1
|
Zhou Z, Yang J, Liu Q, Gao J, Ji W. Patho-immunological mechanisms of atopic dermatitis: The role of the three major human microbiomes. Scand J Immunol 2024; 100:e13403. [PMID: 39267301 DOI: 10.1111/sji.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Collapse
Affiliation(s)
- Zhaosen Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Gao
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenting Ji
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Tas GG, Sati L. Probiotic Lactobacillus rhamnosus species: considerations for female reproduction and offspring health. J Assist Reprod Genet 2024; 41:2585-2605. [PMID: 39172320 PMCID: PMC11535107 DOI: 10.1007/s10815-024-03230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
Lactobacillus rhamnosus is a type of bacteria known as a probiotic and is often used to support the health of the digestive system and vaginal flora. This type of bacteria has an important role, showing positive effects on female reproductive biology, particularly by maintaining the balance of microorganisms in the vagina, reducing the risk of infection, and strengthening the immune system to support maternal health during pregnancy. There are also studies showing that these probiotics prevent maternal obesity and gestational diabetes. Consuming probiotics containing Lactobacillus rhamnosus strains may support the intestinal health of breastfeeding mothers, but they may also contribute to the health of offspring. Therefore, this review focuses on the current available data for examining the effects of Lactobacillus rhamnosus strains on female reproductive biology and offspring health. A systematic search was conducted in the PubMed and Web of Science databases from inception to May 2024. The search strategy was performed using keywords and MeSH (Medical Subject Headings) terms. Inconsistent ratings were resolved through discussion. This review is strengthened by multiple aspects of the methodological approach. The systematic search strategy, conducted by two independent reviewers, enabled the identification and evaluation of all relevant literature. Although there is a limited number of studies with high heterogeneity, current literature highlights the important contribution of Lactobacillus rhamnosus probiotics in enhancing female reproductive health and fertility. Furthermore, the probiotic bacteria in breast milk may also support the intestinal health of newborn, strengthen the immune system, and protect them against diseases at later ages.
Collapse
Affiliation(s)
- Gizem Gamze Tas
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Leyla Sati
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
3
|
Clemente-Suárez VJ, Redondo-Flórez L, Rubio-Zarapuz A, Martín-Rodríguez A, Tornero-Aguilera JF. Microbiota Implications in Endocrine-Related Diseases: From Development to Novel Therapeutic Approaches. Biomedicines 2024; 12:221. [PMID: 38255326 PMCID: PMC10813640 DOI: 10.3390/biomedicines12010221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review article delves into the critical role of the human microbiota in the development and management of endocrine-related diseases. We explore the complex interactions between the microbiota and the endocrine system, emphasizing the implications of microbiota dysbiosis for the onset and progression of various endocrine disorders. The review aims to synthesize current knowledge, highlighting recent advancements and the potential of novel therapeutic approaches targeting microbiota-endocrine interactions. Key topics include the impact of microbiota on hormone regulation, its role in endocrine pathologies, and the promising avenues of microbiota modulation through diet, probiotics, prebiotics, and fecal microbiota transplantation. We underscore the importance of this research in advancing personalized medicine, offering insights for more tailored and effective treatments for endocrine-related diseases.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
- Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/ Tajo s/n, 28670 Villaviciosa de Odón, Spain;
| | - Alejandro Rubio-Zarapuz
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| | - José Francisco Tornero-Aguilera
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (A.R.-Z.); (J.F.T.-A.)
| |
Collapse
|
4
|
Súkeníková L, Černý V, Thon T, Roubalová R, Jirásková Zákostelská Z, Novotná O, Petrásková P, Boráková K, Kocourková I, Lodinová-Žádníková R, Musil Z, Kolářová L, Prokešová L, Valenta Z, Hrdý J. Effect of early postnatal supplementation of newborns with probiotic strain E. coli O83:K24:H31 on allergy incidence, dendritic cells, and microbiota. Front Immunol 2023; 13:1038328. [PMID: 36703968 PMCID: PMC9872645 DOI: 10.3389/fimmu.2022.1038328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Probiotic administration seems to be a rational approach to promote maturation of the neonatal immune system. Mutual interaction of the microbiota with the host immune system is critical for the setting of appropriate immune responses including a tolerogenic one and thevmaintenance of homeostasis. On the other hand, our knowledge on the modes of actions of probiotics is still scarce. Methods In our study, probiotic strain Escherichia coli O83:K24:H31 (EcO83) was administered to neonates of allergic mothers (AMs; neonates with increased risk for allergy development) within 48 h after the delivery, and the impact of this early postnatal supplementation on allergy incidence and selected immune markers has been analyzed 10 years after the primary EcO83 administration. Results We have observed decreased allergy incidence in 10-year-old children supplemented with EcO83 (13 of 52 children were allergic) in comparison with non-supplemented children of AMs (16 of 42 children were allergic). The early postnatal EcO83 supplementation appeared to limit the allergy in the high-risk group (children of AMs) compared to that in the low-risk group (children of healthy mothers). Dendritic cells (DCs) in the peripheral blood of EcO83-supplemented children do not differ significantly in cell surface presence of CD83. The immunomodulatory capacity of EcO83 on DCs was tested in vitro as well. Both directly isolated myeloid and in vitro monocyte-derived DCs from cord blood increased CD83 expression together with interleukin (IL)-10 secretion after EcO83 stimulation. The effect of early postnatal EcO83 supplementation on the microbiota composition of 10-year-old children was characterized by next-generation sequencing, and we have not observed significant changes in the microbiota composition of EcO83-supplemented and non-supplemented children at the age of 10 years. Conclusions Early postnatal EcO83 supplementation appears to lower allergy incidence in children of AMs. It seems that the beneficial effect of EcO83 is mediated via modulation of DC functional capacities without impacting the microbiota composition. Larger-scale studies will be necessary to confirm these preliminary findings.
Collapse
Affiliation(s)
- Lenka Súkeníková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Viktor Černý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Thon
- Institute of Microbiology, Academy of Sciences, Prague, Czechia
| | - Radka Roubalová
- Institute of Microbiology, Academy of Sciences, Prague, Czechia
| | | | - Olga Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Petra Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Kristýna Boráková
- Department of Neonatology, Institute for the Care of Mother and Child, Prague, Czechia
| | - Ingrid Kocourková
- Department of Neonatology, Institute for the Care of Mother and Child, Prague, Czechia
| | | | - Zdeněk Musil
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Libuše Kolářová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Ludmila Prokešová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Zdeněk Valenta
- Department of Statistical Modelling, Institute of Computer Science of the Czech Academy of Sciences, Prague, Czechia
| | - Jiří Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czechia,*Correspondence: Jiří Hrdý,
| |
Collapse
|
5
|
Phillips-Farfán B, Gómez-Chávez F, Medina-Torres EA, Vargas-Villavicencio JA, Carvajal-Aguilera K, Camacho L. Microbiota Signals during the Neonatal Period Forge Life-Long Immune Responses. Int J Mol Sci 2021; 22:ijms22158162. [PMID: 34360926 PMCID: PMC8348731 DOI: 10.3390/ijms22158162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/27/2022] Open
Abstract
The microbiota regulates immunological development during early human life, with long-term effects on health and disease. Microbial products include short-chain fatty acids (SCFAs), formyl peptides (FPs), polysaccharide A (PSA), polyamines (PAs), sphingolipids (SLPs) and aryl hydrocarbon receptor (AhR) ligands. Anti-inflammatory SCFAs are produced by Actinobacteria, Bacteroidetes, Firmicutes, Spirochaetes and Verrucomicrobia by undigested-carbohydrate fermentation. Thus, fiber amount and type determine their occurrence. FPs bind receptors from the pattern recognition family, those from commensal bacteria induce a different response than those from pathogens. PSA is a capsular polysaccharide from B. fragilis stimulating immunoregulatory protein expression, promoting IL-2, STAT1 and STAT4 gene expression, affecting cytokine production and response modulation. PAs interact with neonatal immunity, contribute to gut maturation, modulate the gut–brain axis and regulate host immunity. SLPs are composed of a sphingoid attached to a fatty acid. Prokaryotic SLPs are mostly found in anaerobes. SLPs are involved in proliferation, apoptosis and immune regulation as signaling molecules. The AhR is a transcription factor regulating development, reproduction and metabolism. AhR binds many ligands due to its promiscuous binding site. It participates in immune tolerance, involving lymphocytes and antigen-presenting cells during early development in exposed humans.
Collapse
Affiliation(s)
- Bryan Phillips-Farfán
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Fernando Gómez-Chávez
- Laboratorio de Inmunología Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (F.G.-C.); (J.A.V.-V.)
- Cátedras CONACyT-Instituto Nacional de Pediatría, México City 04530, Mexico
- Departamento de Formación Básica Disciplinaria, Escuela Nacional de Medicina y Homeopatía del Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | | | | | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
| | - Luz Camacho
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, México City 04530, Mexico; (B.P.-F.); (K.C.-A.)
- Correspondence:
| |
Collapse
|
6
|
The Role of the Intestinal Microbiota in Atopic Dermatitis. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEREOLOGY 2021. [DOI: 10.1097/jd9.0000000000000152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Docimo G, Cangiano A, Romano RM, Pignatelli MF, Offi C, Paglionico VA, Galdiero M, Donnarumma G, Nigro V, Esposito D, Rotondi M, Candela G, Pasquali D. The Human Microbiota in Endocrinology: Implications for Pathophysiology, Treatment, and Prognosis in Thyroid Diseases. Front Endocrinol (Lausanne) 2020; 11:586529. [PMID: 33343507 PMCID: PMC7746874 DOI: 10.3389/fendo.2020.586529] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
The human microbiota is an integral component in the maintenance of health and of the immune system. Microbiome-wide association studies have found numerous diseases associated to dysbiosis. Studies are needed to move beyond correlations and begin to address causation. Autoimmune thyroid diseases (ATD) are one of the most common organ-specific autoimmune disorders with an increasing prevalence, higher than 5% worldwide. Most frequent manifestations of ATD are Hashimoto's thyroiditis and Graves' disease. The exact etiology of ATD remains unknown. Until now it is not clear whether bacterial infections can trigger ATD or modulate the efficacy of treatment and prognosis. The aim of our review is to characterize the microbiota and in ATD and to evaluate the impact of dysbiosis on treatment and prognosis. Moreover, variation of gut microbiome has been associated with thyroid cancer and benign nodules. Here we will characterize the microbioma in benign thyroid nodules, and papillary thyroid cancer to evaluate their implications in the pathophysiology and progression.
Collapse
Affiliation(s)
- Giovanni Docimo
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Angelo Cangiano
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Roberto Maria Romano
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Marcello Filograna Pignatelli
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Chiara Offi
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Vanda Amoresano Paglionico
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marilena Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania ”Luigi Vanvitelli”, Naples, Italy
| | - Daniela Esposito
- Department of Endocrinology, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mario Rotondi
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, University of Pavia, Pavia, Italy
| | - Giancarlo Candela
- Division of Thyroid Surgery, Department of Medical and Advanced Surgical Sciences, University of Campania “Luigi Vanvitelli”, School of Medicine, Naples, Italy
| | - Daniela Pasquali
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
Polkowska‐Pruszyńska B, Gerkowicz A, Krasowska D. The gut microbiome alterations in allergic and inflammatory skin diseases – an update. J Eur Acad Dermatol Venereol 2019; 34:455-464. [PMID: 31520544 DOI: 10.1111/jdv.15951] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Affiliation(s)
- B. Polkowska‐Pruszyńska
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| | - A. Gerkowicz
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| | - D. Krasowska
- Department of Dermatology, Venerology and Paediatric Dermatology Medical University of Lublin Lublin Poland
| |
Collapse
|
9
|
Simon D. Recent Advances in Clinical Allergy and Immunology 2019. Int Arch Allergy Immunol 2019; 180:291-305. [PMID: 31694018 DOI: 10.1159/000504364] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 11/19/2022] Open
Abstract
The immune system has vital functions for homeostasis and host defense. Thus, imbalances of the immune system whether associated with allergy, hypersensitivity, or autoimmunity are of great importance, as is manifest from common diseases such as atopic diseases, urticaria, and angioedema, and drug hypersensitivity reactions. These can affect patients' quality of life and can generate high costs for health care. Epidemiological studies have provided evidence for changing patterns of allergic diseases caused by lifestyle and climate changes which have consequences for medical care. Deeper insights into the pathogenesis of allergic/immunologic diseases, combined with novel technologies, provide improved diagnostic options and treatment measures. This review will summarize novel aspects of the epidemiology, pathogenic mechanisms, as well as disease management in the fields of allergy and clinical immunology.
Collapse
Affiliation(s)
- Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland,
| |
Collapse
|
10
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 10: Suitability of taxonomic units notified to EFSA until March 2019. EFSA J 2019; 17:e05753. [PMID: 32626372 PMCID: PMC7009089 DOI: 10.2903/j.efsa.2019.5753] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The qualified presumption of safety (QPS) procedure was developed to provide a harmonised generic pre-evaluation to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance were assessed. Safety concerns identified for a taxonomic unit (TU) are, where possible and reasonable in number, reflected by 'qualifications' which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA from applications for market authorisation was updated with 47 biological agents, received between October 2018 and March 2019. Of these, 19 already had QPS status, 20 were excluded from the QPS exercise by the previous QPS mandate (11 filamentous fungi) or from further evaluations within the current mandate (9 notifications of Escherichia coli). Sphingomonas elodea, Gluconobacter frateurii, Corynebacterium ammoniagenes, Corynebacterium casei, Burkholderia ubonensis, Phaeodactylum tricornutum, Microbacterium foliorum and Euglena gracilis were evaluated for the first time. Sphingomonas elodea cannot be assessed for a possible QPS recommendation because it is not a valid species. Corynebacterium ammoniagenes and Euglena gracilis can be recommended for the QPS list with the qualification 'for production purposes only'. The following TUs cannot be recommended for the QPS list: Burkholderia ubonensis, due to its potential and confirmed ability to generate biologically active compounds and limited of body of knowledge; Corynebacterium casei, Gluconobacter frateurii and Microbacterium foliorum, due to lack of body of knowledge; Phaeodactylum tricornutum, based on the lack of a safe history of use in the food chain and limited knowledge on its potential production of bioactive compounds with possible toxic effects.
Collapse
|
11
|
Brunner PM. Early immunologic changes during the onset of atopic dermatitis. Ann Allergy Asthma Immunol 2019; 123:152-157. [PMID: 30953783 DOI: 10.1016/j.anai.2019.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Atopic dermatitis (AD), which is commonly called eczema, is the most common chronic inflammatory skin disease. The pipeline of new targeted treatments is currently expanding, a development that is largely based on our increasing understanding of disease mechanisms. Mechanistic insights have long been based on long-standing adult AD. Recently, studies also investigated early pediatric AD at disease onset, and revealed several differences in barrier and immune properties when compared with long-standing adult AD. This review focuses on immunological changes very early in life that predispose to the development of AD, and summarizes characteristics of the molecular AD phenotype in this age group. DATA SOURCES Review of published literature. STUDY SELECTIONS Studies investigating human AD at disease onset in newborns, toddlers, and young children, in comparison with adults with long-standing disease. RESULTS Already in cord blood, increased Th2 and decreased Th1 levels were found to increase the risk of AD development. Both pediatric and adult AD share Th2/Th22 activation and defects in lipid barrier deposition and tight junction formation, but Th1 activation and epidermal differentiation complex defects are largely absent in pediatric AD. CONCLUSION Immune changes predisposing to AD development are present very early in life. During the first months of disease, AD shows various differences in immune and barrier properties from long-standing adult AD, which might necessitate tailored treatment approaches depending on the age of the patient.
Collapse
|
12
|
|
13
|
Gianchecchi E, Fierabracci A. Recent Advances on Microbiota Involvement in the Pathogenesis of Autoimmunity. Int J Mol Sci 2019; 20:E283. [PMID: 30642013 PMCID: PMC6359510 DOI: 10.3390/ijms20020283] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/03/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autoimmune disorders derive from genetic, stochastic, and environmental factors that all together interact in genetically predisposed individuals. The impact of an imbalanced gut microbiome in the pathogenesis of autoimmunity has been suggested by an increasing amount of experimental evidence, both in animal models and humans. Several physiological mechanisms, including the establishment of immune homeostasis, are influenced by commensal microbiota in the gut. An altered microbiota composition produces effects in the gut immune system, including defective tolerance to food antigens, intestinal inflammation, and enhanced gut permeability. In particular, early findings reported differences in the intestinal microbiome of subjects affected by several autoimmune conditions, including prediabetes or overt disease compared to healthy individuals. The present review focuses on microbiota-host homeostasis, its alterations, factors that influence its composition, and putative involvement in the development of autoimmune disorders. In the light of the existing literature, future studies are necessary to clarify the role played by microbiota modifications in the processes that cause enhanced gut permeability and molecular mechanisms responsible for autoimmunity onset.
Collapse
Affiliation(s)
- Elena Gianchecchi
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
- VisMederi s.r.l., Strada del Petriccio e Belriguardo, 35, 53100 Siena, Italy.
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Department, Children's Hospital Bambino Gesù, Viale San Paolo 15, 00146 Rome, Italy.
| |
Collapse
|
14
|
Lohonková A, Novotná O, Petrásková P, Boráková K, Prokešová L, Hrdý J. Maternal Allergy Status Has No Impact on Neonatal Immune Responses to Allergen Stimuli. Folia Biol (Praha) 2019; 65:221-226. [PMID: 32362305 DOI: 10.14712/fb2019065050221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Due to the increasing incidence of allergic diseases, there is a strong need to identify a prognostic marker pointing to increased risk of allergy development allowing introduction of early preventive measures. Cord blood seems to be a good source for searching for such marker. The capacity of cord blood cells to respond to common allergens could point to increased predisposition to later allergy development. In our study, cytokines typical of Th1 (IFN-γ), Th2 (IL-5, IL-13) and Treg (IL-10) immune responses were followed at both the level of gene expression and cytokine secretion in cord blood cells of newborns of healthy mothers (children with relatively low risk of allergy development) and allergic mothers (children with relatively high risk of allergy development) stimulated by allergens (pollen from birch and timothy grass, house dust mite, ovalbumin). We have not observed any difference in the response of cord blood cells of neonates of healthy and allergic mothers to allergen in vitro. Both gene expression and secretion of cytokines in response to allergen stimulation were comparable with the unstimulated controls. It seems that early postnatal events will be more decisive for future allergy development than prenatal sensitization of the foetal immune system with allergen in utero in allergic mothers.
Collapse
Affiliation(s)
- A Lohonková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - O Novotná
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - P Petrásková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - K Boráková
- Institute for the Care of Mother and Child, Prague, Czech Republic
| | - L Prokešová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Hrdý
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|