1
|
Metem V, Thonglam J, Juncheed K, Khangkhamano M, Kwanyuang A, Meesane J. Tissue-mimicking composite barrier membranes to prevent abdominal adhesion formation after surgery. J Mech Behav Biomed Mater 2024; 152:106417. [PMID: 38281440 DOI: 10.1016/j.jmbbm.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Postoperative abdominal adhesions often occur after abdominal surgery; barrier membranes which mimic peritoneal tissue can be constructed to prevent abdominal adhesions. To this end, silk fibroin (SF) sheets were coated with polyvinyl alcohol (PVA) and agarose (AGA) at PVA:AGA ratios of 100:0, 70:30, 50:50, 30:70, and 0:100 to create a composite anti-adhesive barrier and allow us to identify a suitable coating ratio. The membranes were characterized in terms of their molecular organization, structure, and morphology using Fourier transform Infrared spectrometer (FT-IR), differential scanning calorimeter (DSC), and scanning electron microscope (SEM), respectively. The physical and mechanical properties of the membranes and their biological performance (i.e., fibroblast proliferation and invasion) were tested in vitro. Each membrane showed both smooth and rough surface characteristics. Membranes coated with PVA:AGA at ratios of 100:0, 70:30, 50:50, and 30:70 exhibited more -OH and amide III moieties than those coated with 0:100 PVA:AGA, which consequently affected structural organization, degradation, and fibroblast viability. The 0:100 PVA:AGA-coated degraded the fastest. Barrier membranes coated with 100:0 and 70:30 PVA: AGA demonstrated reduced fibroblast proliferation and attachment. The membrane coated with 70:30 PVA:AGA exhibited a stable appearance, and did not curl under wet conditions. Therefore, SF sheets coated with 70:30 PVA:AGA show promise as anti-adhesive barrier membranes for further development.
Collapse
Affiliation(s)
- Varistha Metem
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Jutakan Thonglam
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Kantida Juncheed
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Matthana Khangkhamano
- Department of Mine and Materials Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Atichart Kwanyuang
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.
| |
Collapse
|
2
|
Sheng L, Shan Y, Dai H, Yu M, Sun J, Huang L, Wang F, Sheng M. Intercellular communication in peritoneal dialysis. Front Physiol 2024; 15:1331976. [PMID: 38390449 PMCID: PMC10882094 DOI: 10.3389/fphys.2024.1331976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Long-term peritoneal dialysis (PD) causes structural and functional alterations of the peritoneal membrane. Peritoneal deterioration and fibrosis are multicellular and multimolecular processes. Under stimulation by deleterious factors such as non-biocompatibility of PD solution, various cells in the abdominal cavity show differing characteristics, such as the secretion of different cytokines, varying protein expression levels, and transdifferentiation into other cells. In this review, we discuss the role of various cells in the abdominal cavity and their interactions in the pathogenesis of PD. An in-depth understanding of intercellular communication and inter-organ communication in PD will lead to a better understanding of the pathogenesis of this disease, enabling the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Kunitatsu K, Yamamoto Y, Nasu S, Taniji A, Kawashima S, Yamagishi N, Ito T, Inoue S, Kanai Y. Novel Peritoneal Sclerosis Rat Model Developed by Administration of Bleomycin and Lansoprazole. Int J Mol Sci 2023; 24:16108. [PMID: 38003303 PMCID: PMC10671295 DOI: 10.3390/ijms242216108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
In our preliminary experiment, peritoneal sclerosis likely induced by peritoneal dialysis was unexpectedly observed in the livers of rats given bleomycin and lansoprazole. We examined whether this peritoneal thickening around the liver was time-dependently induced by administration of both drugs. Male Wistar rats were injected with bleomycin and/or lansoprazole for 2 or 4 weeks. The 3YB-1 cell line derived from rat fibroblasts was treated by bleomycin and/or lansoprazole for 24 h. The administration of both drugs together, but not individually, thickened the peritoneal tissue around the liver. There was accumulation of collagen fibers, macrophages, and eosinophils under mesothelial cells. Expressions of Col1a1, Mcp1 and Mcp3 genes were increased in the peritoneal tissue around the liver and in 3YB-1 cells by the administration of both drugs together, and Opn genes had increased expressions in this tissue and 3YB-1 cells. Mesothelial cells indicated immunoreactivity against both cytokeratin, a mesothelial cell marker, and αSMA, a fibroblast marker, around the livers of rats given both drugs. Administration of both drugs induced the migration of macrophages and eosinophils and induced fibrosis associated with the possible activation of fibroblasts and the possible promotion of the mesothelial-mesenchymal transition. This might become a novel model of peritoneal sclerosis for peritoneal dialysis.
Collapse
Affiliation(s)
- Kosei Kunitatsu
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yuta Yamamoto
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shota Nasu
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Akira Taniji
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shuji Kawashima
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Naoko Yamagishi
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Takao Ito
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Yoshimitsu Kanai
- Department of Anatomy and Cell Biology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
4
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Sarabadani M, Tavana S, Mirzaeian L, Fathi R. Co-culture with peritoneum mesothelial stem cells supports the in vitro growth of mouse ovarian follicles. J Biomed Mater Res A 2021; 109:2685-2694. [PMID: 34228401 DOI: 10.1002/jbm.a.37260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
The important roles played by the ovarian microenvironment and cell interactions in folliculogenesis suggest promising approaches for in vivo growth of ovarian follicles using appropriate scaffolds containing suitable cell sources. In this study, we have investigated the growth of early preantral follicles in the presence of decellularized mesenteric peritoneal membrane (MPM), peritoneum mesothelial stem cells (PMSCs), and conditioned medium (CM) of PMSCs. MPM of mouse was first decellularized; PMSCs were isolated from MPM and cultured and their conditioned medium (CM) was collected. Mouse follicles were separated into four groups: (1) culture in base medium (control), (2) culture in decellularized MPM (DMPM), (3) co-culture with PMSCs (Co-PMSCs), and (4) culture in CM of PMSCs (CM-PMSCs). Qualitative and quantitative assessments were performed to evaluate intact mesenteric peritoneal membrane (IMPM) as well as decellularized ones. After culturing the ovarian follicles, follicular and oocyte diameter, viability, eccentric oocyte percentage, and estradiol hormone amounts were evaluated. Quantitative and qualitative evaluations confirmed removal of cells and retention of the essential fibers in MPM after the decellularization process. Follicular parameters showed that Co-PMSCs better support in vitro growth and development of ovarian follicles than the other groups. The eccentric rate and estradiol production were statistically higher for the Co-PMSCs group than for the CM-PMSCs and control groups. Although the culture of early preantral follicles on DMPM and CM-PMSCs could improve in vitro follicular growth, co-culture of follicles with PMSCs showed even greater improvements in terms of follicular growth and diameter.
Collapse
Affiliation(s)
- Mahdieh Sarabadani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Somayeh Tavana
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Leila Mirzaeian
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
6
|
Small Bowel Obstruction Induced by Concurrent Postoperative Intra-Abdominal Adhesions and Small Bowel Fecal Materials in a Young Dog. Vet Sci 2021; 8:vetsci8050083. [PMID: 34066010 PMCID: PMC8151118 DOI: 10.3390/vetsci8050083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
A 7-month-old neutered male poodle dog presented with general deterioration and gastrointestinal symptoms after two separate operations: a jejunotomy for small-intestinal foreign body removal and an exploratory laparotomy for diagnosis and treatment of the gastrointestinal symptoms that occurred 1 month after the first surgery. The dog was diagnosed as having small-bowel obstruction (SBO) due to intra-abdominal adhesions and small-bowel fecal material (SBFM) by using abdominal radiography, ultrasonography, computed tomography, and laparotomy. We removed the obstructive adhesive lesion and SBFM through enterotomies and applied an autologous peritoneal graft to the released jejunum to prevent re-adhesion. After the surgical intervention, the dog recovered quickly and was healthy at 1 year after the surgery without gastrointestinal signs. To our knowledge, this study is the first report of a successful treatment of SBO induced by postoperative intra-abdominal adhesions and SBFM after laparotomies in a dog.
Collapse
|
7
|
Chen B, Chen X, Wang W, Shen J, Song Z, Ji H, Zhang F, Wu J, Na J, Li S. Tissue-engineered autologous peritoneal grafts for bladder reconstruction in a porcine model. J Tissue Eng 2021; 12:2041731420986796. [PMID: 33613958 PMCID: PMC7874343 DOI: 10.1177/2041731420986796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/18/2020] [Indexed: 01/08/2023] Open
Abstract
Ileal neobladder construction is a common treatment for patients with bladder cancer after radical cystectomy. However, metabolic disorders caused by transposed bowel segments occur frequently. Bladder tissue engineering is a promising alternative approach. Although numerous studies have reported bladder reconstruction using acellular and cellular scaffolds, there are also disadvantages associated with these methods, such as immunogenicity of synthetic grafts and incompatible mechanical properties of the biomaterials. Here, we engineered an autologous peritoneal graft consisting of a peritoneal sheet and the seromuscular layer from the ileum. Three months after the surgery, compared with the neobladder made from the ileum, the reconstructed neobladder using our new method showed normal function and better gross morphological characteristics. Moreover, histopathological and transcriptomic analysis revealed urothelium-like cells expressing urothelial biomarkers appeared in the neobladder, while no such changes were observed in the control group. Overall, our study provides a new strategy for bladder tissue engineering and informs a variety of future research prospects.
Collapse
Affiliation(s)
- Biao Chen
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Xia Chen
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Wenjia Wang
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Jun Shen
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhiqiang Song
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Haoyu Ji
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Fangyuan Zhang
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Jianchen Wu
- Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing, China
| | - Shengwen Li
- School of Clinical Medicine, Tsinghua University, Beijing, China.,Department of Urology, The First Hospital of Tsinghua University, Beijing, China
| |
Collapse
|
8
|
[Standardized histomorphological processing of peritoneal biopsies as part of the German Peritoneal Biopsy Registry (GRIP, German registry in PD)]. DER PATHOLOGE 2020; 41:634-642. [PMID: 32894337 PMCID: PMC7653789 DOI: 10.1007/s00292-020-00815-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The peritoneal lining of the abdominal cavity consists of a parietal and visceral sheet. The serosa is an interesting organ, which in medical practice is particularly important in the context of chronic peritoneal dialysis (PD). This method of renal replacement therapy utilizes the semipermeability of the peritoneal surface by applying PD solutions of differing osmolarity to eliminate toxic substances and regulate fluid and electrolyte equilibrium. This method is an ideal approach especially for younger patients and is very effective at least for some time. Pre-existing injury to the peritoneum, for example as a consequence of chronic renal insufficiency or associated comorbidities and inflammatory changes that develop during PD, results in a structural remodelling of the serosa. As a consequence, the filtering function of the serosa is lost and PD has to be replaced by another renal replacement therapy. Thorough knowledge of the morphology of peritoneal changes as well as of the risk factors is of paramount importance for therapeutic management and prognosis of PD patients. In order to take this into account, the German Registry In Peritoneal Dialysis (Deutsches Peritonealbiopsieregister, GRIP) was founded a few years ago, which now includes roughly 1700 biopsies, of which detailed clinical and histomorphological information was systematically acquired and collected.
Collapse
|
9
|
Galectin-3 orchestrates the histology of mesentery and protects liver during lupus-like syndrome induced by pristane. Sci Rep 2019; 9:14620. [PMID: 31601823 PMCID: PMC6786989 DOI: 10.1038/s41598-019-50564-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 (Gal-3) controls intercellular and cell-extracellular matrix interactions during immunological responses. In chronic inflammation, Gal-3 is associated with fibrotic events, regulates B cell differentiation and delays lupus progression. Gal-3 deficient mice (Lgals3−/−) have intense germinal center formation and atypical plasma cell generation correlated to high levels IgG, IgE, and IgA. Here, we used pristane (2,6,10,14-tetramethylpentadecane) to induce lupus-like syndrome in Lgals3−/− and Lgals3+/+ BALB/c mice. Mesentery and peritoneal cells were monitored because promptly react to pristane injected in the peritoneal cavity. For the first time, mesenteric tissues have been associated to the pathogenesis of experimental lupus-like syndrome. In Lgals3+/+ pristane-induced mice, mesentery was hallmarked by intense fibrogranulomatous reaction restricted to submesothelial regions and organized niches containing macrophages and B lymphocytes and plasma cells. In contrast, Lgals3−/− pristane-treated mice had diffuse mesenteric fibrosis affecting submesothelium and peripheral tissues, atypical M1/M2 macrophage polarization and significant DLL1+ cells expansion, suggesting possible involvement of Notch/Delta pathways in the disease. Early inflammatory reaction to pristane was characterized by significant disturbances on monocyte recruitment, macrophage differentiation and dendritic cell (DC) responses in the peritoneal cavity of pristane-induced Lgals3−/− mice. A correlative analysis showed that mesenteric damages in the absence of Gal-3 were directly associated with severe portal inflammation and hepatitis. In conclusion, it has suggested that Gal-3 orchestrates histological organization in the mesentery and prevents lupoid hepatitis in experimental lupus-like syndrome by controlling macrophage polarization, Notch signaling pathways and DC differentiation in mesenteric structures.
Collapse
|