1
|
Pinna A, Colasanti A. The Neurometabolic Basis of Mood Instability: The Parvalbumin Interneuron Link-A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:689473. [PMID: 34616292 PMCID: PMC8488267 DOI: 10.3389/fphar.2021.689473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
The neurobiological bases of mood instability are poorly understood. Neuronal network alterations and neurometabolic abnormalities have been implicated in the pathophysiology of mood and anxiety conditions associated with mood instability and hence are candidate mechanisms underlying its neurobiology. Fast-spiking parvalbumin GABAergic interneurons modulate the activity of principal excitatory neurons through their inhibitory action determining precise neuronal excitation balance. These interneurons are directly involved in generating neuronal networks activities responsible for sustaining higher cerebral functions and are especially vulnerable to metabolic stress associated with deficiency of energy substrates or mitochondrial dysfunction. Parvalbumin interneurons are therefore candidate key players involved in mechanisms underlying the pathogenesis of brain disorders associated with both neuronal networks' dysfunction and brain metabolism dysregulation. To provide empirical support to this hypothesis, we hereby report meta-analytical evidence of parvalbumin interneurons loss or dysfunction in the brain of patients with Bipolar Affective Disorder (BPAD), a condition primarily characterized by mood instability for which the pathophysiological role of mitochondrial dysfunction has recently emerged as critically important. We then present a comprehensive review of evidence from the literature illustrating the bidirectional relationship between deficiency in mitochondrial-dependent energy production and parvalbumin interneuron abnormalities. We propose a mechanistic explanation of how alterations in neuronal excitability, resulting from parvalbumin interneurons loss or dysfunction, might manifest clinically as mood instability, a poorly understood clinical phenotype typical of the most severe forms of affective disorders. The evidence we report provides insights on the broader therapeutic potential of pharmacologically targeting parvalbumin interneurons in psychiatric and neurological conditions characterized by both neurometabolic and neuroexcitability abnormalities.
Collapse
Affiliation(s)
- Antonello Pinna
- School of Life Sciences, University of Sussex, Brighton, United Kingdom.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Alessandro Colasanti
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
2
|
Abstract
Neuropsychiatric sequalae to coronavirus disease 2019 (COVID-19) infection are beginning to emerge, like previous Spanish influenza and severe acute respiratory syndrome episodes. Streptococcal infection in paediatric patients causing obsessive compulsive disorder (PANDAS) is another recent example of an infection-based psychiatric disorder. Inflammation associated with neuropsychiatric disorders has been previously reported but there is no standard clinical management approach established. Part of the reason is that it is unclear what factors determine the specific neuronal vulnerability and the efficacy of anti-inflammatory treatment in neuroinflammation. The emerging COVID-19 data suggested that in the acute stage, widespread neuronal damage appears to be the result of abnormal and overactive immune responses and cytokine storm is associated with poor prognosis. It is still too early to know if there are long-term-specific neuronal or brain regional damages associated with COVID-19, resulting in distinct neuropsychiatric disorders. In several major psychiatric disorders where neuroinflammation is present, patients with abnormal inflammatory markers may also experience less than favourable response or treatment resistance when standard treatment is used alone. Evidence regarding the benefits of co-administered anti-inflammatory agents such as COX-2 inhibitor is encouraging in selected patients though may not benefit others. Disease-modifying therapies are increasingly being applied to neuropsychiatric diseases characterised by abnormal or hyperreactive immune responses. Adjunct anti-inflammatory treatment may benefit selected patients and is definitely an important component of clinical management in the presence of neuroinflammation.
Collapse
|
3
|
Gilabert-Juan J, López-Campos G, Sebastiá-Ortega N, Guara-Ciurana S, Ruso-Julve F, Prieto C, Crespo-Facorro B, Sanjuán J, Moltó MD. Time dependent expression of the blood biomarkers EIF2D and TOX in patients with schizophrenia. Brain Behav Immun 2019; 80:909-915. [PMID: 31078689 DOI: 10.1016/j.bbi.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/05/2019] [Accepted: 05/08/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND During last years, there has been an intensive search for blood biomarkers in schizophrenia to assist in diagnosis, prognosis and clinical management of the disease. METHODS In this study, we first conducted a weighted gene coexpression network analysis to address differentially expressed genes in peripheral blood from patients with chronic schizophrenia (n = 30) and healthy controls (n = 15). The discriminating performance of the candidate genes was further tested in an independent cohort of patients with first-episode schizophrenia (n = 124) and healthy controls (n = 54), and in postmortem brain samples (cingulate and prefrontal cortices) from patients with schizophrenia (n = 34) and healthy controls (n = 35). RESULTS The expression of the Eukaryotic Translation Initiation Factor 2D (EIF2D) gene, which is involved in protein synthesis regulation, was increased in the chronic patients of schizophrenia. On the contrary, the expression of the Thymocyte Selection-Associated High Mobility Group Box (TOX) gene, involved in immune function, was reduced. EIF2D expression was also altered in first-episode schizophrenia patients, but showing reduced levels. Any of the postmortem brain areas studied did not show differences of expression of both genes. CONCLUSIONS EIF2D and TOX are putative blood markers of chronic patients of schizophrenia, which expression change from the onset to the chronic disease, unraveling new biological pathways that can be used for the development of new intervention strategies in the diagnosis and prognosis of schizophrenia disease.
Collapse
Affiliation(s)
- Javier Gilabert-Juan
- Department of Genetics, Universitat de València, Valencia, Spain; Neurobiology Unit, Cell Biology Department, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain.
| | | | - Noelia Sebastiá-Ortega
- Department of Genetics, Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain
| | | | - Fulgencio Ruso-Julve
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Carlos Prieto
- Servicio de Bioinformática, Nucleus, Universidad de Salamanca, Salamanca, Spain
| | - Benedicto Crespo-Facorro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; University Hospital Marqués de Valdecilla, IDIVAL, Department of Psychiatry, School of Medicine, University of Cantabria, Santander, Spain
| | - Julio Sanjuán
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain; Unit of Psychiatry, Universitat de València, Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València, Valencia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain; INCLIVA, Valencia, Spain
| |
Collapse
|
4
|
Hafizi S, Guma E, Koppel A, Da Silva T, Kiang M, Houle S, Wilson AA, Rusjan PM, Chakravarty MM, Mizrahi R. TSPO expression and brain structure in the psychosis spectrum. Brain Behav Immun 2018; 74:79-85. [PMID: 29906515 PMCID: PMC6289857 DOI: 10.1016/j.bbi.2018.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023] Open
Abstract
Psychosis is associated with abnormal structural changes in the brain including decreased regional brain volumes and abnormal brain morphology. However, the underlying causes of these structural abnormalities are less understood. The immune system, including microglial activation, has been implicated in the pathophysiology of psychosis. Although previous studies have suggested a connection between peripheral proinflammatory cytokines and structural brain abnormalities in schizophrenia, no in-vivo studies have investigated whether microglial activation is also linked to brain structure alterations previously observed in schizophrenia and its putative prodrome. In this study, we investigated the link between mitochondrial 18 kDa translocator protein (TSPO) and structural brain characteristics (i.e. regional brain volume, cortical thickness, and hippocampal shape) in key brain regions such as dorsolateral prefrontal cortex and hippocampus of a large group of participants (N = 90) including individuals at clinical high risk (CHR) for psychosis, first-episode psychosis (mostly antipsychotic-naïve) patients, and healthy volunteers. The participants underwent structural brain MRI scan and [18F]FEPPA positron emission tomography (PET) targeting TSPO. A significant [18F]FEPPA binding-by-group interaction was observed in morphological measures across the left hippocampus. In first-episode psychosis, we observed associations between [18F]FEPPA VT (total volume of distribution) and outward and inward morphological alterations, respectively, in the dorsal and ventro-medial portions of the left hippocampus. These associations were not significant in CHR or healthy volunteers. There was no association between [18F]FEPPA VT and other structural brain characteristics. Our findings suggest a link between TSPO expression and alterations in hippocampal morphology in first-episode psychosis.
Collapse
Affiliation(s)
- Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Elisa Guma
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Alex Koppel
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michael Kiang
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sylvain Houle
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Alan A. Wilson
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M. Rusjan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - M. Mallar Chakravarty
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Departments of Psychiatry and Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Schifani C, Hafizi S, Da Silva T, Watts JJ, Khan MS, Mizrahi R. Using molecular imaging to understand early schizophrenia-related psychosis neurochemistry: a review of human studies. Int Rev Psychiatry 2017; 29:555-566. [PMID: 29219634 PMCID: PMC8011813 DOI: 10.1080/09540261.2017.1396205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Schizophrenia is a chronic psychiatric disorder generally preceded by a so-called prodromal phase, which is characterized by attenuated psychotic symptoms. Advances in clinical research have enabled prospective identification of those individuals who are at clinical high risk (CHR) for psychosis, with the power to predict psychosis onset within the near future. Changes in several brain neurochemical systems and molecular mechanisms are implicated in the pathophysiology of schizophrenia and the psychosis spectrum, including the dopaminergic, γ-aminobutyric acid (GABA)-ergic, glutamatergic, endocannabinoid, and immunologic (i.e. glial activation) system and other promising future directions such as synaptic density, which are possible to quantify in vivo using positron emission tomography (PET). This paper aims to review in vivo PET studies in the mentioned systems in the early course of psychosis (i.e. CHR and first-episode psychosis (FEP)). The results of reviewed studies are promising; however, the current understanding of the underlying pathology of psychosis is still limited. Importantly, promising efforts involve the development of novel PET radiotracers targeting systems with growing interest in schizophrenia, like the nociceptive system and synaptic density.
Collapse
Affiliation(s)
- Christin Schifani
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Sina Hafizi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tania Da Silva
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Jeremy Joseph Watts
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - M. Saad Khan
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Romina Mizrahi
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|