1
|
Liu X, Xu X, Liao Y, Yao W, Geng X, Zeng X, Sun X, Tang A, Yang P. Psychological stress to ovalbumin peptide-specific T-cell receptor transgenic mice impairs the suppressive ability of type 1 regulatory T cell. Immunology 2024; 172:210-225. [PMID: 38366844 DOI: 10.1111/imm.13767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
Numerous diseases of the immune system can be traced back to the malfunctioning of the regulatory T cells. The aetiology is unclear. Psychological stress can cause disruption to the immune regulation. The synergistic effects of psychological stress and immune response on immune regulation have yet to be fully understood. The intention of this study is to analyse the interaction between psychological stress and immune responses and how it affects the functional status of type 1 regulatory T (Tr1) cells. In this study, ovalbumin peptide T-cell receptor transgenic mice were utilised. Mice were subjected to restraint stress to induce psychological stress. An airway allergy murine model was established, in which a mouse strain with RING finger protein 20 (Rnf20)-deficient CD4+ T cells were used. The results showed that concomitant exposure to restraint stress and immune response could exacerbate endoplasmic reticulum stress in Tr1 cells. Corticosterone was responsible for the elevated expression of X-box protein-1 (XBP1) in mouse Tr1 cells after exposure to both restraint stress and immune response. XBP1 mediated the effects of corticosterone on inducing Rnf20 in Tr1 cells. The reduction of the interleukin-10 expression in Tr1 cells was facilitated by Rnf20. Inhibition of Rnf20 alleviated experimental airway allergy by restoring the immune regulatory ability of Tr1 cells. In conclusion, the functions of Tr1 cells are negatively impacted by simultaneous exposure to psychological stress and immune response. Tr1 cells' immune suppressive functions can be restored by inhibiting Rnf20, which has the translational potential for the treatment of diseases of the immune system.
Collapse
MESH Headings
- Animals
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Ovalbumin/immunology
- Stress, Psychological/immunology
- Mice, Transgenic
- Mice
- Interleukin-10/metabolism
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- X-Box Binding Protein 1/metabolism
- X-Box Binding Protein 1/genetics
- Corticosterone/blood
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Endoplasmic Reticulum Stress/immunology
- Disease Models, Animal
- Restraint, Physical
- Mice, Knockout
- Mice, Inbred C57BL
- Respiratory Hypersensitivity/immunology
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| | - Xuejie Xu
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| | - Yun Liao
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
- Shenzhen Clinical College, Guangzhou Chinese Traditional Medical University, Shenzhen, China
| | - Wenkai Yao
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| | - Xiaorui Geng
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Xizhuo Sun
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Aifa Tang
- Department of General Practice Medicine and Respirology, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Pingchang Yang
- Institute of Allergy & Immunology of Shenzhen University School of Medicine, State Key Laboratory of Respiratory Diseases Shenzhen University Division, Shenzhen, China
- Guangdong Provincial Regional Disease Key Laboratory, Shenzhen, China
| |
Collapse
|
2
|
Ike E, Kawano T, Takahashi K, Miyasaka T, Takahashi T. Calcitonin Gene-Related peptide receptor antagonist suppresses allergic asthma responses via downregulation of group 2 innate lymphoid cells in mice. Int Immunopharmacol 2023; 122:110608. [PMID: 37441811 DOI: 10.1016/j.intimp.2023.110608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Allergic asthma is caused by chronic inflammation and hyper-responsiveness of the airway and is thought to be mediated by adaptive T helper type 2 (Th2)-driven immunity. However, recent studies have demonstrated that neuropeptide calcitonin gene-related peptide (CGRP)-mediated activation of group 2 innate lymphoid cells (ILC2s) may contribute to the development of asthma pathogenesis. Here, we investigated the therapeutic effects of the systemic administration of rimegepant, a CGRP receptor antagonist, on allergic asthma. Hyperplasia of CGRP-immunoreactive pulmonary neuroendocrine cells (PNECs) was observed in ovalbumin (OVA)-induced asthmatic mice. Concomitant with this, we observed an increase in the content of total lung CGRP. Upon antigen challenge, the concentration of plasma CGRP was transiently upregulated, whereas CGRP immunoreactivity within PNECs was intensively downregulated, suggesting that PNECs were the most likely source of CGRP. When rimegepant was administered according to CGRP kinetics, it suppressed asthma phenotypes, including airway hyper-responsiveness, infiltration of inflammatory cells in bronchoalveolar lavage fluid (BALF), hyperplasia of mucus-producing cells, and production of the Th2 cytokine IL-5. Moreover, we observed a decrease in the number of ILC2s and their capacity for IL-5 release in the presence of IL-33 in rimegepant-treated mice. In the allergic asthma model, rimegepant suppressed the activation of ILC2s mediated by PNEC-derived CGRP and subsequently impaired adaptive Th2-driven immunity, which ameliorated asthmatic phenotypes. Thus, an anti-CGRP signal strategy to target ILC2 will be a novel and attractive approach for treating allergic asthma that is refractory to other treatments.
Collapse
Affiliation(s)
- Erina Ike
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558 Japan
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558 Japan
| | - Kento Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558 Japan
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558 Japan
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558 Japan.
| |
Collapse
|
3
|
Konstantinou GN, Konstantinou GN, Koulias C, Petalas K, Makris M. Further Understanding of Neuro-Immune Interactions in Allergy: Implications in Pathophysiology and Role in Disease Progression. J Asthma Allergy 2022; 15:1273-1291. [PMID: 36117919 PMCID: PMC9473548 DOI: 10.2147/jaa.s282039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
The complicated interaction between the central and the autonomic (sympathetic, parasympathetic, and enteric) nervous systems on the one hand and the immune system and its components, on the other hand, seems to substantially contribute to allergy pathophysiology, uncovering an under-recognized association that could have diagnostic and therapeutic potentials. Neurons connect directly with and regulate the function of many immune cells, including mast cells, the cells that have a leading role in allergic disorders. Proinflammatory mediators such as cytokines, neurotrophins, chemokines, and neuropeptides are released by immune cells, which stimulate sensory neurons. The release of neurotransmitters and neuropeptides caused by the activation of these neurons directly impacts the functional activity of immune cells and vice versa, playing a decisive role in this communication. Successful application of Pavlovian conditioning in allergic disorders supports the existence of a psychoneuroimmunological interplay in classical allergic hypersensitivity reactions. Activation of neuronal homeostatic reflexes, like sneezing in allergic rhinitis, coughing in allergic asthma, and vomiting in food allergy, offers additional evidence of a neuroimmunological interaction that aims to maintain homeostasis. Dysregulation of this interaction may cause overstimulation of the immune system that will produce profound symptoms and exaggerated hemodynamic responses that will lead to severe allergic pathophysiological events, including anaphylaxis. In this article, we have systematically reviewed and discussed the evidence regarding the role of the neuro-immune interactions in common allergic clinical modalities like allergic rhinitis, chronic rhinosinusitis, allergic asthma, food allergy, atopic dermatitis, and urticaria. It is essential to understand unknown – to most of the immunology and allergy experts – neurological networks that not only physiologically cooperate with the immune system to regulate homeostasis but also pathogenetically interact with more or less known immunological pathways, contribute to what is known as neuroimmunological inflammation, and shift homeostasis to instability and disease clinical expression. This understanding will provide recognition of new allergic phenotypes/endotypes and directions to focus on specialized treatments, as the era of personalized patient-centered medicine, is hastening apace.
Collapse
Affiliation(s)
- George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Christopher Koulias
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
4
|
Galletti JG, de Paiva CS. Age-related changes in ocular mucosal tolerance: Lessons learned from gut and respiratory tract immunity. Immunology 2021; 164:43-56. [PMID: 33837534 DOI: 10.1111/imm.13338] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The ocular surface is the part of the visual system directly exposed to the environment, and it comprises the cornea, the first refractive tissue layer and its surrounding structures. The ocular surface has evolved to keep the cornea smooth and wet, a prerequisite for proper sight, and also protected. To this aim, the ocular surface is a bona fide mucosal niche with an immune system capable of fighting against dangerous pathogens. However, due to the potential harmful effects of uncontrolled inflammation, the ocular surface has several mechanisms to keep the immune response in check. Specifically, the ocular surface is maintained inflammation-free and functional by a particular form of peripheral tolerance known as mucosal tolerance, markedly different from the immune privilege of intraocular structures. Remarkably, conjunctival tolerance is akin to the oral and respiratory tolerance mechanisms found in the gut and airways, respectively. And also similarly, this form of immunoregulation in the eye is affected by ageing just as it is in the digestive and respiratory tracts. With ageing comes an increased prevalence of immune-based ocular surface disorders, which could be related to an age-related impairment of conjunctival tolerance. The purpose of this review was to summarize the present knowledge of ocular mucosal tolerance and how it is affected by the ageing process in the light of the current literature on mucosal immunoregulation of the gut and airways.
Collapse
Affiliation(s)
- Jeremias G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (IMEX), National Academy of Medicine/CONICET, Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Cameron L, Palikhe NS, Laratta C, Vliagoftis H. Elevated Circulating Th2 Cells in Women With Asthma and Psychological Morbidity: A New Asthma Endotype? Clin Ther 2020; 42:1015-1031. [PMID: 32482491 DOI: 10.1016/j.clinthera.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Psychological stress shifts the immune system toward the production of T-helper (Th)-2-mediated cytokines and eosinophilia, increases the risks for both asthma and depression, and can precipitate asthma exacerbations. Th2-mediated inflammation is a characteristic of allergic asthma. We have shown that the levels of CD4+ Th2 cells in the peripheral blood of patients with asthma are associated with severity and/or control of the disease. To improve our understanding of the interactions between stress and asthma symptoms, we evaluated the effects of psychological comorbidity on Th2-mediated inflammation in patients with asthma. METHODS Sixty-six asthmatic patients were recruited from the University of Alberta Asthma Clinic after they gave informed consent. Stress-related effects on asthma and psychological morbidity were assessed using the Asthma Control Questionnaire, completed by the patients at recruitment. Venous blood was collected at recruitment and Th2-mediated immunity evaluated by flow cytometry, quantitative real-time reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. FINDINGS Patients with stress-triggered asthma (n = 12) had higher percentage of CD4+ T cells (P = 0.006) and Th2 cells (CD4+CRTh2+ T cells; P = 0.002) in peripheral blood compared to patients with asthma who did not experience stress-related worsening of disease (n = 54). The same was true when we analyzed patients with any form of psychological comorbidity (n = 19) compared to those without psychological comorbidities (n = 47). These differences were evident among women, but not among men. Women with psychological comorbidity also required higher doses of inhaled and oral corticosteroids compared to those without psychological comorbidity. IMPLICATIONS Asthma involving psychological morbidity associates with an elevated level of circulating Th2 cells and increased corticosteroid usage, and may be more prevalent in women. Larger-scale prospective studies are required for assessing whether these women constitute a new endotype of Th2-high asthma responsive to treatments aimed to improve psychological comorbidities.
Collapse
Affiliation(s)
- Lisa Cameron
- Department of Pathology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada.
| | - Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Cheryl Laratta
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Alberta Respiratory Centre, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Palumbo ML, Prochnik A, Wald MR, Genaro AM. Chronic Stress and Glucocorticoid Receptor Resistance in Asthma. Clin Ther 2020; 42:993-1006. [PMID: 32224031 DOI: 10.1016/j.clinthera.2020.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Chronic and persistent exposure to negative stress can lead to adverse consequences on health. Particularly, psychosocial factors were found to increase the risk and outcome of respiratory diseases like asthma. Glucocorticoids (GCs) are the most efficient anti-inflammatory therapy for asthma. However, a significant proportion of patients don't respond adequately to GC administration. GC sensitivity is modulated by genetic and acquired disease-related factors. Additionally, it was proposed that endogenous corticosteroids may limit certain actions of synthetic GCs, contributing to insensitivity. Psychological and physiological stresses activate the hypothalamic-pituitary-adrenal axis, increasing cortisol levels. Here, we review the mechanism involved in altered GC sensitivity in asthmatic patients under stressful situations. Strategies for modulation GC sensitivity and improving GC therapy are discussed. METHODS PubMed was searched for publications on psychological chronic stress and asthma, GC resistance in asthma, biological mechanisms for GC resistance, and drugs for steroid-resistant asthma, including highly potent GCs. FINDINGS GC resistance in patients with severe disease remains a major clinical problem. In asthma, experimental and clinical evidence suggests that chronic stress induces inflammatory changes, contributing to a worse GC response. GC resistant patients can be treated with other broad-spectrum anti-inflammatory drugs, but these generally have major side effects. Different mechanisms of GC resistance have been described and might be useful for developing new therapeutic strategies against it. Novel drugs, such as highly potent GCs, phosphoinositide 3-kinase-delta inhibitors that reestablish histone deacetylase-2 function, decrease of GC receptor phosphorylation by p38 mitogen-activated protein kinase inhibitors, or phosphatase activators, are currently in clinical development and might be combined with GC therapy in the future. Furthermore, microRNAs (small noncoding RNA molecules) operate as posttranscriptional regulators, providing another level of control of GC receptor levels. Empirical results allow postulating that the detection and study of microRNAs might be a promising approach to better characterize and treat asthmatic patients. IMPLICATIONS Many molecular and cellular pathobiological mechanisms are responsible of GC resistance. Therefore detecting specific biomarkers to help identify patients who would benefit from new therapies is crucial. Stress consitutes a negative aspect of current lifestyles that increase asthma morbidity and mortality. Adequate stress management could be an important and positive intervention.
Collapse
Affiliation(s)
- María Laura Palumbo
- Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (UNNOBA-UNSADA-CONICET), Junín, Argentina
| | - Andrés Prochnik
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina
| | - Miriam Ruth Wald
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina
| | - Ana María Genaro
- Instituto de Investigaciones Biomédicas (UCA-CONICET), Buenos Aires, Argentina; Departamento de Farmacología, Facultad de Medicina, UBA Paraguay, Buenos Aires, Argentina.
| |
Collapse
|
7
|
Wu H, Zhang Y, Li S, Liu Q, Yang N. Care Is the Doctor's Best Prescription: The Impact of Doctor-Patient Empathy on the Physical and Mental Health of Asthmatic Patients in China. Psychol Res Behav Manag 2020; 13:141-150. [PMID: 32104114 PMCID: PMC7023901 DOI: 10.2147/prbm.s226706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background To explore the impact of empathy between Chinese doctors and patients on anxiety, self-efficacy, sleep and IL-6 levels in hospitalized asthmatic patients. Methods This study included 195 asthmatic patients and 30 respirologists in China. The Jefferson Empathy Scale (JSE) was used to measure the empathy level of doctors, and the consultation and relational empathy (CARE) scale was used to measure patients' perception of empathy between themselves and their doctors. Doctors were divided into three groups, according to JSE scores. Data about anxiety, self-efficacy, sleep and IL-6 were collected and compared between patients in different JSE groups at admission (T1) and 3 months later (T2). The correlation between JSE scores and CARE scores was analyzed. Pearson correlation analysis along with a structural equation model was applied to explore the relevance among anxiety, self-efficacy, sleep, inflammatory factors (IL-6) and patients' perception of empathy shown by their doctors. Results There was no statistical difference between the indices of patients in three groups at admission. For all patients, the changes of indicators were statistically different from T1 to T2. Three months later, patients in high empathy scoring group showed lower anxiety and IL-6, and higher self-efficacy and sleep quality. There was a positive correlation between JSE and CARE scores. Patients' perception of doctor-patient empathy was negatively correlated to anxiety levels and IL-6, and positively correlated to self-efficacy and sleep quality. Anxiety, self-efficacy and sleep quality were mediators in the relationship between patients' perception of empathy and IL-6. Conclusion In the Chinese sample, anxiety, self-efficacy, sleep, empathy between doctors and patients and IL-6 are closely correlated. Anxiety, self-efficacy and sleep may play additional roles in the influence of patients' perception of empathy between doctors and patients on IL-6 in asthmatic patients.
Collapse
Affiliation(s)
- Huiduo Wu
- Education and Rehabilitation Department, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| | - Yan Zhang
- College of Humanities and Social Sciences, Harbin Engineering University, Harbin, Heilongjiang, People's Republic of China
| | - Shiyue Li
- School of Health Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Qiaoyun Liu
- Education and Rehabilitation Department, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| | - Ningxi Yang
- College of Humanities and Social Sciences, Harbin Engineering University, Harbin, Heilongjiang, People's Republic of China
| |
Collapse
|
8
|
Ouchi R, Kawano T, Yoshida H, Ishii M, Miyasaka T, Ohkawara Y, Takayanagi M, Takahashi T, Ohno I. Maternal Separation as Early-Life Stress Causes Enhanced Allergic Airway Responses by Inhibiting Respiratory Tolerance in Mice. TOHOKU J EXP MED 2018; 246:155-165. [PMID: 30405003 DOI: 10.1620/tjem.246.155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epidemiologic studies indicate that exposure to psychosocial stress in early childhood is a risk factor of adult-onset asthma, but the mechanisms of this relationship are poorly understood. Therefore, we examined whether early-life stress increases susceptibility to adult-onset asthma by inhibiting the development of respiratory tolerance. Neonatal BALB/c female mice were aerosolized with ovalbumin (OVA) to induce immune tolerance prior to immune sensitization with an intraperitoneal injection of OVA and the adjuvant aluminum hydroxide. Maternal separation (MS) was applied as an early-life stressor during the induction phase of immune tolerance. The mice were challenged with OVA aerosol in adulthood, and allergic airway responses were evaluated, including airway hyper-responsiveness to inhaled methacholine, inflammatory cell infiltration, bronchoalveolar lavage fluid levels of interleukin (IL)-4, IL-5, and IL-13, and serum OVA-specific IgE. We then evaluated the effects of MS on the development of regulatory T (Treg) cells in bronchial lymph nodes (BLN) and on splenocyte proliferation and cytokine expression. In mice that underwent MS and OVA tolerization, the allergic airway responses and OVA-induced proliferation and IL-4 expression of splenocytes were significantly enhanced. Furthermore, exposure to MS was associated with a lower number of Treg cells in the BLN. These findings suggest that exposure to early-life stress prevents the acquisition of respiratory tolerance to inhaled antigen due to insufficient Treg cell development, resulting in Th2-biased sensitization and asthma onset. We provide the evidence for inhibitory effects of early-life stress on immune tolerance. The present findings may help to clarify the pathogenesis of adult-onset asthma.
Collapse
Affiliation(s)
- Ryusuke Ouchi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tasuku Kawano
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Hitomi Yoshida
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Masato Ishii
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tomomitsu Miyasaka
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Yuichi Ohkawara
- Division of Experimental Allergy and Immunology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Motoaki Takayanagi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Tomoko Takahashi
- Division of Pathophysiology, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Isao Ohno
- Center for Medical Education, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| |
Collapse
|