1
|
Guo C, He J, Deng X, Wang D, Yuan G. Potential therapeutic value of melatonin in diabetic nephropathy: improvement beyond anti-oxidative stress. Arch Physiol Biochem 2023; 129:1250-1261. [PMID: 34048666 DOI: 10.1080/13813455.2021.1933539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes, and it is also the main cause of chronic renal failure. Physiological/pathological changes mediated by high glucose are the main factors causing injury of DN, including the enhancement of polyol pathway, the accumulation of advanced glycation products (AGEs), and the activation of protein kinase C (PKC) and transforming growth factor-β (TGF-β) signals. In addition, the abnormal activation of renin-angiotensin system (RAS) and oxidative stress are also involved. Melatonin is a physiological hormone mainly secreted by the pineal gland which has been proved to be related to diabetes. Studies have shown that exogenous melatonin intervention can reduce blood glucose and alleviate high glucose mediated pathological damage. At the same time, melatonin also has a strong antioxidant effect, and can inhibit the activation of RAS. Therefore, it is of great significance to explore the therapeutic effect and value of melatonin on DN.
Collapse
Affiliation(s)
- Chang Guo
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jianqiang He
- Department of Nephrology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Mladenov M, Lubomirov L, Grisk O, Avtanski D, Mitrokhin V, Sazdova I, Keremidarska-Markova M, Danailova Y, Nikolaev G, Konakchieva R, Gagov H. Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging. Antioxidants (Basel) 2023; 12:antiox12051126. [PMID: 37237992 DOI: 10.3390/antiox12051126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins β-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.
Collapse
Affiliation(s)
- Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, "Ss. Cyril and Methodius" University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Lubomir Lubomirov
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Olaf Grisk
- Institute of Physiology, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10003, USA
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, 1 Ostrovityanova Street, 117997 Moscow, Russia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Yana Danailova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Georgi Nikolaev
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Rossitza Konakchieva
- Department of Cell and Developmental Biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
3
|
Pham JH, Johnson GA, Rangan RS, Amankwa CE, Acharya S, Stankowska DL. Neuroprotection of Rodent and Human Retinal Ganglion Cells In Vitro/Ex Vivo by the Hybrid Small Molecule SA-2. Cells 2022; 11:cells11233741. [PMID: 36497005 PMCID: PMC9735605 DOI: 10.3390/cells11233741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The mechanisms underlying the neuroprotective effects of the hybrid antioxidant-nitric oxide donating compound SA-2 in retinal ganglion cell (RGC) degeneration models were evaluated. The in vitro trophic factor (TF) deprivation model in primary rat RGCs and ex vivo human retinal explants were used to mimic glaucomatous neurodegeneration. Cell survival was assessed after treatment with vehicle or SA-2. In separate experiments, tert-Butyl hydroperoxide (TBHP) and endothelin-3 (ET-3) were used in ex vivo rat retinal explants and primary rat RGCs, respectively, to induce oxidative damage. Mitochondrial and intracellular reactive oxygen species (ROS) were assessed following treatments. In the TF deprivation model, SA-2 treatment produced a significant decrease in apoptotic and dead cell counts in primary RGCs and a significant increase in RGC survival in ex vivo human retinal explants. In the oxidative stress-induced models, a significant decrease in the production of ROS was observed in the SA-2-treated group compared to the vehicle-treated group. Compound SA-2 was neuroprotective against various glaucomatous insults in the rat and human RGCs by reducing apoptosis and decreasing ROS levels. Amelioration of mitochondrial and cellular oxidative stress by SA-2 may be a potential therapeutic strategy for preventing neurodegeneration in glaucomatous RGCs.
Collapse
Affiliation(s)
- Jennifer H. Pham
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- The North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Gretchen A. Johnson
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- The North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rajiv S. Rangan
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- The North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Charles E. Amankwa
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- The North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suchismita Acharya
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- The North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (S.A.); (D.L.S.)
| | - Dorota L. Stankowska
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- The North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: (S.A.); (D.L.S.)
| |
Collapse
|
4
|
Matsumoto T, Takayanagi K, Kojima M, Taguchi K, Kobayashi T. Indoxyl sulfate enhances endothelin-1-induced contraction via impairment of NO/cGMP signaling in rat aorta. Pflugers Arch 2021; 473:1247-1259. [PMID: 34021781 DOI: 10.1007/s00424-021-02581-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
The microbiome-derived tryptophan metabolite, indoxyl sulfate, is considered a harmful vascular toxin. Here, we examined the effects of indoxyl sulfate on endothelin-1 (ET-1)-induced contraction in rat thoracic aortas. Indoxyl sulfate (10-3 M, 60 min) increased ET-1-induced contraction but did not affect isotonic high-K+-induced contraction. The ET-1-induced contraction was enhanced by endothelial denudation in both control and indoxyl sulfate-treated groups. BQ123 (10-6 M), an ETA receptor antagonist, reduced the ET-1-induced contraction in both control and indoxyl sulfate groups. BQ788 (10-6 M), an ETB receptor antagonist, increased the contraction in the control group but had no effect on the indoxyl sulfate group. Conversely, indoxyl sulfate inhibited relaxation induced by IRL1620, an ETB receptor agonist. L-NNA, an NO synthase (NOS) inhibitor, increased the ET-1-induced contractions in both the control and indoxyl sulfate groups, whereas L-NPA (10-6 M), a specific neuronal NOS inhibitor, did not affect the ET-1-induced contraction in both groups. However, ODQ, an inhibitor of soluble guanylyl cyclase, increased the ET-1-induced contraction in both groups. Organic anion transporter (OAT) inhibitor probenecid (10-3 M) and antioxidant N-acetyl-L-cysteine (NAC; 5 × 10-3 M) inhibited the effects of indoxyl sulfate. A cell-permeant superoxide scavenger reduced the ET-1-induced contraction in the indoxyl sulfate group. The aortic activity of SOD was reduced by indoxyl sulfate. The present study revealed that indoxyl sulfate augments ET-1-induced contraction in rat aortae. This enhancement may be due to the impairment of NO/cGMP signaling and may be attributed to impairment of the antioxidant systems via cellular uptake through OATs.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Keisuke Takayanagi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Mihoka Kojima
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
5
|
Effect of Klotho protein during porcine oocyte maturation via Wnt signaling. Aging (Albany NY) 2020; 12:23808-23821. [PMID: 33176278 PMCID: PMC7762469 DOI: 10.18632/aging.104002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Klotho protein is well-known as an anti-aging agent, however, several studies have suggested that Klotho protein also increases antioxidant activity and the reproductive system, as Klotho protein is closely associated with Wnt signaling. The objective of our study was to investigate the enhancement of porcine oocyte in vitro maturation via the Klotho protein-Wnt signaling pathway. Following immunohistochemistry and ELISA, we treated cells with Klotho protein during in vitro maturation. Lithium Chloride, a specific activator of Wnt signaling, was subsequently co-administered with Klotho protein. Mature oocytes subjected to treatments were used for the analysis of embryonic development, qRT-PCR, and immunocytochemistry. Treatment with 5pg/ml Klotho protein significantly increased cumulus cell expansion, blastocyst formation rates, and the total cell number of blastocysts. During cotreatment with 5mM Lithium Chloride and 5pg/ml Klotho protein, blastocyst formation rates were the highest in Klotho protein-treated oocytes and the lowest in Lithium Chloride-treated oocytes. Expression levels of Wnt signaling-related transcripts and proteins were significantly impacted by Klotho protein and Lithium Chloride. Moreover, cellular ATP levels and antioxidant activities were enhanced by Klotho protein treatment. These findings suggest a significant involvement of the Klotho protein-Wnt signaling mechanism in porcine oocyte maturation.
Collapse
|
6
|
Xu N, Jiang S, Persson PB, Persson EAG, Lai EY, Patzak A. Reactive oxygen species in renal vascular function. Acta Physiol (Oxf) 2020; 229:e13477. [PMID: 32311827 DOI: 10.1111/apha.13477] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/22/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022]
Abstract
Reactive oxygen species (ROS) are produced by the aerobic metabolism. The imbalance between production of ROS and antioxidant defence in any cell compartment is associated with cell damage and may play an important role in the pathogenesis of renal disease. NADPH oxidase (NOX) family is the major ROS source in the vasculature and modulates renal perfusion. Upregulation of Ang II and adenosine activates NOX via AT1R and A1R in renal microvessels, leading to superoxide production. Oxidative stress in the kidney prompts renal vascular remodelling and increases preglomerular resistance. These are key elements in hypertension, acute and chronic kidney injury, as well as diabetic nephropathy. Renal afferent arterioles (Af), the primary resistance vessel in the kidney, fine tune renal hemodynamics and impact on blood pressure. Vice versa, ROS increase hypertension and diabetes, resulting in upregulation of Af vasoconstriction, enhancement of myogenic responses and change of tubuloglomerular feedback (TGF), which further promotes hypertension and diabetic nephropathy. In the following, we highlight oxidative stress in the function and dysfunction of renal hemodynamics. The renal microcirculatory alterations brought about by ROS importantly contribute to the pathophysiology of kidney injury, hypertension and diabetes.
Collapse
Affiliation(s)
- Nan Xu
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
| | - Shan Jiang
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
| | - Pontus B. Persson
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | | | - En Yin Lai
- Department of Physiology Zhejiang University School of Medicine Hangzhou China
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| | - Andreas Patzak
- Charité ‐ Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin Humboldt‐Universität zu Berlin, and Berlin Institute of Health Institute of Vegetative Physiology Berlin Germany
| |
Collapse
|
7
|
Liu Y, Li H, Liu Y. microRNA-378a Regulates the Reactive Oxygen Species (ROS)/Phosphatidylinositol 3-Kinases (PI3K)/AKT Signaling Pathway in Human Lens Epithelial Cells and Cataract. Med Sci Monit 2019; 25:4314-4321. [PMID: 31178586 PMCID: PMC6582685 DOI: 10.12659/msm.916881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/19/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cataract is associated with increased apoptosis of the epithelial cells of the ocular lens. Previous studies have shown that microRNA-378a (miR-378a) has a role in the development of cataract, but the molecular mechanisms remain unclear. This study aimed to investigate the effects of miR-378a in human lens epithelial cells (HLECs) in vitro and normal lens tissues and cataract tissues. MATERIAL AND METHODS HLECs were grown in culture. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot were used to examine gene expression levels. The MTT and TUNEL assay measured cell growth and apoptosis. Changes in the fluorescence ratio of ethidium to dihydroethidium (E: DHE) and in 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate (C-H₂DCFDA) were used to detect superoxide (O₂⁻) and hydrogen peroxide (H₂O₂). The expression levels of miR-378a and the superoxide dismutase 1 gene (SOD1) were measured in normal human lens tissues and cataract tissues. RESULTS Upregulation of miR-378a reduced the expression of SOD1. Levels of O₂⁻ were upregulated and H₂O₂ was slightly down-regulated by miR-378a. The use of a miR-378a mimic suppressed cell growth and enhanced apoptosis of HLECs, which were reversed by the use of a miR-378a inhibitor. SOD1 overexpression rescued the miR-378a-induced phenotypes of HLEC cells. Treatment with the PI3K inhibitor, LY294002, reversed miR-378a and ROS-regulated proliferation and apoptosis of HLEC cells. Also, miR-378a was upregulated, and SOD1 was down-regulated in human cataract tissues. CONCLUSIONS In HLECs, expression of miR-378a regulated ROS and PI3K/AKT signaling, and miR-378a was upregulated, and SOD1 was down-regulated in human cataract tissue.
Collapse
|