1
|
Stocchetti S, Vančo J, Belza J, Dvořák Z, Trávníček Z. Strong in vitro anticancer activity of copper(ii) and zinc(ii) complexes containing naturally occurring lapachol: cellular effects in ovarian A2780 cells. RSC Med Chem 2024:d4md00543k. [PMID: 39371430 PMCID: PMC11451940 DOI: 10.1039/d4md00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024] Open
Abstract
Copper(ii) and zinc(ii) complexes with lapachol (HLap) of the composition [M(Lap)2(N-N)] and [Cu(Lap)(H2O)(terpy)]NO3 (4), where M = Cu (1-3) or Zn (for 5-7), and N-N stands for bathophenanthroline (1 and 5), 5-methyl-1,10-phenanthroline (2 and 6), 2,2'-bipyridine (3), 2,2';6',2''-terpyridine (terpy, 4) and 1,10-phenanthroline (7), were synthesised and characterised. Complexes 1-5 revealed strong in vitro antiproliferative effects against A2780, A2780R, MCF-7, PC-3, A549 and HOS human cancer lines and MRC-5 normal cells, with IC50 values above 0.5 μM, and reasonable selectivity index (SI), with SI > 3.8 for IC50(MRC-5)/IC50(A2780). Considerable time-dependent cytotoxicity in A2780 cells was observed for complexes 6 and 7, with IC50 > 50 μM (24 h) to ca. 4 μM (48 h). Cellular effects of complexes 1, 5 and 7 in A2780 cells were investigated by flow cytometry revealing that the most cytotoxic complexes (1 and 5) significantly perturbed the mitochondrial membrane potential and the interaction with mitochondrial metabolism followed by the triggering of the intracellular pathway of apoptosis.
Collapse
Affiliation(s)
- Sara Stocchetti
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
- Dipartimento di Chimica e Chimica Industriale, University of Pisa Via G. Moruzzi 13 I-56124 Pisa Italy
| | - Ján Vančo
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| | - Jan Belza
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic
| | - Zdeněk Trávníček
- Czech Advanced Technology and Research Institute, Regional Centre of Advanced Technologies and Materials, Palacký University Šlechtitelů 27 CZ-779 00 Olomouc Czech Republic +420 585 634 545
| |
Collapse
|
2
|
Li J, Wang X, Zhang H, Hu X, Peng X, Jiang W, Zhuo L, Peng Y, Zeng G, Wang Z. Fenamates: Forgotten treasure for cancer treatment and prevention: Mechanisms of action, structural modification, and bright future. Med Res Rev 2024. [PMID: 39171404 DOI: 10.1002/med.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Fenamates as classical nonsteroidal anti-inflammatory agents are widely used for relieving pain. Preclinical studies and epidemiological data highlight their chemo-preventive and chemotherapeutic potential for cancer. However, comprehensive reviews of fenamates in cancer are limited. To accelerate the repurposing of fenamates, this review summarizes the results of fenamates alone or in combination with existing chemotherapeutic agents. This paper also explores targets of fenamates in cancer therapy, including COX, AKR family, AR, gap junction, FTO, TEAD, DHODH, TAS2R14, ion channels, and DNA. Besides, this paper discusses other mechanisms, such as regulating Wnt/β-catenin, TGF-β, p38 MAPK, and NF-κB pathway, and the regulation of the expressions of Sp, EGR-1, NAG-1, ATF-3, ErbB2, AR, as well as the modulation of the tumor immune microenvironment. Furthermore, this paper outlined the structural modifications of fenamates, highlighting their potential as promising leads for anticancer drugs.
Collapse
Affiliation(s)
- Junfang Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Honghua Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Hu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, China
| | - Xue Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weifan Jiang
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linsheng Zhuo
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Peng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guo Zeng
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Postdoctoral Station for Basic Medicine, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Kazi SH, Sheraz MA, Anwar Z, Musharraf SG, Ahmed S, Bano R, Mirza T, Heo K, Na JH. Photolysis of tolfenamic acid in aqueous and organic solvents: a kinetic study. RSC Adv 2024; 14:21383-21397. [PMID: 38979457 PMCID: PMC11228578 DOI: 10.1039/d4ra01369g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug that was studied for its photodegradation in aqueous (pH 2.0-12.0) and organic solvents (acetonitrile, methanol, ethanol, 1-propanol, 1-butanol). TA follows first-order kinetics for its photodegradation, and the apparent first-order rate constants (k obs) are in the range of 0.65 (pH 12.0) to 6.94 × 10-2 (pH 3.0) min-1 in aqueous solution and 3.28 (1-butanol) to 7.69 × 10-4 (acetonitrile) min-1 in organic solvents. The rate-pH profile for TA photodegradation is an inverted V (∧) or V-top shape, indicating that the cationic form is more susceptible to acid hydrolysis than the anionic form of TA, which is less susceptible to alkaline hydrolysis. The fluorescence behavior of TA also exhibits a V-top-shaped curve, indicating maximum fluorescence intensity at pH 3.0. TA is highly stable at a pH range of 5.0-7.0, making it suitable for formulation development. In organic solvents, the photodegradation rate of TA increases with the solvent's dielectric constant and solvent acceptor number, indicating solute-solvent interactions. The values of k obs decreased with increased viscosity of the solvents due to diffusion-controlled processes. The correlation between k obs versus ionization potential and solvent density has also been established. A total of 17 photoproducts have been identified through LC-MS, of which nine have been reported for the first time. It has been confirmed through electron spin resonance (ESR) spectrometry that the excited singlet state of TA is converted into an excited triplet state through intersystem crossing, which results in an increased rate of photodegradation in acetonitrile.
Collapse
Affiliation(s)
- Sadia Hafeez Kazi
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Syed Ghulam Musharraf
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi Karachi-75270 Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Raheela Bano
- Dow College of Pharmacy, Dow University of Health Sciences (Ojha Campus) Karachi Pakistan
| | - Tania Mirza
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University Karachi-75340 Pakistan
| | - Kyuyoung Heo
- Reliability Assessment Center, Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
| | - Jun-Hee Na
- Department of Convergence System Engineering, Chungnam National University Daejeon 34134 Republic of Korea
| |
Collapse
|
4
|
Lambring CB, Fiadjoe H, Behera SK, Basha R. Docking and molecular dynamic simulations of Mithramycin-A and Tolfenamic acid against Sp1 and survivin. Process Biochem 2024; 137:207-216. [PMID: 38912413 PMCID: PMC11192519 DOI: 10.1016/j.procbio.2023.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Therapeutic targeting of Sp1 transcription factor and survivin, are studied in various cancers due to their consistent overexpression. These markers result in poorer cancer prognoses and their downregulation has been investigated as an effective treatment approach. Mithramycin-A and Tolfenamic acid are two drugs with innate anti-cancer properties and are suggested to be able to target Sp1 through GC/GT DNA binding interference, however in-depth binding and mechanistic studies are lacking. Through docking analysis, we investigated Mithramycin-A and Tolfenamic acid in terms of their specific binding interactions with Sp1 and survivin. Through further molecular dynamics simulations including Root Mean Square (RMS) Fluctuation and RMS Deviation, rGYr, and H-bond analysis, we identified critical residues involved in drug interactions with each protein in question. We show Mithramycin-A as the superior binding candidate to each protein and found that it exhibited stronger binding with Sp1, and then survivin. Subsequent molecular dynamics simulations followed the same trend as initial binding energy calculations and showed crucial amino acids involved in each Mithramycin-A-protein complex. Our findings warrant further investigation into Mithramycin-A and its specific interaction with Sp1 and their downstream targets giving a better understanding of Mithramycin-A and its potential as an effective cancer treatment.
Collapse
Affiliation(s)
| | - Hope Fiadjoe
- UNT Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| | | | - Riyaz Basha
- UNT Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
5
|
Li X, Liang Q, Zhou L, Deng G, Xiao Y, Gan Y, Han S, Liao J, Wang R, Qing X, Li W. Survivin degradation by bergenin overcomes pemetrexed resistance. Cell Oncol (Dordr) 2023; 46:1837-1853. [PMID: 37542022 DOI: 10.1007/s13402-023-00850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE Chemoresistance is a primary factor for treatment failure and tumor recurrence in non-small cell lung cancer (NSCLC) patients. The oncoprotein survivin is commonly upregulated in human malignancies and is associated with poor prognosis, but its effect on carcinogenesis and chemoresistance in NSCLC is not yet evident, and to explore an effective inhibitor targeting survivin expression is urgently needed. METHODS The protumor characteristics of survivin and antitumor activities of bergenin in NSCLC cells were examined by MTS, colony formation assays, immunoblot, immunohistochemistry, and in vivo xenograft development. RESULTS Survivin was upregulated in non-small cell lung cancer (NSCLC) tissues, while its depletion inhibited NSCLC tumorigenesis. The current study focused on bergenin, identifying its effective antitumor effect on NSCLC cells both in vivo and in vitro. The results showed that bergenin could inhibit cell proliferation and induce the intrinsic pathway of apoptosis via downregulating survivin. Mechanistically, bergenin reduced the phosphorylation of survivin via inhibiting the Akt/Wee1/CDK1 signaling pathway, thus resulting in enhanced interaction between survivin and E3 ligase Fbxl7 to promote survivin ubiquitination and degradation. Furthermore, bergenin promoted chemoresistance in NSCLC cells re-sensitized to pemetrexed treatment. CONCLUSIONS Survivin overexpression is required for maintaining multiple malignant phenotypes of NSCLC cells. Bergenin exerts a potent antitumor effect on NSCLC via targeting survivin, rendering it a promising agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, 410006, People's Republic of China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, 410006, People's Republic of China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
6
|
Liao J, Qing X, Deng G, Xiao Y, Fu Y, Han S, Li X, Gan Y, Li W. Gastrodin destabilizes survivin and overcomes pemetrexed resistance. Cell Signal 2023; 110:110851. [PMID: 37586466 DOI: 10.1016/j.cellsig.2023.110851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Survivin is a bifunctional protein that plays crucial roles in tumorigenesis. In the present study, we discovered that the natural product gastrodin suppressed the cell viability and colony formation of non-small cell lung cancer (NSCLC) cell lines A549, HCC827, and H460 in a dose-dependent manner. In addition, gastrodin enhanced the protein levels of cleaved-caspase 3 by activating the endogenous mitochondrial apoptosis pathway. Gastrodin inhibits protein kinase B (Akt)/WEE1/cyclin-dependent kinase 1 (CDK1) signaling to downregulate survivin Thr34 phosphorylation. Survivin Thr34 dephosphorylation caused by gastrodin interfered with the binding of ubiquitin-specific protease 19 (USP19), which eventually destabilized survivin. We revealed that the growth of NSCLC xenograft tumors was markedly suppressed by gastrodin in vivo. Furthermore, gastrodin overcomes pemetrexed resistance in vivo or in vitro. Our results suggest that gastrodin is a potential antitumor agent by reducing survivin in NSCLC.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, China
| | - Yaqian Fu
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China; Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Wang Y, Ge W, Xue S, Cui J, Zhang X, Mao T, Xu H, Li S, Ma J, Yue M, Shentu D, Wang L. Cuproptosis-related lncRNAs are correlated with tumour metabolism and immune microenvironment and predict prognosis in pancreatic cancer patients. IET Syst Biol 2023; 17:174-186. [PMID: 37341253 PMCID: PMC10439495 DOI: 10.1049/syb2.12068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023] Open
Abstract
Cuproptosis is a novel cell death pathway, and the regulatory mechanism in pancreatic cancer (PC) is unclear. The authors aimed to figure out whether cuproptosis-related lncRNAs (CRLs) could predict prognosis in PC and the underlying mechanism. First, the prognostic model based on seven CRLs screened by the least absolute shrinkage and selection operator Cox analysis was constructed. Following this, the risk score was calculated for pancreatic cancer patients and divided patients into high and low-risk groups. In our prognostic model, PC patients with higher risk scores had poorer outcomes. Based on several prognostic features, a predictive nomogram was established. Furthermore, the functional enrichment analysis of differentially expressed genes between risk groups was performed, indicating that endocrine and metabolic pathways were potential regulatory pathways between risk groups. TP53, KRAS, CDKN2A, and SMAD4 were dominant mutated genes in the high-risk group and tumour mutational burden was positively correlated with the risk score. Finally, the tumour immune landscape indicated patients in the high-risk group were more immunosuppressive than that in the low-risk group, with lower infiltration of CD8+ T cells and higher M2 macrophages. Above all, CRLs can be applied to predict PC prognosis, which is closely correlated with the tumour metabolism and immune microenvironment.
Collapse
Affiliation(s)
- Yanling Wang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Weiyu Ge
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shengbai Xue
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jiujie Cui
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Xiaofei Zhang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Tiebo Mao
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Haiyan Xu
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Shumin Li
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Jingyu Ma
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Ming Yue
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Daiyuan Shentu
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Liwei Wang
- Department of OncologyRenji Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai Cancer InstituteShanghaiChina
- State Key Laboratory of Oncogenes and Related GenesDepartment of OncologyShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
8
|
Demirci NS, Çavdar E, Erdem GU, Hatipoglu E, Celik E, Sezer S, Yolcu A, Dogan M, Seber ES. Is the serum level of survivin, an antiapoptotic protein, a potential predictive and prognostic biomarker in metastatic pancreatic cancer? Medicine (Baltimore) 2023; 102:e34014. [PMID: 37352081 PMCID: PMC10289789 DOI: 10.1097/md.0000000000034014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
In the present study, we aimed to assess the association between the serum survivin level and overall survival and treatment response rates in metastatic pancreatic cancer (MPC). Serum samples were prospectively collected from 41 patients with newly diagnosed MPC patients and 41 healthy individuals (control group) to assess the survivin levels. The median survivin level was 136.2 ng/mL in patients with MPC and 52 ng/mL in healthy individuals (P = .028). Patients were divided into low- and high-survivin groups according to the baseline median survivin level. Patients with a high serum survivin level compared with a low serum survivin level had shorter median progression-free survival (2.39 vs 7.06 months; P = .008, respectively) and overall survival (3.74 vs 9.52 months; P = .026, respectively). Patients with higher serum survivin levels had significantly worse response rates (P = .007). The baseline high level of serum survivin in patients with MPC may be associated with treatment resistance and poor prognosis. A confirmation will be needed for these results in future large multicenter prospective studies.
Collapse
Affiliation(s)
- Nebi Serkan Demirci
- Department of Medical Oncology, Faculty of Medicine, Istanbul University-Cerrahpasa Cerrahpasa, Turkey
| | - Eyyüp Çavdar
- Department of Oncology, Faculty of Medicine, Tekirdag Namik Kemal University, Turkey
| | - Gokmen Umut Erdem
- Department of Medical Oncology, Başakşehir Çam and Sakura City Hospital, Turkey
| | - Engin Hatipoglu
- Department of General Surgery, Faculty of Medicine, Istanbul University-Cerrahpasa Cerrahpasa, Turkey
| | - Emir Celik
- Department of Medical Oncology, Haydarpaşa Numune Training and Research Hospital, University of Health Sciences, Turkey
| | - Sevilay Sezer
- Department of Biochemistry, Ministry of Health Ankara City Hospital, Turkey
| | - Ahmet Yolcu
- Department of Radiation Oncology, Tekirdag Namik Kemal University Faculty of Medicine, Turkey
| | - Mutlu Dogan
- Department of Medical Oncology, Ankara Oncology Training and Research Hospital, Turkey
| | - Erdogan Selcuk Seber
- Department of Oncology, Faculty of Medicine, Tekirdag Namik Kemal University, Turkey
| |
Collapse
|
9
|
Cai J, Xie H, Yan Y, Huang Z, Tang P, Cao X, Wang Z, Yang C, Wen J, Tan M, Zhang F, Shen B. A novel cuproptosis-related lncRNA signature predicts prognosis and therapeutic response in bladder cancer. Front Genet 2023; 13:1082691. [PMID: 36685947 PMCID: PMC9845412 DOI: 10.3389/fgene.2022.1082691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Bladder cancer (BC) ranks the tenth in the incidence of global tumor epidemiology. LncRNAs and cuproptosis were discovered to regulate the cell death. Herein, we downloaded transcriptome profiling, mutational data, and clinical data on patients from The Cancer Genome Atlas (TCGA). High- and low-risk BC patients were categorized. Three CRLs (AL590428.1, AL138756.1 and GUSBP11) were taken into prognostic signature through least absolute shrinkage and selection operator (LASSO) Cox regression. Worse OS and PFS were shown in high-risk group (p < 0.05). ROC, independent prognostic analyses, nomogram and C-index were predicted via CRLs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated IncRNAs play a biological role in BC progression. Immune-related functions showed the high-risk group received more benefit from immunotherapy and had stronger immune responses, and the overall survival was better (p < 0.05). Finally, a more effective outcome (p < 0.05) was found from clinical immunotherapy via the TIDE algorithm and many potential anti-tumor drugs were identified. In our study, the cuproptosis-related signature provided a novel tool to predict the prognosis in BC patients accurately and provided a novel strategy for clinical immunotherapy and clinical applications.
Collapse
Affiliation(s)
- Jinming Cai
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haoran Xie
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Yan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengnan Huang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Tang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Wang
- Department of Urology, Shanghai General Hospital Affiliated to Nanjing Medical University, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiling Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Mingyue Tan
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Fang Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jiling Wen, ; Mingyue Tan, ; Fang Zhang, ; Bing Shen,
| |
Collapse
|
10
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
11
|
Sorrentino A, Menevse AN, Michels T, Volpin V, Durst FC, Sax J, Xydia M, Hussein A, Stamova S, Spoerl S, Heuschneider N, Muehlbauer J, Jeltsch KM, Rathinasamy A, Werner-Klein M, Breinig M, Mikietyn D, Kohler C, Poschke I, Purr S, Reidell O, Martins Freire C, Offringa R, Gebhard C, Spang R, Rehli M, Boutros M, Schmidl C, Khandelwal N, Beckhove P. Salt-inducible kinase 3 protects tumor cells from cytotoxic T-cell attack by promoting TNF-induced NF-κB activation. J Immunother Cancer 2022; 10:jitc-2021-004258. [PMID: 35606086 PMCID: PMC9174898 DOI: 10.1136/jitc-2021-004258] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Cancer immunotherapeutic strategies showed unprecedented results in the clinic. However, many patients do not respond to immuno-oncological treatments due to the occurrence of a plethora of immunological obstacles, including tumor intrinsic mechanisms of resistance to cytotoxic T-cell (TC) attack. Thus, a deeper understanding of these mechanisms is needed to develop successful immunotherapies. METHODS To identify novel genes that protect tumor cells from effective TC-mediated cytotoxicity, we performed a genetic screening in pancreatic cancer cells challenged with tumor-infiltrating lymphocytes and antigen-specific TCs. RESULTS The screening revealed 108 potential genes that protected tumor cells from TC attack. Among them, salt-inducible kinase 3 (SIK3) was one of the strongest hits identified in the screening. Both genetic and pharmacological inhibitions of SIK3 in tumor cells dramatically increased TC-mediated cytotoxicity in several in vitro coculture models, using different sources of tumor and TCs. Consistently, adoptive TC transfer of TILs led to tumor growth inhibition of SIK3-depleted cancer cells in vivo. Mechanistic analysis revealed that SIK3 rendered tumor cells susceptible to tumor necrosis factor (TNF) secreted by tumor-activated TCs. SIK3 promoted nuclear factor kappa B (NF-κB) nuclear translocation and inhibited caspase-8 and caspase-9 after TNF stimulation. Chromatin accessibility and transcriptome analyses showed that SIK3 knockdown profoundly impaired the expression of prosurvival genes under the TNF-NF-κB axis. TNF stimulation led to SIK3-dependent phosphorylation of the NF-κB upstream regulators inhibitory-κB kinase and NF-kappa-B inhibitor alpha on the one side, and to inhibition of histone deacetylase 4 on the other side, thus sustaining NF-κB activation and nuclear stabilization. A SIK3-dependent gene signature of TNF-mediated NF-κB activation was found in a majority of pancreatic cancers where it correlated with increased cytotoxic TC activity and poor prognosis. CONCLUSION Our data reveal an abundant molecular mechanism that protects tumor cells from cytotoxic TC attack and demonstrate that pharmacological inhibition of this pathway is feasible.
Collapse
Affiliation(s)
- Antonio Sorrentino
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ayse Nur Menevse
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Tillmann Michels
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Valentina Volpin
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Julian Sax
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Maria Xydia
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Abir Hussein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Slava Stamova
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Steffen Spoerl
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nicole Heuschneider
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Jasmin Muehlbauer
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | | | - Anchana Rathinasamy
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Melanie Werner-Klein
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Marco Breinig
- Signalling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz-University Group 'Cell Plasticity and Epigenetic Remodeling', German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Damian Mikietyn
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Christian Kohler
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Isabel Poschke
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKTK CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sabrina Purr
- Joint Immunotherapeutics Laboratory, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivia Reidell
- Research Department, iOmx Therapeutics, Munich/Martinsried, Germany
| | | | - Rienk Offringa
- Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Gebhard
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Rainer Spang
- Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Michael Rehli
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Michael Boutros
- Signalling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Schmidl
- Junior Group 'Epigenetic Immunooncology', Leibniz Institute for Immunotherapy, Regensburg, Germany
| | - Nisit Khandelwal
- Translational Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Research Department, iOmx Therapeutics, Munich/Martinsried, Germany
| | - Philipp Beckhove
- Division of Interventional Immunology, Leibniz Institute for Immunotherapy, Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
De Grandis RA, Oliveira KM, Guedes APM, dos Santos PWS, Aissa AF, Batista AA, Pavan FR. A Novel Ruthenium(II) Complex With Lapachol Induces G2/M Phase Arrest Through Aurora-B Kinase Down-Regulation and ROS-Mediated Apoptosis in Human Prostate Adenocarcinoma Cells. Front Oncol 2021; 11:682968. [PMID: 34249731 PMCID: PMC8264259 DOI: 10.3389/fonc.2021.682968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Lapachol is a well-studied natural product that has been receiving great interest due to its anticancer properties that target oxidative stress. In the present work, two novel lapachol-containing ruthenium(II) complexes [Ru(Lap)(dppm)(bipy)]PF6 (1) and [Ru(Lap)(dppm)(phen)]PF6 (2) [Lap = lapachol, dppm = 1,1'-bis(diphosphino)methane, bipy = 2,2'-bipyridine, phen = 1,10-phenantroline] were synthesized, fully characterized, and investigated for their cellular and molecular responses on cancer cell lines. We found that both complexes exhibited a potent cytotoxic effect in a panel of cancer cell lines in monolayer cultures, as well as in a 3D model of multicellular spheroids formed from DU-145 human prostate adenocarcinoma cells. Furthermore, the complex (2) suppressed the colony formation, induced G2/M-phase arrest, and downregulated Aurora-B. The mechanism studies suggest that complex (2) stimulate the overproduction of reactive oxygen species (ROS) and triggers caspase-dependent apoptosis as a result of changes in expression of several genes related to cell proliferation and caspase-3 and -9 activation. Interestingly, we found that N-acetyl-L-cysteine, a ROS scavenger, suppressed the generation of intracellular ROS induced by complex (2), and decreased its cytotoxicity, indicating that ROS-mediated DNA damage leads the DU-145 cells into apoptosis. Overall, we highlighted that coordination of lapachol to phosphinic ruthenium(II) compounds considerably improves the antiproliferative activities of resulting complexes granting attractive selectivity to human prostate adenocarcinoma cells. The DNA damage response to ROS seems to be involved in the induction of caspase-mediated cell death that plays an important role in the complexes' cytotoxicity. Upon further investigations, this novel class of lapachol-containing ruthenium(II) complexes might indicate promising chemotherapeutic agents for prostate cancer therapy.
Collapse
Affiliation(s)
- Rone A. De Grandis
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
- School of Medicine, University of Araraquara, Araraquara, Brazil
| | - Katia M. Oliveira
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | | | | | - Alexandre F. Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Alzir A. Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Fernando R. Pavan
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
13
|
Li Y, Lu W, Yang J, Edwards M, Jiang S. Survivin as a biological biomarker for diagnosis and therapy. Expert Opin Biol Ther 2021; 21:1429-1441. [PMID: 33877952 DOI: 10.1080/14712598.2021.1918672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Survivin (SVN) is a member of the inhibitor of apoptosis (IAP) protein family that promotes cellular proliferation and inhibits apoptosis. Overexpression of SVN is associated with autoimmune disease, hyperplasia, and tumors and can be used as a biomarker in these diseases. SVN is widely recognized as a tumor-associated antigen (TAA) and has become an important target for cancer diagnosis and treatment.Areas covered: We reviewed SVN research progress from the PubMed and clinical trials focused on SVN from https://clinicaltrials.gov since 2000 and anticipate future developments in the field. The trials reviewed cover various modalities including diagnostics for early detection and disease progression, small molecule inhibitors of the SVN pathway and immunotherapy targeting SVN epitopes.Expert opinion: The most promising developments involve anti-SVN immunotherapy, with several therapeutic SVN vaccines under evaluation in phase I/II trials. SVN is an important new immune-oncology target that expands the repertoire of individualized combination treatments for cancer.
Collapse
Affiliation(s)
- Yuming Li
- Department of Oncology, University of Oxford, Oxford, UK.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenshu Lu
- Department of Oncology, University of Oxford, Oxford, UK
| | - Jiarun Yang
- Department of Oncology, University of Oxford, Oxford, UK
| | - Mark Edwards
- Department of Research and Development, Oxford Vacmedix UK Ltd, Oxford, UK
| | - Shisong Jiang
- Department of Oncology, University of Oxford, Oxford, UK.,Department of Research and Development, Oxford Vacmedix UK Ltd, Oxford, UK
| |
Collapse
|
14
|
Abstract
Survivin is one of the rare proteins that is differentially expressed in normal and cancer cells and is directly or indirectly involved in numerous pathways required for tumor maintenance. It is expressed in almost all cancers and its expression has been detected at early stages of cancer. These traits make survivin an exceptionally attractive target for cancer therapeutics. Even with these promising features to be an oncotherapeutic target, there has been limited success in the clinical trials targeting survivin. Only recently it has emerged that survivin was not being specifically targeted which could have resulted in the negative clinical outcome. Also, focus of research has now shifted from survivin expression in the overall heterogeneous tumor cell populations to survivin expression in cancer stem cells as these cells have proved to be the major drivers of tumors. Therefore, in this review we have analyzed the expression of survivin in normal and cancer cells with a particular focus on its expression in cancer stem cell compartment. We have discussed the major signaling pathways involved in regulation of survivin. We have explored the current development status of various types of interventions for inhibition of survivin. Furthermore, we have discussed the challenges involving the development of potent and specific survivin inhibitors for cancer therapeutics. Finally we have given insights for some of the promising future anticancer treatments.
Collapse
|
15
|
Diab T, Mohamed TM, Hamed A, Gaber M. Induction of Apoptosis by Nano-Synthesized Complexes of H2L and its Cu(II) Complex in Human Hepatocellular Carcinoma Cells. Anticancer Agents Med Chem 2021; 21:1151-1159. [PMID: 32013853 DOI: 10.2174/1871520620666200204103756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chemotherapy is currently the most utilized treatment for cancer. Therapeutic potential of metal complexes in cancer therapy has attracted a lot of interest. The mechanisms of action of most organometallic complexes are poorly understood. OBJECTIVE This study was designed to explore the mechanisms governing the anti-proliferative effect of the free ligand N1,N6-bis((2-hydroxynaphthalin-1-yl)methinyl)) adipohydrazone (H2L) and its complexes of Mn(II), Co(II), Ni(II) and Cu(II). METHODS Cells were exposed to H2L or its metal complexes where cell viability determined by MTT assay. Cell cycle was analysed by flow cytometry. In addition, qRT-PCR was used to monitor the expression of Bax and Bcl-2. Moreover, molecular docking was carried out to find the potentiality of Cu(II) complex as an inhibitor of Adenosine Deaminase (ADA). ADA, Superoxide Dismutase (SOD) and reduced Glutathione (GSH) levels were measured in the most affected cancer cell line. RESULTS The obtained results demonstrated that H2L and its Cu(II) complex exhibited a strong cytotoxic activity compared to other complexes against HepG2 cells (IC50=4.14±0.036μM/ml and 3.2±0.02μM/ml), respectively. Both H2L and its Cu(II) complex induced G2/M phase cell cycle arrest in HepG2 cells. Additionally, they induced apoptosis in HepG2 cells via upregulation of Bax and downregulation of Bcl-2. Interestingly, the activity of ADA was decreased by 2.8 fold in HepG2 cells treated with Cu(II) complex compared to untreated cells. An increase of SOD activity and GSH level in HepG2 cells compared to control was observed. CONCLUSION The results concluded that Cu(II) complex of H2L induced apoptosis in HepG2 cells. Further studies are needed to confirm its anti-cancer effect in vivo.
Collapse
Affiliation(s)
- Thoria Diab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Alaa Hamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
16
|
Gou Y, Chen M, Li S, Deng J, Li J, Fang G, Yang F, Huang G. Dithiocarbazate-Copper Complexes for Bioimaging and Treatment of Pancreatic Cancer. J Med Chem 2021; 64:5485-5499. [PMID: 33861929 DOI: 10.1021/acs.jmedchem.0c01936] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anticancer agents that present nonapoptotic cell death pathways are required for treating apoptosis-resistant pancreatic cancer. Here, we synthesized three fluorescent dithiocarbazate-copper complexes, {[CuII(L)(Cl)] 1, [CuII2(L)2(NO3)2] 2, and [CuII2CuI(L)2(Br)3] 3}, to assess their antipancreatic cancer activities. Complexes 1-3 showed significantly greater cytotoxicity toward several pancreatic cancer cell lines with better IC50 than those of the HL ligand and cisplatin. Confocal fluorescence imaging showed that complex 3 was primarily localized in the mitochondria. Primarily, compound 3 also can be applied to in vivo imaging. Further studies revealed that complex 3 kills pancreatic cancer cells by triggering multiple mechanisms, including ferroptosis. Complex 3 is the first copper complex to evoke cellular events consistent with ferroptosis in cancer cells. Finally, it significantly retarded the ASPC-1 cells' growth in a mouse xenograft model.
Collapse
Affiliation(s)
- Yi Gou
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - MeiRong Chen
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Shanhe Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - JunGang Deng
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| | - Jinlong Li
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - GuiHua Fang
- School of Pharmacy, Nantong University, Nantong 226019, Jiangsu, China
| | - Feng Yang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin 541004, Guangxi, China
| | - GuoJin Huang
- Laboratory of Respiratory Disease, Affiliated Hospital of Guilin Medical University, Guilin 541001, Guangxi, China
| |
Collapse
|
17
|
Xing L, Yang CX, Zhao D, Shen LJ, Zhou TJ, Bi YY, Huang ZJ, Wei Q, Li L, Li F, Jiang HL. A carrier-free anti-inflammatory platinum (II) self-delivered nanoprodrug for enhanced breast cancer therapy. J Control Release 2021; 331:460-471. [PMID: 33545218 DOI: 10.1016/j.jconrel.2021.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
Cisplatin is one of the most used first-line anticancer drugs for various solid tumor therapies. However, cisplatin-based chemotherapy can induce tumor cells to secrete excessive prostaglandin E2 (PGE2) catalyzed by cyclooxygenase-2 (COX-2), which, in turn, counteracts its chemotherapeutic effect and further accelerates tumor metastasis. Here, we report a carrier-free self-delivered nanoprodrug based on platinum (II) coordination bonding coupled with tolfenamic acid (Tolf) (named Tolfplatin). Tolfplatin can spontaneously assemble into uniformly sized nanoparticles (NPs) with a high drug-loading capacity. Compared with cisplatin, Tolfplatin NPs can facilitate cellular uptake, significantly decrease PGE2 secretion by COX-2 inhibition, which further downregulate tumorous anti-apoptotic and metastasis-associated proteins, thereby efficiently inducing apoptotic cell death and significantly inhibit tumor metastasis in vitro and in vivo. Therefore, as the carrier-free nanoprodrug, Tolfplatin NPs are promising anti-tumoral agents to inhibit tumor proliferation and metastasis by enriching the function and promoting the anti-tumor activity of cisplatin.
Collapse
Affiliation(s)
- Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Prevention and Treatment of High Incidence Diseases in Central Asia, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Chen-Xi Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Li-Jun Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Yang Bi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhang-Jian Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Prevention and Treatment of High Incidence Diseases in Central Asia, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China
| | - Qiong Wei
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Prevention and Treatment of High Incidence Diseases in Central Asia, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, China; College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| |
Collapse
|
18
|
YM155 and BIRC5 downregulation induce genomic instability via autophagy-mediated ROS production and inhibition in DNA repair. Pharmacol Res 2021; 166:105474. [PMID: 33549731 DOI: 10.1016/j.phrs.2021.105474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/05/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Activation of autophagy plays a critical role in DNA repair, especially for the process of homologous recombination. Despite upregulation of autophagy promotes both the survival and the death of cells, the pathways that govern the pro-cell death effects of autophagy are still incompletely understood. YM155 is originally developed as an expression suppressant of BIRC5 (an anti-apoptotic molecule) and it has reached Phase I/II clinical trials for the treatment of variety types of cancer. However, the target-specificity of YM155 has recently been challenged as several studies reported that YM155 exhibits direct DNA damaging effects. Recently, we discovered that BIRC5 is an autophagy negative-modulator. Using function-comparative analysis, we found in the current study that YM155 and BIRC5 siRNA both induced early "autophagy-dependent ROS production-mediated" DNA damage/strand breaks and concurrently downregulated the expression of RAD54L, RAD51, and MRE11, which are molecules known for their important roles in homologous recombination, in human cancer (MCF7, MDA-MB-231, and SK-BR-3) and mouse embryonic fibroblast (MEF) cells. Similar to the effects of YM155 and BIRC5 siRNA, downregulation of RAD54L and RAD51 by siRNA induced autophagy and DNA damage/strand breaks in cells, suggesting YM155/BIRC5 siRNA might also induce autophagy partly through RAD54L and RAD51 downregulations. We further observed that prolonged YM155 and BIRC5 siRNA treatment induced autophagic vesicle formation proximal to the nucleus and triggered DNA leakage. In conclusion, our findings reveal a novel mechanism of action of YM155 (i.e. induces autophagy-dependent ROS production-mediated DNA damage) in cancer cells and show the functional complexity of BIRC5 and autophagy involving the modulation of genome stability, highlighting that upregulation of autophagy is not always beneficial to the DNA repair process. Our findings can aid the development of a variety of BIRC5-directly/indirectly targeted anticancer therapies that are currently under pre-clinical and clinical investigations.
Collapse
|
19
|
Koltai T. Targeting the pH Paradigm at the Bedside: A Practical Approach. Int J Mol Sci 2020; 21:E9221. [PMID: 33287221 PMCID: PMC7730959 DOI: 10.3390/ijms21239221] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023] Open
Abstract
The inversion of the pH gradient in malignant tumors, known as the pH paradigm, is increasingly becoming accepted by the scientific community as a hallmark of cancer. Accumulated evidence shows that this is not simply a metabolic consequence of a dysregulated behavior, but rather an essential process in the physiopathology of accelerated proliferation and invasion. From the over-simplification of increased lactate production as the cause of the paradigm, as initially proposed, basic science researchers have arrived at highly complex and far-reaching knowledge, that substantially modified that initial belief. These new developments show that the paradigm entails a different regulation of membrane transporters, electrolyte exchangers, cellular and membrane enzymes, water trafficking, specialized membrane structures, transcription factors, and metabolic changes that go far beyond fermentative glycolysis. This complex world of dysregulations is still shuttered behind the walls of experimental laboratories and has not yet reached bedside medicine. However, there are many known pharmaceuticals and nutraceuticals that are capable of targeting the pH paradigm. Most of these products are well known, have low toxicity, and are also inexpensive. They need to be repurposed, and this would entail shorter clinical studies and enormous cost savings if we compare them with the time and expense required for the development of a new molecule. Will targeting the pH paradigm solve the "cancer problem"? Absolutely not. However, reversing the pH inversion would strongly enhance standard treatments, rendering them more efficient, and in some cases permitting lower doses of toxic drugs. This article's goal is to describe how to reverse the pH gradient inversion with existing drugs and nutraceuticals that can easily be used in bedside medicine, without adding toxicity to established treatments. It also aims at increasing awareness among practicing physicians that targeting the pH paradigm would be able to improve the results of standard therapies. Some clinical cases will be presented as well, showing how the pH gradient inversion can be treated at the bedside in a simple manner with repurposed drugs.
Collapse
Affiliation(s)
- Tomas Koltai
- Centro de Diagnostico y Tratamiento de la Obra Social del Personal de la Alimentacion, Talar de Pacheco, Buenos Aires 1617, Argentina
| |
Collapse
|
20
|
Jin Z, Zhou S, Ye H, Jiang S, Yu K, Ma Y. The mechanism of SP1/p300 complex promotes proliferation of multiple myeloma cells through regulating IQGAP1 transcription. Biomed Pharmacother 2019; 119:109434. [PMID: 31536933 DOI: 10.1016/j.biopha.2019.109434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
Our previous research had firstly shown that MM cells overexpressed IQGAP1 gene and activated Ras/Raf/MEK/ERK pathway. But the mechanism of IQGAP1 overexpression and IQGAP1 gene transcription regulation remains uncertain. The mechanism of IQGAP1 overexpression and transcriptional regulation of IQGAP1 gene in myeloma cells was explored in the study. Through bioinformatics analysis and prediction we predicted and screened transcription factor Sp1 as a possible upstream regulator of IQGAP1.The proliferation, cell cycle and downstream ERK1/2 and p-ERK1/2 proteins were detected after siRNA-IQGAP1 was transfected to myeloma cells. The expression of Sp1, p300, IQGAP1, p-ERK1/2 and ERK1/2 were detected after Sp1 and p300 were inhibited or overexpressed respectively. The dual-luciferase reporter system was used to detect the activity of IQGAP1 gene promoter. CHIP was used to detect the binding of the Sp1 and IQGAP1 promoter regions.CO-IP was used to explore the interaction between Sp1 and p300.The mRNA expression levels of Sp1,p300 and IQGAP1 of the myeloma patients were detected, and the correlation analysis of their mRNA expression levels were carried out. The results showed IQGAP1-siRNA inhibits cell proliferation, cell cycle, IQGAP1 expression and phosphorylation of ERK1/2 protein. Inhibition of Sp1 or p300 down-regulated ERK1/2 and IQGAP1 expression; overexpression of Sp1 or p300 up-regulated ERK1/2 and IQGAP1 expression; Sp1 and p300 had a positive regulation effect on IQGAP1.Over expression of Sp1 or p300 significantly increased activity of IQGAP1 gene promoter. The transcription factor Sp1 plays a regulatory role in the IQGAP1 promoter region. There is an interaction between Sp1 and p300 in myeloma cells. The mRNA expression levels of Sp1, IQGAP1 and p300 in MM samples showed a positive correlation. In summary IQGAP1 is required for cell proliferation in MM cells, and the transcription of Sp1/p300 complex regulates expression of IQGAP1 gene.
Collapse
Affiliation(s)
- Zhouxiang Jin
- Department of General Surgery, Gastric Cancer Research Center, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xue Yuan Western Road, Wenzhou, 325027, China
| | - Shujuan Zhou
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China
| | - Haige Ye
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China
| | - Songfu Jiang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| | - Yongyong Ma
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, NanBai Xiang, Wenzhou, 325000, China.
| |
Collapse
|
21
|
Chen Y, Bao C, Zhang X, Lin X, Fu Y. Knockdown of LINC00511 promotes radiosensitivity of thyroid carcinoma cells via suppressing JAK2/STAT3 signaling pathway. Cancer Biol Ther 2019; 20:1249-1257. [PMID: 31135274 DOI: 10.1080/15384047.2019.1617569] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Thyroid carcinoma is the most widespread malignancy in endocrine system with the increasing incidence. Despite of the advanced approaches to the management of thyroid carcinoma, the therapeutic effects remain unpleasant largely due to the radiosensitivity of thyroid carcinoma cells. LncRNAs play important part in the tumorigenesis and development, especially in the radiosensitivity of tumor cells. However, their roles in thyroid carcinoma still needed to be explored deeply. The purpose of our research is to inspect the possible biological role and regulation mechanism of LINC00511 desirable for therapies of thyroid carcinoma patients. In the present study, LINC00511 was significantly overexpressed in thyroid carcinoma and its silencing boosted radiosensitivity of thyroid carcinoma cells. Then we unveiled that LINC00511 regulated JAK2/STAT3 signaling pathway which was resistant to radiation treatment. Besides, TAF1 modulated JAK2 at transcriptional level. Moreover, LINC00511 bound to TAF1 and further promoted JAK2 expression. In conclusion, rescue experiments verified that the radiosensitivity of thyroid carcinoma cells was attributed to LINC00511/TAF1/JAK2/STAT3 axis. The current paper investigated the underlying mechanism of LINC00511 and set a new therapeutic direction for the therapy of thyroid carcinoma.
Collapse
Affiliation(s)
- Yangzong Chen
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Chunchun Bao
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xiuxing Zhang
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Xinshi Lin
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Yimou Fu
- Department of Chemotherapy and Radiotherapy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|