1
|
Cao MX, Qian ZY, Liang YJ, Liu QY, Wang HP, Meng Y, Wang YS, Wang Y. Layer-by-layer coated probiotics with tannic acid-Ca 2+ and casein phosphopeptide complexes for caries prevention and enamel remineralization. iScience 2025; 28:111579. [PMID: 39811639 PMCID: PMC11732097 DOI: 10.1016/j.isci.2024.111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Dental caries is a common disease resulting from tooth demineralization caused by bacterial plaque. Probiotics have shown great potential against caries by regulating the balance of oral flora. However, obstacles such as poor colonization and lysozyme sensitivity in oral cavity hinder their further application. In this study, an efficient layer-by-layer surface coating of tannic acid (TA)-Ca2+ and casein phosphopeptide (CPP) was applied to the probiotic Bifidobacterium infantis (BI) with potential anti-caries activity. Multi-functionalized probiotics thus prepared (called BI@TA-Ca2+@CPP) exhibited similar growth pattern, resistance to lysozyme and enhanced colonization potential. The ability of BI@TA-Ca2+@CPP in inhibiting cariogenic biofilm formation was improved. Moreover, BI@TA-Ca2+@CPP showed excellent remineralization efficacy. In a caries-induced rat model, BI@TA-Ca2+@CPP significantly prevented the occurrence and progression of tooth decay, meanwhile showing good biocompatibility. In summary, this study underlines the importance of probiotics coating in antibiofilm and remineralization activity as a promising strategy against dental caries.
Collapse
Affiliation(s)
- Ming-Xin Cao
- Department of Orthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
| | - Zhan-Yin Qian
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
| | - Yan-Jie Liang
- Department of Orthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
| | - Qi-Yao Liu
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
| | - Han-Ping Wang
- Department of Orthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
| | - Yang Meng
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
| | - Yin-Song Wang
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, No.22 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
| | - Yue Wang
- Department of Orthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
- Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China
| |
Collapse
|
2
|
Liu Z, Yang L, Ni Y, Chen K, Yan Q, Zhao Z, Xu B, Li Y, Li R, Li J. Enhanced bacteriostasis and osseointegrative properties of SiRNA-modified polyetheretherketone surface for implant applications. PLoS One 2024; 19:e0314091. [PMID: 39636795 PMCID: PMC11620434 DOI: 10.1371/journal.pone.0314091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Polyetheretherketone (PEEK), bearing an elastic modulus that effectively simulates the innate properties of natural bone, has come into the spotlight as a promising bone substitute material. Nonetheless, the biologically inert nature of PEEK, combined with its insubstantial osseointegration and sterilization capabilities, pose constraints on its clinical application in the realm of implants. RNA interference (RNAi), an effective technique used for gene expression regulation, has begun to be applied in implant surface modification. Herein, siCKIP-1 is securely affixed to the surface of PEEK implants, aided by an antibacterial polyphenol tannic acid (pTAN) coatings, enhancing physiologic osseointegration and inhibiting bacterial infection. This method breakthrough not merely facilitates the convenience, but also multifaceted PEEK implants' refinements. The modified PEEK implants have impressive biocompatibility coupled with a noteworthy degree of antibacterial properties. Meanwhile, modified PEEK implants improved osteogenic differentiation of rat bone mesenchymal stem cells (rBMSCs) and demonstrated excellent osteointegrative properties in rat femur implantation models. Therefore, identifying a new implant material with excellent biocompatibility and biomechanical properties is essential.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Stomatology, Airforce Medical Center PLA, Air Force Medical University, Beijing, People’s Republic of China
| | - Libin Yang
- Department of Stomatology, Shizuishan Second People’s Hospital, Shizuishan, Ningxia Province, People’s Republic of China
| | - Yazhuo Ni
- Department of prosthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, People’s Republic of China
| | - Keying Chen
- Department of prosthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, People’s Republic of China
| | - Qiquan Yan
- Department of prosthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, People’s Republic of China
| | - Zhiying Zhao
- Baodi Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Bo Xu
- Department of prosthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, People’s Republic of China
| | - Yaoyang Li
- Department of prosthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, People’s Republic of China
| | - Rui Li
- Department of prosthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, People’s Republic of China
| | - Jianwen Li
- Department of Radiology, Shizuishan Second People’s Hospital, Shizuishan, Ningxia Province, People’s Republic of China
| |
Collapse
|
3
|
Levy FM, Câmara JVF, Ventura TMO, Pelá VT, Iano F, Araujo TT, Carvalho TDS, Pavan NM, Ximenes VF, Buzalaf MAR. In vivo modification of the enamel pellicle and saliva resveratrol levels after use of resveratrol-containing orodispersible capsules. Arch Oral Biol 2024; 165:106016. [PMID: 38838515 DOI: 10.1016/j.archoralbio.2024.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVES To evaluate in vivo 1) the bioavailability of trans-resveratrol when administered through sublingual capsules; 2) the effect of resveratrol on the protein composition of the acquired enamel pellicle (AEP). DESIGN Ten volunteers received a sublingual capsule containing 50 mg of trans-resveratrol. Unstimulated saliva was then collected after 0, 30, 60, and 120 min and AEP was collected after 120 min following administration of the capsule. In the next week, the volunteers received a placebo sublingual capsule, and saliva and AEP were collected again. Saliva samples were analyzed for free trans-resveratrol using high-performance liquid chromatopgraphy (HPLC), and AEP samples were subjected to proteomic analysis (nLC-ESI-MS/MS). RESULTS Trans-resveratrol was detected in saliva at all the time points evaluated, with the peak at 30 min. A total of 242 proteins were identified in both groups. Ninety-six proteins were increased and 23 proteins were decreased in the Resveratrol group. Among the up-regulated proteins, isoforms of cystatins, PRPs, Mucin-7, Histatin-1, Lactotrasnferrin and Lysozyme-C were increased and the isoforms of Protein S100, Neutrophil defensins, Albumin, PRPs, and, Statherin were decreased in Resveratrol group. CONCLUSION The sublingual capsule is effective at increasing the bioavailability of trans-resveratrol in saliva. Several proteins involved in important processes to maintain systemic and oral health homeostasis were identified. These proteins differently expressed due to the presence of trans-resveratrol deserve attention for future studies, since they have important functions, mainly related to antimicrobial action.
Collapse
Affiliation(s)
- Flávia Mauad Levy
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - João Victor Frazão Câmara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | - Vinícius Taioqui Pelá
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Flávia Iano
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Tamara Teodoro Araujo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Thamyris de Souza Carvalho
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Nathalia Mariana Pavan
- Department of Chemistry, School of Sciences, São Paulo State University, Bauru, SP, Brazil
| | | | | |
Collapse
|
4
|
Selvaraj K, Venkatesan LS, Ganapathy D, Sathishkumar P. Treatment of dental biofilm-forming bacterium Streptococcus mutans using tannic acid-mediated gold nanoparticles. Microb Pathog 2024; 189:106568. [PMID: 38354988 DOI: 10.1016/j.micpath.2024.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Biosynthesized gold nanoparticles (AuNPs) are highly attracted as a biocompatible nanodrug to treat various diseased conditions in humans. In this study, phytochemical tannic acid-mediated AuNPs (TA-AuNPs) are successfully synthesized and tested for antibacterial and antibiofilm activity against dental biofilm-forming Streptococcus mutans biofilm. The synthesized TA-AuNPs are appeared as spherical in shape with an average size of 19 nm. The antibacterial potential of TA-AuNPs was evaluated using ZOI and MIC measurements; while, antibiofilm efficacy was measured by checking the eradication of preformed biofilm on the tooth model. The ZOI and MIC values for TA-AuNPs are 25 mm in diameter and 4 μg/mL, respectively. The MTT assay, CLSM, and SEM results demonstrate that the preformed S. mutans biofilm is completely eradicated at 4xMIC (16 μg/mL) of TA-AuNPs. Finally, the present study reveals that the synthesized TA-AuNPs might be a great therapeutic drug to treat dental biofilm-forming bacterium S. mutans.
Collapse
Affiliation(s)
- Kaviya Selvaraj
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Lekha Sree Venkatesan
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| |
Collapse
|
5
|
Hund SMM, Golde J, Tetschke F, Basche S, Meier M, Kirsten L, Koch E, Hannig C, Walther J. Polarization-Sensitive Optical Coherence Tomography for Monitoring De- and Remineralization of Bovine Enamel In Vitro. Diagnostics (Basel) 2024; 14:367. [PMID: 38396406 PMCID: PMC10888132 DOI: 10.3390/diagnostics14040367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Early caries diagnosis still challenges dentistry. Polarization-sensitive optical coherence tomography (PS-OCT) is promising to detect initial lesions non-invasively in depth-resolved cross-sectional visualization. PS-OCT with determined degree of polarization (DOP) imaging provides an intuitive demineralization contrast. The aim of this study is to evaluate the suitability of DOP-based PS-OCT imaging to monitor controlled de- and remineralization progression for the first time and to introduce it as a valid, non-destructive in vitro detection method. Twelve standardized bovine enamel specimens were divided in different groups and demineralized with hydrochloric acid (HCl) as well as partly remineralized with fluoride over a 14-day pH-cycling experiment. The specimens were stored in artificial saliva and sodium chloride (NaCl), respectively. Progress measurements with PS-OCT were made with polarization-sensitive en faceand B-scan mode for qualitative evaluation. The specimens demineralized in HCl showed the most pronounced surface change (lowest DOP) and the most significant increase in depolarization. Additional fluoride treatment and the storage in artificial saliva resulted in the opposite (highest DOP). Therefore, DOP-based PS-OCT imaging appears to be a valuable technique for visualization and monitoring of enamel demineralization and remineralization processes in vitro. However, these findings need to be confirmed in human teeth ex vivo or in situ.
Collapse
Affiliation(s)
- Stella M M Hund
- Department of Medical Physics and Biomedical Engineering, Faculty Carl Gustav Carus of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Polyclinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Jonas Golde
- Department of Medical Physics and Biomedical Engineering, Faculty Carl Gustav Carus of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Florian Tetschke
- Polyclinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Sabine Basche
- Polyclinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Melina Meier
- Polyclinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Lars Kirsten
- Department of Medical Physics and Biomedical Engineering, Faculty Carl Gustav Carus of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Christian Hannig
- Polyclinic of Operative Dentistry, Periodontology and Pediatric Dentistry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Julia Walther
- Department of Medical Physics and Biomedical Engineering, Faculty Carl Gustav Carus of Medicine, TU Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
6
|
Cen X, Pan X, Wang R, Huang X, Zhao Z. The complex of tannic acid and cetylpyridinium chloride: An antibacterial and stain-removal cleaner for aligners. Am J Orthod Dentofacial Orthop 2024; 165:173-185. [PMID: 37906245 DOI: 10.1016/j.ajodo.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Effective aligner hygiene is recognized as an important part of orthodontic treatments and oral hygiene. However, there is no effective cleansing method for removable aligners. METHODS In this study, we incorporated tannic acid (TA) with cetylpyridinium chloride (CPC) to develop the TA-CPC complex. The antibacterial properties of 15.8 mg/mL TA-CPC against Escherichia coli and Staphylococcus aureus were evaluated in vitro, which were compared with 5.1 mg/mL TA, 10.7 mg/mL CPC, a commercial denture cleansing solution (YA; 15 mg/mL), and water. As for the assessment of stain-removal ability, the aligners stained by coffee were soaked in cleansing solutions, and the color changes (ΔE∗) were calculated on the basis of the CIE L∗a∗b∗ color system, and the National Bureau of Standards system was used for the clinical interpretation of the color change. Atomic force microscope examination, tensile property assessment, and wavelength dispersive x-ray fluorescence analysis were performed to investigate the material compatibility of TA-CPC, and Cell Counting Kit-8 assay and live/dead assay were used to test the cytotoxicity of TA-CPC. RESULTS The results showed that TA-CPC had a positive zeta-potential, and cation-π interaction changed the chemical environments of the phenyl group in TA-CPC, resulting in greater inhibition zones of S. aureus and E. coli than other cleaners. The quantification of the biofilm biomass and the fluorescent intensities also reflected that the TA-CPC solution exhibited better antibacterial ability. As for the ability of stain removal, ΔE∗ value of group TA-CPC was 2.84 ± 0.55, whereas those of stained aligners immersed with deionized distilled water, TA, YA, and CPC were 10.26 ± 0.04, 9.54 ± 0.24, 5.93 ± 0.36, and 4.69 ± 0.35, respectively. The visual inspection and National Bureau of Standards ratings also showed that the color of stained aligners cleansed by TA-CPC was much lighter than those of the other groups. Meanwhile, TA-CPC had good compatibility with the aligner material and cells. CONCLUSIONS TA-CPC is a promising strategy to inhibit the formation of biofilms and remove the stains on the aligners safely, which may disinfect the aligners to improve oral health and help keep the transparent appearances of aligners without impacting the morphology and mechanical properties.
Collapse
Affiliation(s)
- Xiao Cen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuefeng Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Albrecht A, Behringer V, Zierau O, Hannig C. Dental findings in wild great apes from macerated skull analysis. Am J Primatol 2024; 86:e23581. [PMID: 38041590 DOI: 10.1002/ajp.23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 12/03/2023]
Abstract
Oral health is a crucial aspect of overall well-being in both humans and nonhuman primates. Understanding the oral pathologies and dental conditions in apes can provide valuable insights into their evolutionary history, dietary habits, and overall health. The present study evaluates dental findings in wild great apes from museum specimens to gain insights into the influence of natural nutrition on dental health. Complete macerated skulls of wild, adult great apes from the collection of the Museum of Natural History, Berlin, Germany, were examined. We analyzed skulls of 53 gorillas (Gorilla gorilla), 63 chimpanzees (Pan troglodytes), and 41 orangutans (Pongo spp.). For each skull, we recorded wear of dental hard tissues (Lussi and Ganss index), carious lesions, and periodontal bone loss. Incisal and occlusal dental hard tissue defects were found in all skulls, as well as considerable external staining. In all species, incisors and canines showed the greatest loss of tissue, followed by molars. The wear of molars decreased from the first to the third molars, premolars showed the least pronounced defects. Some individuals had apical osteolytic defects along with severe dental hard tissue loss with pulp involvement or after dental trauma, respectively (n = 5). Our study did not observe any carious lesions among the examined great ape skulls. However, we did find evidence for localized or generalized periodontal bone loss in a subset of the specimens (n = 3 chimpanzees, n = 7 orangutans). The natural diet and foraging behavior of great apes induces abrasion and attrition of dental hard tissue but does not yield carious lesions. The occurrence of periodontitis in individual apes indicates that the natural circumstances can induce periodontal bone loss even in the wild, despite physiological nutrition.
Collapse
Affiliation(s)
- Anja Albrecht
- Policlinic of Operative Dentistry, Periodontology, and Pediatric Dentistry Dresden, Faculty of Medicine 'Carl Gustav Carus', Technische Universität Dresden, Dresden, Germany
| | - Verena Behringer
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Oliver Zierau
- Environmental Monitoring & Endocrinology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| | - Christian Hannig
- Policlinic of Operative Dentistry, Periodontology, and Pediatric Dentistry Dresden, Faculty of Medicine 'Carl Gustav Carus', Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Schestakow A, Rasputnis W, Hannig M. Effect of Polyphenols on the Ultrastructure of the Dentin Pellicle and Subsequent Erosion. Caries Res 2024; 58:77-85. [PMID: 38198764 PMCID: PMC10997275 DOI: 10.1159/000536199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024] Open
Abstract
INTRODUCTION Erosive tooth wear is a highly prevalent dental condition that is modified by the ever-present salivary pellicle. The aim of the present in situ study was to investigate the effect of polyphenols on the ultrastructure of the pellicle formed on dentin in situ and a subsequent erosive challenge. METHODS The pellicle was formed on bovine dentin specimens for 3 min or 2 h in 3 subjects. After subjects rinsed with sterile water (negative control), 1% tannic acid, 1% hop extract, or tin/fluoride solution containing 800 ppm tin and 500 ppm fluoride (positive control), specimens were removed from the oral cavity. The erosive challenge was performed on half of the specimens with 1% citric acid, and all specimens were analyzed by transmission electron microscopy. Incorporation of tannic acid in the pellicle was investigated by fluorescence spectroscopy. RESULTS Compared to the negative control, ultrastructural analyses reveal a thicker and electron-denser pellicle after application of polyphenols, in which, according to spectroscopy, tannic acid is also incorporated. Application of citric acid resulted in demineralization of dentin, but to a lesser degree when the pellicle was pretreated with a tin/fluoride solution. The pellicle was more acid-resistant than the negative control when modified with polyphenols or tin/fluoride solution. CONCLUSION Polyphenols can have a substantial impact on the ultrastructure and acid resistance of the dentin pellicle, while the tin/fluoride solution showed explicit protection against erosive demineralization.
Collapse
Affiliation(s)
- Anton Schestakow
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Wadim Rasputnis
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg, Germany
| |
Collapse
|
9
|
Li D, Tan X, Zheng L, Tang H, Hu S, Zhai Q, Jing X, Liang P, Zhang Y, He Q, Jian G, Fan D, Ji P, Chen T, Zhang H. A Dual-Antioxidative Coating on Transmucosal Component of Implant to Repair Connective Tissue Barrier for Treatment of Peri-Implantitis. Adv Healthc Mater 2023; 12:e2301733. [PMID: 37660274 DOI: 10.1002/adhm.202301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/10/2023] [Indexed: 09/04/2023]
Abstract
Since the microgap between implant and surrounding connective tissue creates the pass for pathogen invasion, sustained pathological stimuli can accelerate macrophage-mediated inflammation, therefore affecting peri-implant tissue regeneration and aggravate peri-implantitis. As the transmucosal component of implant, the abutment therefore needs to be biofunctionalized to repair the gingival barrier. Here, a mussel-bioinspired implant abutment coating containing tannic acid (TA), cerium and minocycline (TA-Ce-Mino) is reported. TA provides pyrogallol and catechol groups to promote cell adherence. Besides, Ce3+ /Ce4+ conversion exhibits enzyme-mimetic activity to remove reactive oxygen species while generating O2 , therefore promoting anti-inflammatory M2 macrophage polarization to help create a regenerative environment. Minocycline is involved on the TA surface to create local drug storage for responsive antibiosis. Moreover, the underlying therapeutic mechanism is revealed whereby the coating exhibits exogenous antioxidation from the inherent properties of Ce and TA and endogenous antioxidation through mitochondrial homeostasis maintenance and antioxidases promotion. In addition, it stimulates integrin to activate PI3K/Akt and RhoA/ROCK pathways to enhance VEGF-mediated angiogenesis and tissue regeneration. Combining the antibiosis and multidimensional orchestration, TA-Ce-Mino repairs soft tissue barriers and effector cell differentiation, thereby isolating the immune microenvironment from pathogen invasion. Consequently, this study provides critical insight into the design and biological mechanism of abutment surface modification to prevent peri-implantitis.
Collapse
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xi Tan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qiming Zhai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xuan Jing
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, P. R. China
| | - Panpan Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Guangyu Jian
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Dongqi Fan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| |
Collapse
|
10
|
Schestakow A, Meyer-Probst CT, Hannig C, Hannig M. Prevention of Dental Biofilm Formation with Polyphenols: A Systematic Review. PLANTA MEDICA 2023; 89:1026-1033. [PMID: 36343637 DOI: 10.1055/a-1939-7615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polyphenols are plant secondary products with health-promoting properties against various degenerative or infectious diseases, and thus may help in the prevention of oral diseases. The aim of the present systematic review was to investigate polyphenols as a possible adjuvant in inhibiting dental biofilm formation, which is an important precondition for the most prevalent oral disease - caries and periodontitis. A literature search was conducted using the databases PubMed, CENTRAL and Scopus. Only studies with oral healthy participants and plaque level as outcome were included. Data search and extraction was conducted by two authors independently. Of the 211 initially identified studies, only six met all inclusion criteria. Meta-analysis was performed with five studies using the random effect model. Treatment with polyphenols reduced the plaque level in comparison to a negative control, but not significantly. Strong evidence of heterogeneity was observed. The diversity and complexity of polyphenols and their preparation need to be considered. There is no clear evidence that clinical use of polyphenols can prevent dental biofilm formation. Additional research with more and larger randomized controlled trials are required.
Collapse
Affiliation(s)
- Anton Schestakow
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Homburg/Saar, Germany
| | - Clara Theres Meyer-Probst
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
11
|
Li G, Yu Q, Li M, Zhang D, Yu J, Yu X, Xia C, Lin J, Han L, Huang H. Phyllanthus emblica fruits: a polyphenol-rich fruit with potential benefits for oral management. Food Funct 2023; 14:7738-7759. [PMID: 37529983 DOI: 10.1039/d3fo01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The fruit of Phyllanthus emblica Linn., which mainly grows in tropical and subtropical regions, is well-known for its medicine and food homology properties. It has a distinctive flavor, great nutritional content, and potent antioxidant, anti-inflammatory, anti-cancer and immunoregulatory effects. According to an increasing amount of scientific and clinical evidence, this fruit shows significant potential for application and development in the field of oral health management. Through the supplementation of vitamins, superoxide dismutase (SOD) and other nutrients reduce virulence expression of various oral pathogens, prevent tissue and mucosal damage caused by oxidative stress, etc. Phyllanthus emblica fruit can promote saliva secretion, regulate the balance of the oral microecology, prevent and treat oral cancer early, promote alveolar bone remodeling and aid mucosal wound healing. Thus, it plays a specific role in the prevention and treatment of common oral disorders, producing surprising results. For instance, enhancing the effectiveness of scaling and root planing in the treatment of periodontitis, relieving mucosal inflammation caused by radiotherapy for oral cancer, and regulating the blood glucose metabolism to alleviate oral discomfort. Herein, we systematically review the latest research on the use of Phyllanthus emblica fruit in the management of oral health and examine the challenges and future research directions based on its chemical composition and characteristics.
Collapse
Affiliation(s)
- Gefei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Qiang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Mengqi Li
- Pharmacy department, Sichuan Nursing Vocational College, Chengdu 610100, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiaohan Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chenxi Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haozhou Huang
- State key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| |
Collapse
|
12
|
Flemming J, Meyer-Probst CT, Hille K, Basche S, Speer K, Kölling-Speer I, Hannig C, Hannig M. Olive Oil as a Transport Medium for Bioactive Molecules of Plants?-An In Situ Study. Molecules 2023; 28:3803. [PMID: 37175213 PMCID: PMC10180205 DOI: 10.3390/molecules28093803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Caries and erosions still remain a challenge for preventive dentistry. Certain plant extracts have shown beneficial effects in preventive dentistry. The aim of this study was to evaluate the antibacterial, anti-adherent and erosion-protective properties of ellagic acid (EA) as a polyphenolic agent. The combination with olive oil was investigated additionally to verify a possible improved bioactive effect of EA. (2) An in situ study was carried out with six subjects. Individual splints were prepared with bovine enamel specimens. The splints were worn for 1 min (pellicle formation time). Thereafter, 10 min rinses were performed with EA in water/in oil. Bacterial adherence was evaluated by fluorescence microscopy (DAPI, ConA, BacLight) after an 8 h oral exposition time. Additionally, the splints were worn for 30 min to quantify demineralization processes. The ultrastructure of the pellicle was investigated after an oral exposure time of 2 h under a transmission electron microscope. Statistical analysis was performed by Kruskal-Wallis tests, Mann-Whitney U tests and Bonferroni-Holm correction. (3) Rinsing with EA led to a significant reduction of adherent vital and dead bacteria. The combination with olive oil did not improve these outcomes. The assessment of glucan structures after rinsing with EA in water showed significant effects. Significant differences were observed for both rinses in calcium release at pH 3.0. After rinsing with EA in oil, significantly less calcium was released compared to rinsing with EA in water (pH = 3.0). (4) Olive oil is not suitable as a transport medium for lipophilic polyphenols. EA has anti-adherent and antibacterial properties in situ. EA also shows erosion-protective effects, which can be enhanced in combination with olive oil depending on the pH value. Ellagic acid has a neutral pH and could be an opportunity in the treatment of specific patient groups (xerostomia or mucositis).
Collapse
Affiliation(s)
- Jasmin Flemming
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Clara Theres Meyer-Probst
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Kristin Hille
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Sabine Basche
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Karl Speer
- Special Food Chemistry and Food Production, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany
| | - Isabelle Kölling-Speer
- Special Food Chemistry and Food Production, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital Saarland University, Building 73, D-66421 Homburg, Germany
| |
Collapse
|
13
|
Dige I, Paqué PN, Del Rey YC, Lund MB, Schramm A, Schlafer S. Fluorescence lectin binding analysis of carbohydrate components in dental biofilms grown in situ in the presence or absence of sucrose. Mol Oral Microbiol 2022; 37:196-205. [PMID: 35960156 PMCID: PMC9804345 DOI: 10.1111/omi.12384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/05/2023]
Abstract
Carbohydrate components, such as glycoconjugates and polysaccharides, are constituents of the dental biofilm matrix that play an important role in biofilm stability and virulence. Exopolysaccharides in Streptococcus mutans biofilms have been characterized extensively, but comparably little is known about the matrix carbohydrates in complex, in situ-grown dental biofilms. The present study employed fluorescence lectin binding analysis (FLBA) to investigate the abundance and spatial distribution of glycoconjugates/polysaccharides in biofilms (n = 306) from 10 participants, grown in situ with (SUC) and without (H2O) exposure to sucrose. Biofilms were stained with 10 fluorescently labeled lectins with different carbohydrate specificities (AAL, ABA, ASA, HPA, LEA, MNA-G, MPA, PSA, VGA and WGA) and analyzed by confocal microscopy and digital image analysis. Microbial composition was determined by 16S rRNA gene sequencing. With the exception of ABA, all lectins targeted considerable matrix biovolumes, ranging from 19.3% to 194.0% of the microbial biovolume in the biofilms, which illustrates a remarkable variety of carbohydrate compounds in in situ-grown dental biofilms. MNA-G, AAL, and ASA, specific for galactose, fucose, and mannose, respectively, stained the largest biovolumes. AAL and ASA biovolumes were increased in SUC biofilms, but the difference was not significant due to considerable biological variation. SUC biofilms were enriched in streptococci and showed reduced abundances of Neisseria and Haemophilus spp., but no significant correlations between lectin-stained biovolumes and bacterial abundance were observed. In conclusion, FLBA demonstrates the presence of a voluminous biofilm matrix comprising a variety of different carbohydrate components in complex, in situ-grown dental biofilms.
Collapse
Affiliation(s)
- Irene Dige
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral HealthAarhus UniversityAarhusDenmark
| | - Pune N. Paqué
- Clinic of Reconstructive Dentistry, Center of Dental MedicineUniversity of ZurichZurichSwitzerland,Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental MedicineUniversity of ZurichZurichSwitzerland
| | - Yumi Chokyu Del Rey
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral HealthAarhus UniversityAarhusDenmark
| | - Marie Braad Lund
- Section for Microbiology, Department of BiologyAarhus UniversityAarhusDenmark
| | - Andreas Schramm
- Section for Microbiology, Department of BiologyAarhus UniversityAarhusDenmark
| | - Sebastian Schlafer
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral HealthAarhus UniversityAarhusDenmark
| |
Collapse
|
14
|
Schestakow A, Nekrashevych Y, Hoth-Hannig W, Hannig M. Influence of periodic polyphenol treatment on the anti-erosive potential of the acquired enamel pellicle-A qualitative exploratory study. J Dent 2022; 124:104236. [PMID: 35850367 DOI: 10.1016/j.jdent.2022.104236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE The aim of the present study was to investigate the impact of periodic polyphenol treatment on the ultrastructure and anti-erosive potential of an in-situ formed pellicle. METHODS Subjects wore intraoral appliances with buccally and palatally fixed bovine enamel specimens. During 6 h of intraoral pellicle formation, 100 ml black tea or tannic acid was applied ex-vivo every 25 min for 5 min. Untreated pellicles served as control. After the trial, specimens were immersed in 0.1% or 1% citric acid for 60 s and analysed for calcium release with atomic adsorption spectrometry and ultrastructure with transmission electron microscopy. RESULTS Specimens covered by pellicles treated with black tea or tannic acid released less calcium than untreated pellicles. Ultrastructural analyses reveal an increase in pellicle's thickness and density after treatment with polyphenols. CONCLUSIONS Periodic polyphenol treatment of the pellicle modify its ultrastructure and increase its anti-erosive potential. CLINICAL SIGNIFICANCE Consumption of polyphenolic beverages can enhance the anti-erosive potential of the enamel pellicle.
Collapse
Affiliation(s)
- Anton Schestakow
- Dentist, Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany.
| | - Yuriy Nekrashevych
- Dentist, Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Wiebke Hoth-Hannig
- Technical Staff, Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| | - Matthias Hannig
- Dentist, Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
15
|
Reich M, Hannig C, Hannig M, Kümmerer K, Kensche A. The Lipid Composition of the in situ pellicle. Arch Oral Biol 2022; 142:105493. [DOI: 10.1016/j.archoralbio.2022.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
|
16
|
Pauli MC, Kanemaru MYS, Francisco Vieira-Junior W, Lima DANL, Bicas JL, Leonardi GR. Current status of whitening agents and enzymes in Dentistry. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-979020201000x32e19501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Zhang R, Zhou Z, Chang Z, Dai X, Chen L, Dai J. Superhydrophilic, underwater superoleophobic and self-cleaning nickel composite mesh via simultaneous acid etching and in-situ growth of Prussian blue analogue for oil-water separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Hydroxyapatite-Based Solution as Adjunct Treatment for Biofilm Management: An In Situ Study. NANOMATERIALS 2021; 11:nano11092452. [PMID: 34578769 PMCID: PMC8467207 DOI: 10.3390/nano11092452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023]
Abstract
Synthetic hydroxyapatite-based solution is a bioinspired material that may present anti-adhesive properties, restraining the dental biofilm formation without causing adverse effects. This in situ study aims to evaluate the effects of three different hydroxyapatite (HAP) watery solutions as a mouthwash against biofilm adhesion on different dental material surfaces under oral conditions. Hence, four volunteers carried maxillary splints containing enamel, titanium, ceramics, and polymethyl-methacrylate resin (PMMA) samples. Three HAP watery solutions (5%) were prepared with HAP particles presenting different shapes and sizes (HAP I, HAP II, HAP III). During 24 h, the volunteers rinsed two times with one of the following selected tested solution: HAP I, HAP II, HAP III, water, or chlorhexidine 0.2% (CHX). The first rinse was performed 3 min after pellicle formation; the second rinse occurred after a 12 h interval. The surface analysis was performed by scanning electron microscopy (SEM), fluorescence microscopy (FM), and transmission electron microscopy (TEM). Statistical and microscopic analysis showed that most samples treated with any HAP solution revealed reduced biofilm coverage presenting comparable results to CHX treated samples, however without altering the microorganisms' viability. In conclusion, the results of this investigation showed that a pure hydroxyapatite-based mouthrinse could be a promising bioinspired adjunct solution for biofilm management.
Collapse
|
19
|
Flemming J, Meyer-Probst CT, Speer K, Kölling-Speer I, Hannig C, Hannig M. Preventive Applications of Polyphenols in Dentistry-A Review. Int J Mol Sci 2021; 22:4892. [PMID: 34063086 PMCID: PMC8124254 DOI: 10.3390/ijms22094892] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
Polyphenols are natural substances that have been shown to provide various health benefits. Antioxidant, anti-inflammatory, and anti-carcinogenic effects have been described. At the same time, they inhibit the actions of bacteria, viruses, and fungi. Thus, studies have also examined their effects within the oral cavity. This review provides an overview on the different polyphenols, and their structure and interactions with the tooth surface and the pellicle. In particular, the effects of various tea polyphenols on bioadhesion and erosion have been reviewed. The current research confirms that polyphenols can reduce the growth of cariogenic bacteria. Furthermore, they can decrease the adherence of bacteria to the tooth surface and improve the erosion-protective properties of the acquired enamel pellicle. Tea polyphenols, especially, have the potential to contribute to an oral health-related diet. However, in vitro studies have mainly been conducted. In situ studies and clinical studies need to be extended and supplemented in order to significantly contribute to additive prevention measures in caries prophylaxis.
Collapse
Affiliation(s)
- Jasmin Flemming
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Clara Theres Meyer-Probst
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Karl Speer
- Special Food Chemistry and Food Production, TU Dresden, Bergstraße 66, D-01069 Dresden, Germany; (K.S.); (I.K.-S.)
| | - Isabelle Kölling-Speer
- Special Food Chemistry and Food Production, TU Dresden, Bergstraße 66, D-01069 Dresden, Germany; (K.S.); (I.K.-S.)
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany; (J.F.); (C.H.)
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D-66421 Homburg, Germany;
| |
Collapse
|
20
|
Schestakow A, Guth MS, Eisenmenger TA, Hannig M. Evaluation of Anti-Biofilm Activity of Mouthrinses Containing Tannic Acid or Chitosan on Dentin In Situ. Molecules 2021; 26:molecules26051351. [PMID: 33802588 PMCID: PMC7961503 DOI: 10.3390/molecules26051351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
In contrast to enamel, dentin surfaces have been rarely used as substrates for studies evaluating the effects of experimental rinsing solutions on oral biofilm formation. The aim of the present in situ study was to investigate the effects of tannic acid and chitosan on 48-h biofilm formation on dentin surfaces. Biofilm was formed intraorally on dentin specimens, while six subjects rinsed with experimental solutions containing tannic acid, chitosan and water as negative or chlorhexidine as positive control. After 48 h of biofilm formation, specimens were evaluated for biofilm coverage and for viability of bacteria by fluorescence and scanning electron microscopy. In addition, saliva samples were collected after rinsing and analyzed by fluorescence (five subjects) and transmission electron microscopy (two subjects) in order to investigate the antibacterial effect on bacteria in a planktonic state and to visualize effects of the rinsing agents on salivary proteins. After rinsing with water, dentin specimens were covered by a multiple-layered biofilm with predominantly vital bacteria. In contrast, chlorhexidine led to dentin surfaces covered only by few and avital bacteria. By rinsing with tannic acid both strong anti-adherent and antibacterial effects were observed, but the effects declined in a time-dependent manner. Transmission electron micrographs of salivary samples indicated that aggregation of proteins and bacteria might explain the antiadhesion effects of tannic acid. Chitosan showed antibacterial effects on bacteria in saliva, while biofilm viability was only slightly reduced and no effects on bacterial adherence on dentin were observed, despite proteins being aggregated in saliva after rinsing with chitosan. Tannic acid is a promising anti-biofilm agent even on dentin surfaces, while rinsing with chitosan could not sufficiently prevent biofilm formation on dentin.
Collapse
|
21
|
Sterzenbach T, Pioch A, Dannemann M, Hannig C, Weber MT. Quantification of Bacterial Colonization in Dental Hard Tissues Using Optimized Molecular Biological Methods. Front Genet 2021; 11:599137. [PMID: 33391351 PMCID: PMC7775318 DOI: 10.3389/fgene.2020.599137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/01/2020] [Indexed: 11/25/2022] Open
Abstract
Bacterial infections of root canals and the surrounding dental hard tissue are still a challenge due to biofilm formation as well as the complex root canal anatomy. However, current methods for analyzing biofilm formation, bacterial colonization of root canals and dental hard tissue [e.g., scanning electron microscopy, confocal laser scanning microscopy (CLSM) or determination of colony forming units (CFU)] are time-consuming and only offer a selective qualitative or semi-quantitative analysis. The aim of the present study is the establishment of optimized molecular biological methods for DNA-isolation and quantification of bacterial colonization via quantitative PCR (qPCR) from dental hard tissue. Root canals of human premolars were colonized with Enterococcus faecalis. For isolation of DNA, teeth were then grinded with a cryo mill. Since the hard tissues dentin and especially enamel belong to the hardest materials in the human organism, the isolation of bacterial DNA from root dentin is very challenging. Therefore, treatment steps for the isolation of DNA from grinded teeth were systematically analyzed to allow improved recovery of bacterial DNA from dental hard tissues. Starting with the disintegration of the peptidoglycan-layer of bacterial cells, different lysozyme solutions were tested for efficacy. Furthermore, incubation times and concentrations of chelating agents such as EDTA were optimized. These solutions are crucial for the disintegration of teeth and hence improve the accessibility of bacterial DNA. The final step was the determination of prior bacterial colonization of each root canal as determined by qPCR and comparing the results to alternative methods such as CFU. As a result of this study, optimized procedures for bacterial DNA-isolation from teeth were established, which result in an increased recovery rate of bacterial DNA. This method allows a non-selective and straightforward procedure to quantify bacterial colonization from dental hard tissue. It can be easily adapted for other study types such as microbiome studies and for comparable tissues like bones.
Collapse
Affiliation(s)
- Torsten Sterzenbach
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne Pioch
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Martin Dannemann
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Dresden, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marie-Theres Weber
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Nobre CMG, Pütz N, König B, Rupf S, Hannig M. Modification of in situ Biofilm Formation on Titanium by a Hydroxyapatite Nanoparticle-Based Solution. Front Bioeng Biotechnol 2020; 8:598311. [PMID: 33344433 PMCID: PMC7746779 DOI: 10.3389/fbioe.2020.598311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023] Open
Abstract
Oral biofilms play an essential role on peri-implant disease development. Synthetic hydroxyapatite nanoparticles (nHAP) are a bioinspired material that has structural and functional similarities to dental enamel apatite and may provide preventive properties against biofilm formation. This study aimed to investigate the effects of an experimental nHAP solution on biofilm formation on polished and non-polished titanium under oral conditions. Five volunteers carried maxillary splints with non-polished and polished titanium and followed a 48 h rinsing protocol with the proposed nHAP solution, and with chlorhexidine 0.2% (CHX) and water, as controls. Samples were analyzed by fluorescence microscopy (FM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). FM showed a significant reduction of biofilms on polished samples treated with nHAP (p = 0.0485) compared with water, without differences between nHAP and CHX (p > 0.9999). Analyzing biofilm viability, polished samples rinsed with nHAP showed significantly fewer dead bacteria than CHX (p = 0.0079), but there was no significant difference in viability between polished samples rinsed with water and nHAP (p = 0.9268). A significantly higher biofilm coverage was observed on the non-polished surfaces compared to the polished surfaces when nHAP was applied (p = 0.0317). This difference between polished and non-polished surfaces was not significant when water (p = 0.1587) or CHX (p = 0.3413) rinsing were applied. SEM and TEM analysis supported the FM findings, that polished samples rinsed with nHAP presented fewer biofilm coverage compared to samples rinsed with water. In conclusion, the nHAP solution reduced the biofilm formation on polished Ti surfaces without altering bacterial viability, providing a novel approach for the management of biofilm formation on biomaterials.
Collapse
Affiliation(s)
- Cíntia M G Nobre
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, Homburg, Germany
| | - Norbert Pütz
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, Homburg, Germany
| | - Belinda König
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, Homburg, Germany
| | - Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, Homburg, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
23
|
Kato MT, Hannas AR, Cardoso CDAB, Cassiano LDPS, Naves PA, Magalhães AC, Tjäderhane L, Buzalaf MAR. Dentifrices or gels containing MMP inhibitors prevent dentine loss: in situ studies. Clin Oral Investig 2020; 25:2183-2190. [PMID: 32975705 DOI: 10.1007/s00784-020-03530-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Evaluate the effect of dentifrices or gels containing MMP inhibitors on dentine loss in situ. MATERIALS AND METHODS Acrylic palatal appliances containing bovine dentine blocks were divided into two rows, corresponding to the groups erosion (ERO) and erosion associated with abrasion (ERO+ABR). For ERO, the appliances were immersed in a cola drink for 5 min, 4 times/day, while for ERO+ABR, the blocks were brushed for 15 sec with a dentifrice slurry after the second and third erosive challenges. Ten volunteers took part in study 1 (S1), where the dentifrices evaluated contained 1100 ppm fluoride as NaF, 0.61% green tea extract, or 0.012% chlorhexidine digluconate. Thirteen volunteers participated in study 2 (S2), in which the treatment was performed only once (1 min) with gels containing 400 μM EGCG (EGCG400), 0.012% chlorhexidine, 1 mM FeSO4, 1.23% F (NaF), placebo, or received no treatment. Dentine loss was analyzed by profilometry (μm). RESULTS Regarding S1, ERO+ABR induced significantly higher dentine loss compared with ERO and all dentifrices tested led to significantly lower dentine loss when compared with placebo. For S2, regardless of the conditions or times of evaluation, gels containing EGCG, CHX, or FeSO4 led to significantly less wear compared with the other groups. CONCLUSION Both dentifrices and gels containing MMP inhibitors significantly reduced dentine loss. CLINICAL RELEVANCE Dentifrices and gels containing MMP inhibitors are able to increase the protection against dentine wear, although gels have a better effect when compared with fluoride gel, lasting up to 10 days after a single application.
Collapse
Affiliation(s)
- Melissa Thiemi Kato
- Department of Dentistry, University of Centro Oeste Paulista - FACOPH, 72 Luiz Gimenez Mocegose, Piratininga, SP, Brazil
| | - Angelica Reis Hannas
- Department of Oral Biology, Bauru School of Dentistry, University of São Paulo, 9-75 Al. Octávio Pinheiro Brisolla, Bauru, SP, Brazil
| | | | | | - Paula Andery Naves
- Department of Dentistry, Cruzeiro do Sul University, 868 Galvão Bueno, São Paulo, SP, Brazil
| | - Ana Carolina Magalhães
- Department of Oral Biology, Bauru School of Dentistry, University of São Paulo, 9-75 Al. Octávio Pinheiro Brisolla, Bauru, SP, Brazil
| | - Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 5281, FI - 90014, Oulu, Finland
| | - Marília Afonso Rabelo Buzalaf
- Department of Oral Biology, Bauru School of Dentistry, University of São Paulo, 9-75 Al. Octávio Pinheiro Brisolla, Bauru, SP, Brazil.
| |
Collapse
|
24
|
Xi Q, Hoth-Hannig W, Deng S, Jin X, Fu B, Hannig M. The effect of polyphenol-containing solutions on in situ biofilm formation on enamel and dentin. J Dent 2020; 102:103482. [PMID: 32980427 DOI: 10.1016/j.jdent.2020.103482] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES To investigate the effects of Chinese gallnut extracts and pure tannic acid on in situ biofilm formation on enamel and dentin samples over 24 h. METHODS Bovine enamel and dentin samples were buccally fixed on maxillary splints. Six volunteers wore the splints for 24 h, and rinsed their mouths with tap water (control), 1% tannic acid- and 1% Chinese gallnut extracts-containing solution twice a day, 3 min after the splints were placed in the mouth and before night sleep. Live/dead staining was used for fluorescence microscopic (FM) visualization and quantification of bacteria viability of biofilms formed on enamel and dentin samples. Biofilm coverage was evaluated and recorded by FM and scanning electron microscopy (SEM). In addition, biofilms were analyzed by transmission electron microscopy (TEM). The Kruskal-Wallis test was used to analyze biofilm data. RESULTS Rinsing with tannic acid- and Chinese gallnut extracts-containing solutions significantly reduced in situ biofilm coverage on enamel and dentin samples (P < 0.05). The bacterial viability of biofilms formed on enamel samples was significantly reduced compared to the control (P < 0.05). TEM analysis revealed an increase in pellicle's electron density and thickness and only few or no bacteria adherent to the pellicle in the experimental samples. CONCLUSIONS Rinsing with tannic acid- and Chinese gallnut extracts-containing solutions can effectively inhibit in situ biofilm formation, modify the ultrastructure of biofilms on enamel and dentin surfaces and significantly reduce the bacterial viability of biofilm on enamel surfaces. CLINICAL SIGNIFICANCE Tannic acid- and Chinese gallnut extracts-containing solutions might be used for dental biofilm management.
Collapse
Affiliation(s)
- Qingping Xi
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road 395, 310006, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Kaixuan Road 268, 310020, Hangzhou, China; Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Building 73, Saarland University, D-66421, Homburg, Germany
| | - Wiebke Hoth-Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Building 73, Saarland University, D-66421, Homburg, Germany
| | - Shuli Deng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road 395, 310006, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Kaixuan Road 268, 310020, Hangzhou, China
| | - Xiaoting Jin
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road 395, 310006, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Kaixuan Road 268, 310020, Hangzhou, China
| | - Baiping Fu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Yan'an Road 395, 310006, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Kaixuan Road 268, 310020, Hangzhou, China.
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Building 73, Saarland University, D-66421, Homburg, Germany.
| |
Collapse
|
25
|
Schestakow A, Hannig M. Effects of Experimental Agents Containing Tannic Acid or Chitosan on the Bacterial Biofilm Formation in Situ. Biomolecules 2020; 10:biom10091315. [PMID: 32932628 PMCID: PMC7564313 DOI: 10.3390/biom10091315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/24/2022] Open
Abstract
Chitosan and tannic acid are known for their antibacterial properties. In the present in-situ study, their antibacterial and anti-adherent effects on biofilm formation on enamel were investigated. Six subjects carried upper jaw splints with bovine enamel specimens, allowing in-situ biofilm formation. During the two-day trial, subjects rinsed with experimental solutions that contained either chitosan, tannic acid (pH = 2.5), tannic acid (pH = 7) or hydrochloric acid. Water served as the negative and chlorhexidine as the positive control. Rinsing occurred four or five times following two different rinsing protocols to investigate both the immediate and long-lasting effects. After 48 h of intraoral exposure, the dental plaque was stained with LIVE/DEAD® BacLight, and fluorescence micrographs were evaluated by using the software ImageJ. The results were verified by scanning electron microscopy. Rinsing with chitosan resulted in little immediate antibacterial and anti-adherent effects but failed to show any long-lasting effect, while rinsing with tannic acid resulted in strong immediate and long-lasting effects. Except for a slightly lower antibacterial effect, the neutral solution of tannic acid was as good as the acidic solution. Hydrochloric acid showed neither an antibacterial nor an anti-adherent effect on dental biofilm formation. Experimental solutions containing tannic acid are promising anti-biofilm agents, irrespective of the pH values of the solutions. Chitosan, on the other hand, was not able to prevent biofilm formation.
Collapse
|
26
|
Wang X, Liu L, Zhou X, Huo Y, Gao J, Gu H. Casein phosphopeptide combined with fluoride enhances the inhibitory effect on initial adhesion of Streptococcus mutans to the saliva-coated hydroxyapatite disc. BMC Oral Health 2020; 20:169. [PMID: 32532263 PMCID: PMC7291725 DOI: 10.1186/s12903-020-01158-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Recent preventive strategies for dental caries focus on targeting the mechanisms underlying biofilm formation, including the inhibition of bacterial adhesion. A promising approach to prevent bacterial adhesion is to modify the composition of acquired salivary pellicle. This in vitro study investigated the effect and possible underlying mechanism of pellicle modification by casein phosphopeptide (CPP) on Streptococcus mutans (S. mutans) initial adhesion, and the impact of fluoride on the efficacy of CPP. Methods The salivary pellicle-coated hydroxyapatite (s-HA) discs were treated with phosphate buffered saline (negative control), heat-inactivated 2.5% CPP (heat-inactivated CPP), 2.5% CPP (CPP) or 2.5% CPP supplemented with 900 ppm fluoride (CPP + F). After cultivation of S. mutans for 30 min and 2 h, the adherent bacteria were visualized by scanning electron microscopy (SEM) and quantitatively evaluated using the plate count method. Confocal laser scanning microscopy (CLSM) was used to evaluate the proportions of total and dead S. mutans. The concentrations of total, free, and bound calcium and fluoride in the CPP and fluoride-doped CPP solutions were determined. The water contact angle and zeta potential of s-HA with and without modification were measured. The data were statistically analyzed using one-way ANOVA followed by a Turkey post hoc multiple comparison test. Results Compared to the negative control group, the amount of adherent S. mutans significantly reduced in the CPP and CPP + F groups, and was lowest in the CPP + F group. CLSM analysis showed that there was no statistically significant difference in the proportion of dead S. mutans between the four groups. Water contact angle and zeta potential of s-HA surface significantly decreased in the CPP and CPP + F groups as compared to the negative control group, and both were lowest in the CPP + F group. Conclusions Pellicle modification by CPP inhibited S. mutans initial adhesion to s-HA, possibly by reducing hydrophobicity and negative charge of the s-HA surface, and incorporating fluoride into CPP further enhanced the anti-adhesion effect.
Collapse
Affiliation(s)
- Xiaodie Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Limin Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Xiaoyan Zhou
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yongbiao Huo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China
| | - Jinlong Gao
- School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia. .,Institute of Dental Research, Westmead Centre for Oral Health, Westmead, NSW, Australia.
| | - Haijing Gu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Oral Diseases, Sun Yat-sen University, 56 Ling Yuan Xi Road, Guangzhou, 510055, Guangdong, China.
| |
Collapse
|
27
|
Pelá VT, Prakki A, Wang L, Ventura TMS, de Souza E Silva CM, Cassiano LPS, Brianezzi LFF, Leite AL, Buzalaf MAR. The influence of fillers and protease inhibitors in experimental resins in the protein profile of the acquired pellicle formed in situ on enamel-resin specimens. Arch Oral Biol 2019; 108:104527. [PMID: 31472277 DOI: 10.1016/j.archoralbio.2019.104527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study evaluated the influence of the addition of fillers and/or protease inhibitors [(epigallocatechin gallate - EGCG) or (chlorhexidine - CHX)] in experimental resins in the protein profile of the acquired pellicle (AP) formed in situ on enamel-resin specimens. DESIGN 324 samples of bovine enamel were prepared (6 × 6 × 2 mm). The center of each sample was added with one of the following experimental resins (Bis-GMA+TEGDMA): no filler, no inhibitor (NF-NI); filler no inhibitor (F-NI); no filler plus CHX (NF-CHX); filler plus CHX (F-CHX); no filler plus EGCG (NF-EGCG); filler plus EGCG (F-EGCG). Nine subjects used a removable jaw appliance (BISPM - Bauru in situ pellicle model) with 2 slabs from each group. The AP was formed for 120 min, in 9 days and collected with electrode filter paper soaked in 3% citric acid. The pellicles collected were processed for analysis by LC-ESI-MS/MS. RESULTS A total of 140 proteins were found in the AP collected from all the substrates. Among them, 16 proteins were found in common in all the groups: 2 isoforms of Basic salivary proline-rich protein, Cystatin-S, Cystatin-AS, Cystatin-SN, Histatin-1, Ig alpha-1 chain C region, Lysozyme C, Mucin-7, Proline-rich protein 4, Protein S100-A9, Salivary acidic proline-rich phosphoprotein ½ and Statherin. Proteins with other functions, such as metabolism and transport, were also identified. CONCLUSION The composition of the experimental resins influenced the protein profile of the AP. This opens a new avenue for the development of new materials able to guide for AP engineering, thus conferring protection to the adjacent teeth.
Collapse
Affiliation(s)
- Vinícius Taioqui Pelá
- Department of Genetics and Evolution Federal University of Sao Carlos, São Carlos, SP, Brazil.
| | - Anuradha Prakki
- Department of Clinical Sciences, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| | - Linda Wang
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | | | - Luiza Paula Silva Cassiano
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | | - Aline Lima Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil.
| | | |
Collapse
|
28
|
Kensche A, Dürasch A, König B, Henle T, Hannig C, Hannig M. Characterization of the in situ pellicle ultrastructure formed under the influence of bovine milk and milk protein isolates. Arch Oral Biol 2019; 104:133-140. [PMID: 31202148 DOI: 10.1016/j.archoralbio.2019.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The present study aimed to investigate if bovine milk or milk protein isolates, respectively, alter the ultrastructure of thein situ pellicle and might therefore have an influence on oral health. METHODS In situ pellicle samples were formed on bovine enamel slabs exposed in the oral cavity of three subjects for 6, 30, 60 or 120 min. After 3 min of pellicle formation, mouthrinses were performed for 3 min with (non-)homogenized UHT- or fresh milk (0.3% or 3.8% fat), 30% UHT-treated cream or different types of casein- or milk protein isolates containing preparations. The specimens were removed after the exposure times and transmission electron microscopy (TEM) was performed. Native pellicle samples served as controls. RESULTS Topical ultrastructural pellicle modifications were detected after mouthrinses with all types of homogenized UHT- or fresh milk and after the application of a 3% native casein micelles containing experimental solution. Atypical globular protein structures, identified as casein micelles, were temporarily adsorbed onto the pellicle. They were closely associated with lipid droplets. Furthermore, the mouthrinses occasionally affected the morphology of salivary bacteria. However, no notable ultrastructural alterations remained after 120 min of pellicle formation. CONCLUSION For the first time, bovine milk- and micellar casein-induced pellicle modifications were revealed by TEM. The adsorption of micellar casein is possibly due to its molecular interactions. CLINICAL SIGNIFICANCE Bovine milk or micellar caseins provide some potential for the development of preventive strategies against bacterial biofilm formation or erosive processes at the tooth surface.
Collapse
Affiliation(s)
- A Kensche
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany.
| | - A Dürasch
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | - B König
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D- 66421 Homburg/Saar, Germany
| | - T Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | - C Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - M Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D- 66421 Homburg/Saar, Germany
| |
Collapse
|
29
|
Zimmermann R, Delius J, Friedrichs J, Stehl S, Hofmann T, Hannig C, Rehage M, Werner C, Hannig M. Impact of oral astringent stimuli on surface charge and morphology of the protein-rich pellicle at the tooth-saliva interphase. Colloids Surf B Biointerfaces 2018; 174:451-458. [PMID: 30497006 DOI: 10.1016/j.colsurfb.2018.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
The proteinaceous pellicle layer, which develops upon contact with saliva on the surface of teeth, is important for the formation of oral biofilms and for the protection of teeth from abrasion and chemically induced erosion. Astringent food ingredients comprising polyphenols, cationic macromolecules, and multivalent metal salts are known to interact with the pellicle. However, astringent-induced changes in the physicochemical properties of the tooth-saliva interphase are not yet completely understood. Here we provide comprehensive insights into interfacial charging, ultrastructure, thickness, and surface roughness of the pellicles formed on the model substrates silicon oxide (SiO2), Teflon® AF, and hydroxyapatite, as well as on bovine enamel before and after incubation with the astringents epigallocatechin gallate, tannic acid, iron(III) salt, lysozyme, and chitosan. Quartz crystal microbalance with dissipation monitoring demonstrated viscous behavior of untreated pellicles formed in vitro on the different materials. Electrokinetic (streaming current) measurements revealed that cationic astringents reverse the charge of native pellicles, whereas polyphenols did not change the charge under physiological pH condition. In addition, transmission electron microscopy and atomic force microscopy showed a concentration-dependent increase in average film thickness and pellicle surface roughness as induced by astringents. These multifaceted alterations of the salivary pellicle may come along with an increase in roughness perceived on the teeth, which is part of the complex sensations of oral astringency.
Collapse
Affiliation(s)
- Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | - Judith Delius
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany.
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Susanne Stehl
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Melanie Rehage
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421 Homburg/Saar, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421 Homburg/Saar, Germany
| |
Collapse
|
30
|
Habluetzel A, Schmid C, Carvalho TS, Lussi A, Eick S. Impact of honey on dental erosion and adhesion of early bacterial colonizers. Sci Rep 2018; 8:10936. [PMID: 30026515 PMCID: PMC6053432 DOI: 10.1038/s41598-018-29188-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/05/2018] [Indexed: 01/20/2023] Open
Abstract
The aim was to investigate if honey causes erosion and if salivary pellicle modified with honey, or its components, or the by-product propolis has a protective effect against dental erosion and adhesion of early bacterial colonizers. The tested substances were: 3 types of honey, methylglyoxal (MGO), hydrogen peroxide, propolis. First in the erosion experiment, 120 human enamel specimens were covered with salivary pellicle and modified with the substances. Then they were eroded with 1% citric acid, pH 3.6 for 2 min, before surface hardness was measured. In the microbiological assay, the enamel specimens (n = 126) covered with modified salivary pellicle were contaminated with bacterial suspensions. The antimicrobial activity of each substance and their effect on early bacterial colonizer adhesion and biofilm formation were determined. Despite a low pH, honey did not cause erosion. On the other hand, pellicle modification with the tested solutions did not protect the enamel from erosion. Microbiologically, the 3 honeys inhibited species-specific growth of oral bacteria. Propolis decreased initial attachment of Streptococcus gordonii, while one honey inhibited demineralization of enamel by biofilm. In conclusion, pellicle modification with honey, or its components, or propolis did neither protect against erosion nor promote it. Propolis presented some bacterial adhesion inhibition.
Collapse
Affiliation(s)
- Alexandra Habluetzel
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Christoph Schmid
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Thiago S Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Adrian Lussi
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
31
|
Mechanisms of astringency: Structural alteration of the oral mucosal pellicle by dietary tannins and protective effect of bPRPs. Food Chem 2018; 253:79-87. [PMID: 29502847 DOI: 10.1016/j.foodchem.2018.01.141] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 01/22/2018] [Indexed: 12/25/2022]
Abstract
The interaction of tannins with salivary proteins is involved in astringency. This paper focussed on saliva lining oral mucosae, the mucosal pellicle. Using a cell-based model, the impact of two dietary tannins (EgC and EgCG) on the mucosal pellicle structure and properties was investigated by microscopic techniques. The role of basic Proline-Rich-Proteins (bPRPs) in protecting the mucosal pellicle was also evaluated. At low (0.05 mM) tannin concentration, below the sensory detection threshold, the distribution of salivary mucins MUC5B on cells remained unaffected. At 0.5 and 1 mM, MUC5B-tannin aggregates were observed and their size increased with tannin concentration and with galloylation. In addition, 3 mM EgCG resulted in higher friction forces measured by AFM. In presence of bPRPs, the size distribution of aggregates was greatly modified and tended to resemble that of the "no tannin" condition, highlighting that bPRPs have a protective effect against the structural alteration induced by dietary tannins.
Collapse
|
32
|
Kensche A, Kirsch J, Mintert S, Enders F, Pötschke S, Basche S, König B, Hannig C, Hannig M. Impact of customary fluoride rinsing solutions on the pellicle's protective properties and bioadhesion in situ. Sci Rep 2017; 7:16584. [PMID: 29185495 PMCID: PMC5707358 DOI: 10.1038/s41598-017-16677-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/10/2017] [Indexed: 01/20/2023] Open
Abstract
This study investigated the impact of customary fluoride based mouthrinses on the ultrastructure and the functional properties of the in situ pellicle, considering the prevention of erosion (8 volunteers) and initial biofilm formation (12 volunteers). Bovine enamel slabs were carried intraorally. After 1 min of pellicle formation, the subjects rinsed with elmex Kariesschutz (A), Dontodent Med Care (B), meridol (C) or elmex Zahnschmelzschutz Professional (D) for 1 min. In situ pellicle formation was continued up to 30 min/8 h before processing the slabs in vitro. Erosion was simulated by incubating the specimens in HCl (pH 3.0, 2.3, 2.0) for 120 s, measuring the kinetics of calcium/phosphate release photometrically; representative samples were evaluated by TEM and EDX. Bacterial adhesion was visualized fluorescence microscopically (DAPI/BacLight). Native enamel slabs or physiological pellicle samples served as controls. All investigated mouthrinses enhanced the erosion preventive pellicle effect in dependence of the pH-value. A significant decrease of Ca/P release at all pH values was achieved after rinsing with D; TEM/EDX confirmed ultrastructural pellicle modifications. All mouthrinses tendentially reduced bacterial adherence, however not significantly. The mouthrinse containing NaF/AmF/SnCl2 (D) offers an effective oral hygiene supplement to prevent caries and erosion.
Collapse
Affiliation(s)
- A Kensche
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307, Dresden, Germany.
| | - J Kirsch
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - S Mintert
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - F Enders
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - S Pötschke
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - S Basche
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - B König
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D- 66421, Homburg/Saar, Germany
| | - C Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307, Dresden, Germany
| | - M Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, D- 66421, Homburg/Saar, Germany
| |
Collapse
|
33
|
Kirsch J, Basche S, Neunzehn J, Dede M, Dannemann M, Hannig C, Weber MT. Is it really penetration? Locomotion of devitalized Enterococcus faecalis cells within dentinal tubules of bovine teeth. Arch Oral Biol 2017; 83:289-296. [PMID: 28865352 DOI: 10.1016/j.archoralbio.2017.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/10/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The aim of the present study was to evaluate the penetration characteristics of devitalized and vital E. faecalis cells into root dentinal tubules. DESIGN Thirteen root canals were incubated with devitalized (4days, 7days, 14days, 28days) and vital (28days) E. faecalis strains (streptomycin-resistant strains) after root canal enlargement (size 80, taper 0.02) with 3 % NaOCl solution. The smear layer was intentionally removed with 20 % EDTA before inoculation. Samples were processed for analysis by scanning electron microscopy (SEM) and DAPI (4',6-diamidino-2-phenylindole) staining. DAPI was conducted for fluorescence microscopic visualization of the bacterial penetration into dentinal tubules. The penetration depth was calculated with the measurement tool of the Axio Vision program (Zeiss, Jena, Germany). RESULTS Devitalized E. faecalis strains were able to penetrate into dentinal tubules of the root canal. Apikal penetration depths of the devitalized cells were 100.67μm±26.54μm after 7days, 230.67μm±111.5μm after 14days and 266.5μm±92.63μm after 28days of incubation. The total number and penetration depth of E. faecalis cells was lower compared to a vital suspension of E. faecalis (1002.45μm) after 28days. It was noted that bacterial penetration was not common to all of the dentinal tubules in the vital E. faecalis control and especially in the devitalized control. CONCLUSIONS Increased exposure times of devitalized bacteria into root canals lead to an increased number of penetrated dentinal tubules as well as to a deeper penetration.
Collapse
Affiliation(s)
- Jasmin Kirsch
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany.
| | - Sabine Basche
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Jörg Neunzehn
- Technische Universität Dresden, Institute of Material Science, Chair for Biomaterials, TU Dresden, Budapester Strasse 27, 01069 Dresden, Germany
| | - Maria Dede
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Martin Dannemann
- Technische Universität Dresden, Institute of Lightweight Engineering and Polymer Technology (ILK), Faculty of Mechanical Engineering, Holbeinstrasse 3, Dresden, 01307, Germany
| | - Christian Hannig
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Marie-Theres Weber
- Clinic of Operative Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| |
Collapse
|
34
|
Rehage M, Delius J, Hofmann T, Hannig M. Oral astringent stimuli alter the enamel pellicle's ultrastructure as revealed by electron microscopy. J Dent 2017; 63:21-29. [PMID: 28619693 DOI: 10.1016/j.jdent.2017.05.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES This electron microscopic study aimed at investigating effects of oral astringent stimuli on the enamel pellicle's morphology. METHODS Pellicles were formed in situ within 30min on bovine enamel slabs, fixed to individuals' upper jaw splints. The pellicle-coated specimens were immersed in vitro in seven diverse astringent solutions and subsequently analyzed by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, as well as transmission electron microscopy (TEM). Four biocompatible astringents, namely the polyphenol epigallocatechin gallate, the metal salt iron(III) sulfate, the basic protein lysozyme, and the aminopolysaccharide chitosan, were additionally applied in situ. After rinsing the oral cavity with these compounds, the pellicle's ultrastructure was imaged by SEM and TEM, respectively. Untreated pellicle samples served as controls. RESULTS Exposure to polyphenols and lysozyme induced particularly thicker and electron-denser pellicles in comparison to the control pellicle with similar characteristics in vitro and in situ. In contrast, acidic chitosan and metal salt solutions, respectively, revealed minor pellicle alterations. The incorporation of Fe and Al into the pellicles treated with the corresponding inorganic salts was verified by EDX analysis. CONCLUSIONS Astringent-induced pellicle modifications were for the first time visualized by TEM. The ultrastructural alterations of the dental pellicle may partly explain the tooth-roughening effect caused by oral astringent stimuli. CLINICAL SIGNIFICANCE Astringents might modify the pellicle's protective properties against dental erosion, attrition, as well as bacterial adhesion, and by this means may influence tooth health. The findings may thus be particularly relevant for preventive dentistry.
Collapse
Affiliation(s)
- Melanie Rehage
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Building 73, Saarland University, D-66421 Homburg, Germany
| | - Judith Delius
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Building 73, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|