dementia, VH were associated with lower verbal immediate memory performance (Hedges' g -0.52). Both results survived correction for multiple comparisons. Abnormalities in these brain regions might reflect dysfunctions in brain networks sustaining visuoperceptive, attention, and executive abilities, with the latter also being at the basis of poor immediate memory performance.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, University of Sheffield, Sheffield, UK; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Aleix Solanes
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
| | - Matthew J Kempton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neurosciences, King's College London, UK
| | - Oliver Bandmann
- Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Jennifer G Goldman
- Shirley Ryan Ability Lab Parkinson's Disease and Movement Disorders program, Chicago, IL, USA; Northwestern University Feinberg School of Medicine, Departments of Physical Medicine and Neurology, Chicago, IL, USA
| | - Doug Merkitch
- Shirley Ryan Ability Lab Parkinson's Disease and Movement Disorders program, Chicago, IL, USA
| | - Michael J Firbank
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John-Paul Taylor
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain; Institut d'Investigacions Biomèdiques - Sant Pau (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Barcelona, Spain; Institut d'Investigacions Biomèdiques - Sant Pau (IIB-Sant Pau), Barcelona, Spain; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Frederic Blanc
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Geriatrics Day Hospital and Neuropsychology Unit, Geriatrics Department and Neurology Service, Memory Resources and Research Centre (CMRR), University Hospital of Strasbourg, Strasbourg, France; Team IMIS/Neurocrypto, French National Center for Scientific Research (CNRS), ICube Laboratory and Fédération de Médecine Translationnelle de Strasbourg (FMTS), University of Strasbourg, Strasbourg, France
| | - Norma Verdolini
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, UK; Department of Life Sciences, Brunel University London, London, UK
| | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Mental Health Research Networking Center (CIBERSAM), Madrid, Spain; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Clinical Neuroscience, Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Yuki N, Yoshioka A, Mizuhara R, Kimura T. Visual hallucinations and inferior longitudinal fasciculus in Parkinson's disease. Brain Behav 2020; 10:e01883. [PMID: 33078912 PMCID: PMC7749587 DOI: 10.1002/brb3.1883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION We investigated whether disruption of the inferior longitudinal fasciculus and inferior fronto-occipital fasciculus are associated with visual hallucinations in Parkinson's disease (PD). METHODS Sixty consecutive right-handed patients with PD with and without visual hallucinations were enrolled in this cross-sectional study. Diffusion tensor imaging was acquired by 3.0 T magnetic resonance imaging. We measured fractional anisotropy and mean diffusivity of the bilateral inferior longitudinal fasciculus and inferior fronto-occipital fasciculus using diffusion tensor tractography analysis software. RESULTS Seventeen patients with PD had visual hallucinations; these patients tended to have lower fractional anisotropy and higher mean diffusivity values in all fasciculi than did patients without visual hallucinations. A univariate logistic analysis showed that the presence of visual hallucinations was significantly associated with lower fractional anisotropy and higher mean diffusivity of the left inferior longitudinal fasciculus, and lower Mini-Mental State Examination (MMSE) scores. A multivariable logistic analysis adjusted by MMSE scores and disease duration showed a significant association between the presence of visual hallucinations and fractional anisotropy and mean diffusivity values of the left inferior longitudinal fasciculus. CONCLUSIONS Our results suggest that disruption of left inferior longitudinal fasciculus integrity is associated with visual hallucinations in patients with PD, independent of cognitive impairment and disease duration.
Collapse
Affiliation(s)
- Natsuko Yuki
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan.,Department of Neurology, Kyoto Kizugawa Hospital, Joyo, Japan
| | - Akira Yoshioka
- Department of Neurology, Kyoto Kizugawa Hospital, Joyo, Japan.,Department of Clinical Research, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| | - Ryo Mizuhara
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| | - Tadashi Kimura
- Department of Neurology, National Hospital Organization Maizuru Medical Center, Maizuru, Japan
| |
Collapse
|
8
|
Zhang Y, Burock MA. Diffusion Tensor Imaging in Parkinson's Disease and Parkinsonian Syndrome: A Systematic Review. Front Neurol 2020; 11:531993. [PMID: 33101169 PMCID: PMC7546271 DOI: 10.3389/fneur.2020.531993] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Diffusion tensor imaging (DTI) allows measuring fractional anisotropy and similar microstructural indices of the brain white matter. Lower than normal fractional anisotropy as well as higher than normal diffusivity is associated with loss of microstructural integrity and neurodegeneration. Previous DTI studies in Parkinson's disease (PD) have demonstrated abnormal fractional anisotropy in multiple white matter regions, particularly in the dopaminergic nuclei and dopaminergic pathways. However, DTI is not considered a diagnostic marker for the earliest Parkinson's disease since anisotropic alterations present a temporally divergent pattern during the earliest Parkinson's course. This article reviews a majority of clinically employed DTI studies in PD, and it aims to prove the utilities of DTI as a marker of diagnosing PD, correlating clinical symptomatology, tracking disease progression, and treatment effects. To address the challenge of DTI being a diagnostic marker for early PD, this article also provides a comparison of the results from a longitudinal, early stage, multicenter clinical cohort of Parkinson's research with previous publications. This review provides evidences of DTI as a promising marker for monitoring PD progression and classifying atypical PD types, and it also interprets the possible pathophysiologic processes under the complex pattern of fractional anisotropic changes in the first few years of PD. Recent technical advantages, limitations, and further research strategies of clinical DTI in PD are additionally discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Psychiatry, War Related Illness and Injury Study Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Marc A Burock
- Department of Psychiatry, Mainline Health, Bryn Mawr Hospital, Bryn Mawr, PA, United States
| |
Collapse
|
9
|
Marques A, Beze S, Pereira B, Chassain C, Monneyron N, Delaby L, Lambert C, Fontaine M, Derost P, Debilly B, Rieu I, Lewis SJG, Chiambaretta F, Durif F. Visual hallucinations and illusions in Parkinson's disease: the role of ocular pathology. J Neurol 2020; 267:2829-2841. [PMID: 32447550 DOI: 10.1007/s00415-020-09925-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Whether different mechanisms, particularly ocular pathology, could lead to the emergence of visual hallucinations (VH) (defined as false perceptions with no external stimulus) versus visual illusions (VI) (defined as a misperception of a real stimulus) in Parkinson's disease (PD) remains debated. We assessed retinal, clinical and structural brain characteristics depending on the presence of VH or VI in PD. METHODS In this case-control study, we compared retinal thickness using optical coherence tomography (OCT), between PD patients with: VI (PD-I; n = 26), VH (PD-H; n = 28), and without VI or VH (PD-C; n = 28), and assessed demographic data, disease severity, treatment, anatomical and functional visual complaints, cognitive and visuo-perceptive functions and MRI brain volumetry for each group of PD patients. RESULTS Parafoveal retina was thinner in PD-H compared to PD-C (p = 0.005) and PD-I (p = 0.009) but did not differ between PD-I and PD-C (p = 0.85). Multivariate analysis showed that 1/retinal parafoveal thinning and total brain gray matter atrophy were independently associated with the presence of VH compared to PD-I; 2/retinal parafoveal thickness, PD duration, sleep quality impairment and total brain gray matter volume were independent factors associated with the presence of VH compared to PD-C; 3/anterior ocular abnormalities were the only factor independently associated with the presence of illusions compared to PD-C. CONCLUSION These findings reinforce the hypothesis that there may be different mechanisms contributing to VH and VI in PD, suggesting that these two entities may also have a different prognosis rather than simply lying along a continuous spectrum. REGISTRATION NUMBER Clinicaltrials.gov number NCT01114321.
Collapse
Affiliation(s)
- Ana Marques
- Neurology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.
| | - Steven Beze
- Ophtalmology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Department, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Carine Chassain
- Imaging Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Nathalie Monneyron
- Ophtalmology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Laure Delaby
- CMRR, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Celine Lambert
- Ophtalmology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Marie Fontaine
- Neurology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Philippe Derost
- Neurology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Bérengère Debilly
- Neurology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Isabelle Rieu
- Neurology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Simon J G Lewis
- Brain and Mind Center, Parkinson's Disease Research Clinic, University of Sydney, Sydney, Australia
| | - Frédéric Chiambaretta
- Ophtalmology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Franck Durif
- Neurology Department, Université Clermont-Auvergne, EA7280, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| |
Collapse
|
10
|
Zarkali A, McColgan P, Leyland LA, Lees AJ, Rees G, Weil RS. Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology 2020; 94:e1525-e1538. [PMID: 32094242 PMCID: PMC7251523 DOI: 10.1212/wnl.0000000000009014] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate the microstructural and macrostructural white matter changes that accompany visual hallucinations and low visual performance in Parkinson disease, a risk factor for Parkinson dementia. METHODS We performed fixel-based analysis, a novel technique that provides metrics of specific fiber-bundle populations within a voxel (or fixel). Diffusion MRI data were acquired from patients with Parkinson disease (n = 105, of whom 34 were low visual performers and 19 were hallucinators) and age-matched controls (n = 35). We used whole-brain fixel-based analysis to compare microstructural differences in fiber density (FD), macrostructural differences in fiber bundle cross section (FC), and the combined FD and FC (FDC) metric across all white matter fixels. We then performed a tract-of-interest analysis comparing the most sensitive FDC metric across 11 tracts within the visual system. RESULTS Patients with Parkinson disease hallucinations exhibited macrostructural changes (reduced FC) within the splenium of the corpus callosum and the left posterior thalamic radiation compared to patients without hallucinations. While there were no significant changes in FD, we found large reductions in the combined FDC metric in Parkinson hallucinators within the splenium (>50% reduction compared to nonhallucinators). Patients with Parkinson disease and low visual performance showed widespread microstructural and macrostructural changes within the genu and splenium of the corpus callosum, bilateral posterior thalamic radiations, and left inferior fronto-occipital fasciculus. CONCLUSIONS We demonstrate specific white matter tract degeneration affecting posterior thalamic tracts in patients with Parkinson disease with hallucinations and low visual performance, providing direct mechanistic support for attentional models of visual hallucinations.
Collapse
Affiliation(s)
- Angeliki Zarkali
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK.
| | - Peter McColgan
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| | - Louise-Ann Leyland
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| | - Andrew J Lees
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| | - Geraint Rees
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| | - Rimona S Weil
- From the Dementia Research Centre (A.Z., L.-A.L., R.S.W.), Huntington's Disease Centre (P.M.), Institute of Cognitive Neuroscience (G.R.), and Wellcome Centre for Human Neuroimaging (G.R., R.S.W.), University College London; and Reta Lila Weston Institute of Neurological Studies (A.J.L.), London, UK
| |
Collapse
|
11
|
Weil RS, Hsu JK, Darby RR, Soussand L, Fox MD. Neuroimaging in Parkinson's disease dementia: connecting the dots. Brain Commun 2019; 1:fcz006. [PMID: 31608325 PMCID: PMC6777517 DOI: 10.1093/braincomms/fcz006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 05/17/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Dementia is a common and devastating symptom of Parkinson's disease but the anatomical substrate remains unclear. Some evidence points towards hippocampal involvement but neuroimaging abnormalities have been reported throughout the brain and are largely inconsistent across studies. Here, we test whether these disparate neuroimaging findings for Parkinson's disease dementia localize to a common brain network. We used a literature search to identify studies reporting neuroimaging correlates of Parkinson's dementia (11 studies, 385 patients). We restricted our search to studies of brain atrophy and hypometabolism that compared Parkinson's patients with dementia to those without cognitive involvement. We used a standard coordinate-based activation likelihood estimation meta-analysis to assess for consistency in the neuroimaging findings. We then used a new approach, coordinate-based network mapping, to test whether neuroimaging findings localized to a common brain network. This approach uses resting-state functional connectivity from a large cohort of normative subjects (n = 1000) to identify the network of regions connected to a reported neuroimaging coordinate. Activation likelihood estimation meta-analysis failed to identify any brain regions consistently associated with Parkinson's dementia, showing major heterogeneity across studies. In contrast, coordinate-based network mapping found that these heterogeneous neuroimaging findings localized to a specific brain network centred on the hippocampus. Next, we tested whether this network showed symptom specificity and stage specificity by performing two further analyses. We tested symptom specificity by examining studies of Parkinson's hallucinations (9 studies, 402 patients) that are frequently co-morbid with Parkinson's dementia. We tested for stage specificity by using studies of mild cognitive impairment in Parkinson's disease (15 studies, 844 patients). Coordinate-based network mapping revealed that correlates of visual hallucinations fell within a network centred on bilateral lateral geniculate nucleus and correlates of mild cognitive impairment in Parkinson's disease fell within a network centred on posterior default mode network. In both cases, the identified networks were distinct from the hippocampal network of Parkinson's dementia. Our results link heterogeneous neuroimaging findings in Parkinson's dementia to a common network centred on the hippocampus. This finding was symptom and stage-specific, with implications for understanding Parkinson's dementia and heterogeneity of neuroimaging findings in general.
Collapse
Affiliation(s)
- Rimona S Weil
- Dementia Research Centre, UCL, London,Wellcome Centre for Human Neuroimaging, UCL, London,Berenson-Allen Center, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA,Correspondence to: Rimona S. Weil UCL Dementia Research Centre, 8-11 Queen Square, London WC1N 3BG UK E-mail:
| | - Joey K Hsu
- Berenson-Allen Center, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA
| | - Ryan R Darby
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Louis Soussand
- Berenson-Allen Center, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA
| | - Michael D Fox
- Berenson-Allen Center, Beth Israel Deaconess Medical Center, Harvard Medical Center, Boston, MA, USA,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
12
|
Firbank MJ, Parikh J, Murphy N, Killen A, Allan CL, Collerton D, Blamire AM, Taylor JP. Reduced occipital GABA in Parkinson disease with visual hallucinations. Neurology 2018; 91:e675-e685. [PMID: 30021920 PMCID: PMC6105043 DOI: 10.1212/wnl.0000000000006007] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Objective To investigate the relationship between visual hallucinations in Parkinson disease (PD) and levels of γ-aminobutyric acid (GABA) in the primary visual cortex. Methods We utilized magnetic resonance spectroscopy to investigate occipital GABA levels in 36 participants with PD, 19 with and 17 without complex visual hallucinations, together with 20 healthy controls without hallucinations. In addition, we acquired T1-weighted MRI, whole-brain fMRI during a visual task, and diffusion tensor imaging. Results We found lower GABA+/creatine in PD with visual hallucinations (0.091 ± 0.010) vs those without (0.101 ± 0.010) and controls (0.099 ± 0.010) (F2,49 = 4.5; p = 0.016). Reduced gray matter in the hallucinations group was also observed in the anterior temporal lobe. Although there were widespread reductions in white matter integrity in the visual hallucinations group, this was no longer significant after controlling for cognitive function. Conclusions The data suggest that reduced levels of GABA are associated with visual hallucinations in PD and implicate changes to the ventral visual stream in the genesis of visual hallucinations. Modulation of visual cortical excitability through, for example, pharmacologic intervention, may be a promising treatment avenue to explore.
Collapse
Affiliation(s)
- Michael J Firbank
- From the Institute of Neuroscience (M.J.F., A.K., C.L.A., D.C., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; and Newcastle Magnetic Resonance Centre (J.P., A.M.B.), Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and Baylor College of Medicine (N.M.), Houston, TX.
| | - Jehill Parikh
- From the Institute of Neuroscience (M.J.F., A.K., C.L.A., D.C., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; and Newcastle Magnetic Resonance Centre (J.P., A.M.B.), Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and Baylor College of Medicine (N.M.), Houston, TX
| | - Nicholas Murphy
- From the Institute of Neuroscience (M.J.F., A.K., C.L.A., D.C., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; and Newcastle Magnetic Resonance Centre (J.P., A.M.B.), Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and Baylor College of Medicine (N.M.), Houston, TX
| | - Alison Killen
- From the Institute of Neuroscience (M.J.F., A.K., C.L.A., D.C., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; and Newcastle Magnetic Resonance Centre (J.P., A.M.B.), Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and Baylor College of Medicine (N.M.), Houston, TX
| | - Charlotte L Allan
- From the Institute of Neuroscience (M.J.F., A.K., C.L.A., D.C., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; and Newcastle Magnetic Resonance Centre (J.P., A.M.B.), Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and Baylor College of Medicine (N.M.), Houston, TX
| | - Daniel Collerton
- From the Institute of Neuroscience (M.J.F., A.K., C.L.A., D.C., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; and Newcastle Magnetic Resonance Centre (J.P., A.M.B.), Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and Baylor College of Medicine (N.M.), Houston, TX
| | - Andrew M Blamire
- From the Institute of Neuroscience (M.J.F., A.K., C.L.A., D.C., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; and Newcastle Magnetic Resonance Centre (J.P., A.M.B.), Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and Baylor College of Medicine (N.M.), Houston, TX
| | - John-Paul Taylor
- From the Institute of Neuroscience (M.J.F., A.K., C.L.A., D.C., J.-P.T.), Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne; and Newcastle Magnetic Resonance Centre (J.P., A.M.B.), Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; and Baylor College of Medicine (N.M.), Houston, TX
| |
Collapse
|
13
|
Prell T. Structural and Functional Brain Patterns of Non-Motor Syndromes in Parkinson's Disease. Front Neurol 2018; 9:138. [PMID: 29593637 PMCID: PMC5858029 DOI: 10.3389/fneur.2018.00138] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/26/2018] [Indexed: 11/26/2022] Open
Abstract
Parkinson’s disease (PD) is a common, progressive and multisystem neurodegenerative disorder characterized by motor and non-motor symptoms. Advanced magnetic resonance imaging, positron emission tomography, and functional magnetic resonance imaging can render the view toward understanding the neural basis of these non-motor syndromes, as they help to understand the underlying pathophysiological abnormalities. This review provides an up-to-date description of structural and functional brain alterations in patients with PD with cognitive deficits, visual hallucinations, fatigue, impulsive behavior disorders, sleep disorders, and pain.
Collapse
Affiliation(s)
- Tino Prell
- Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
14
|
Pezzoli S, Cagnin A, Bandmann O, Venneri A. Structural and Functional Neuroimaging of Visual Hallucinations in Lewy Body Disease: A Systematic Literature Review. Brain Sci 2017; 7:E84. [PMID: 28714891 PMCID: PMC5532597 DOI: 10.3390/brainsci7070084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 07/09/2017] [Indexed: 01/01/2023] Open
Abstract
Patients with Lewy body disease (LBD) frequently experience visual hallucinations (VH), well-formed images perceived without the presence of real stimuli. The structural and functional brain mechanisms underlying VH in LBD are still unclear. The present review summarises the current literature on the neural correlates of VH in LBD, namely Parkinson's disease (PD), and dementia with Lewy bodies (DLB). Following a systematic literature search, 56 neuroimaging studies of VH in PD and DLB were critically reviewed and evaluated for quality assessment. The main structural neuroimaging results on VH in LBD revealed grey matter loss in frontal areas in patients with dementia, and parietal and occipito-temporal regions in PD without dementia. Parietal and temporal hypometabolism was also reported in hallucinating PD patients. Disrupted functional connectivity was detected especially in the default mode network and fronto-parietal regions. However, evidence on structural and functional connectivity is still limited and requires further investigation. The current literature is in line with integrative models of VH suggesting a role of attention and perception deficits in the development of VH. However, despite the close relationship between VH and cognitive impairment, its associations with brain structure and function have been explored only by a limited number of studies.
Collapse
Affiliation(s)
- Stefania Pezzoli
- Department of Neuroscience, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Annachiara Cagnin
- Department of Neurosciences, University of Padua, 35128 Padua, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Ospedale San Camillo, 30126 Venice, Italy.
| | - Oliver Bandmann
- Department of Neuroscience, University of Sheffield, Sheffield, S10 2RX, UK.
| | - Annalena Venneri
- Department of Neuroscience, University of Sheffield, Sheffield, S10 2RX, UK.
| |
Collapse
|
15
|
Jellinger KA. Neuropathology of Nonmotor Symptoms of Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:13-62. [PMID: 28802920 DOI: 10.1016/bs.irn.2017.05.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD), a multiorgan neurodegenerative disorder associated with α-synuclein deposits throughout the nervous system and many organs, is clinically characterized by motor and nonmotor features, many of the latter antedating motor dysfunctions by 20 or more years. The causes of the nonmotor manifestations such as olfactory, autonomic, sensory, neuropsychiatric, visuospatial, sleep, and other disorders are unlikely to be related to single lesions. They are mediated by the involvement of both dopaminergic and nondopaminergic systems, and diverse structures outside the nigrostriatal system that is mainly responsible for the motor features of PD. The nonmotor alterations appear in early/prodromal stages of the disease and its further progression, suggesting a topographical and chronological spread of the lesions. This lends further support for the notion that PD is a multiorgan proteinopathy, although the exact relationship between presymptomatic and later developing nonmotor features of PD and neuropathology awaits further elucidation.
Collapse
|
16
|
Yousaf T, Wilson H, Politis M. Imaging the Nonmotor Symptoms in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 133:179-257. [PMID: 28802921 DOI: 10.1016/bs.irn.2017.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is acknowledged to be a multisystem syndrome, manifesting as a result of multineuropeptide dysfunction, including dopaminergic, cholinergic, serotonergic, and noradrenergic deficits. This multisystem disorder ultimately leads to the presentation of a range of nonmotor symptoms, now appreciated to be an integral part of the disease-specific spectrum of symptoms, often preceding the diagnosis of motor Parkinson's disease. In this chapter, we review the dopaminergic and nondopaminergic basis of these symptoms by exploring the neuroimaging evidence based on several techniques including positron emission tomography, single-photon emission computed tomography molecular imaging, magnetic resonance imaging, functional magnetic resonance imaging, and diffusion tensor imaging. We discuss the role of these neuroimaging techniques in elucidating the underlying pathophysiology of NMS in Parkinson's disease.
Collapse
Affiliation(s)
- Tayyabah Yousaf
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|