1
|
Moya-Gallardo E, Garcia-Valdés P, Marambio-Coloma C, Gutierrez-Escobar C, Hernández-Vargas B, Muñoz-Castro C, Riquelme-Sánchez S, Moo-Millan J, Basoalto R, Bruhn A, Diaz O, Damiani LF. Physiological effects of high-flow nasal cannula during sustained high-intensity exercise in healthy volunteers: a randomised crossover trial. ERJ Open Res 2025; 11:00482-2024. [PMID: 39902265 PMCID: PMC11788807 DOI: 10.1183/23120541.00482-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 02/05/2025] Open
Abstract
Introduction High-flow nasal cannula (HFNC) has increased exercise capacity in patients with chronic respiratory diseases. However, it remains unknown whether HFNC impacts respiratory physiological variables during exercise. This study aimed to evaluate the effect of HFNC on respiratory physiological variables during sustained high-intensity exercise in healthy volunteers. Methods We performed a single-centre, open-label, randomised crossover trial to compare HFNC (60 L·min-1) and Sham-HFNC (2 L·min-1) interventions during a constant work rate exercise (CWRET) through randomised order. The primary outcome was change in oesophageal pressure (ΔP oes), and the secondary outcomes were other variables of inspiratory effort, ventilation distribution, ventilatory variables and clinical assessment. We evaluated volunteers at seven time points (baseline=T0; CWRET=T1-T2-T3 (1, 4 and 6 min); cooldown period=T4-T5-T6 (1, 6 and 10 min)) in both interventions. Results 14 healthy volunteers (50% women; age: 22 (21-27) years) were enrolled. Mean differences in ΔP oes decreased to favour the HFNC intervention compared to Sham-HFNC at T2 (-2.8 cmH2O; 95% CI -5.3 to -0.3), as well as the simplified oesophageal pressure-time product (sPTP) per minute at T2 (-86.1 cmH2O·s·min-1; 95% CI -146.2 to -26.1) and T3 (-79.9 cmH2O·s·min-1; 95% CI -142.3 to -17.6). The standard deviation of the Regional Ventilation Delay index was also lower with HFNC compared to Sham-HFNC (T1: -1.38; 95% CI -1.93 to -0.83; T2: -0.71; 95% CI -1.27 to -0.16). There was decreased dyspnoea to favour the HFNC, but sPTP per breath, spatial distribution ventilation indexes, ventilatory variables and clinical assessments were nonsignificant between interventions. Conclusion HFNC intervention reduces respiratory effort and dyspnoea and improves temporal ventilation distribution in healthy volunteers during CWRET.
Collapse
Affiliation(s)
- Eduardo Moya-Gallardo
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Cardiorespiratory Research Laboratory (CREAR Lab), Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Programa Magister de Investigación en Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- These authors contributed equally
| | - Patricio Garcia-Valdés
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Cardiorespiratory Research Laboratory (CREAR Lab), Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- These authors contributed equally
| | - Consuelo Marambio-Coloma
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Gutierrez-Escobar
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Betsabeth Hernández-Vargas
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Muñoz-Castro
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Santiago Riquelme-Sánchez
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Joel Moo-Millan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, México
| | - Roque Basoalto
- Cardiorespiratory Research Laboratory (CREAR Lab), Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Programa de Medicina Física y Rehabilitación, Red Salud UC-CHRISTUS, Santiago, Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando Diaz
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L. Felipe Damiani
- Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Cardiorespiratory Research Laboratory (CREAR Lab), Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Scaramuzzo G, Pavlovsky B, Adler A, Baccinelli W, Bodor DL, Damiani LF, Franchineau G, Francovich J, Frerichs I, Giralt JAS, Grychtol B, He H, Katira BH, Koopman AA, Leonhardt S, Menga LS, Mousa A, Pellegrini M, Piraino T, Priani P, Somhorst P, Spinelli E, Händel C, Suárez-Sipmann F, Wisse JJ, Becher T, Jonkman AH. Electrical impedance tomography monitoring in adult ICU patients: state-of-the-art, recommendations for standardized acquisition, processing, and clinical use, and future directions. Crit Care 2024; 28:377. [PMID: 39563476 PMCID: PMC11577873 DOI: 10.1186/s13054-024-05173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
Electrical impedance tomography (EIT) is an emerging technology for the non-invasive monitoring of regional distribution of ventilation and perfusion, offering real-time and continuous data that can greatly enhance our understanding and management of various respiratory conditions and lung perfusion. Its application may be especially beneficial for critically ill mechanically ventilated patients. Despite its potential, clear evidence of clinical benefits is still lacking, in part due to a lack of standardization and transparent reporting, which is essential for ensuring reproducible research and enhancing the use of EIT for personalized mechanical ventilation. This report is the result of a four-day expert meeting where we aimed to promote the consistent and reliable use of EIT, facilitating its integration into both clinical practice and research, focusing on the adult intensive care patient. We discuss the state-of-the-art regarding EIT acquisition and processing, applications during controlled ventilation and spontaneous breathing, ventilation-perfusion assessment, and novel future directions.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Bertrand Pavlovsky
- Medical Intensive Care Unit, Vent'Lab, Angers University Hospital, University of Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Andy Adler
- Systems and Computer Engineering, Carleton University, Ottawa, Canada
| | | | - Dani L Bodor
- Netherlands eScience Center, Amsterdam, The Netherlands
| | - L Felipe Damiani
- Facultad de Medicina, Escuela de Ciencias de La Salud, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Guillaume Franchineau
- Service de Medecine Intensive Reanimation, Centre Hospitalier Intercommunal de Poissy-Saint-Germain-en-Laye, Poissy, France
| | - Juliette Francovich
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Inéz Frerichs
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | - Huaiwu He
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bhushan H Katira
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Alette A Koopman
- Division of Paediatric Critical Care Medicine, Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, The Netherlands
| | - Steffen Leonhardt
- Chair for Medical Information Technology, RWTH Aachen University, Aachen, Germany
| | - Luca S Menga
- Interdepartmental Division of Critical Care Medicine, Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Amne Mousa
- Department of Intensive Care Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | - Mariangela Pellegrini
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Thomas Piraino
- Department of Anesthesia, Division of Critical Care, McMaster University, Hamilton, ON, Canada
| | - Paolo Priani
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Peter Somhorst
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Claas Händel
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Fernando Suárez-Sipmann
- Intensive Care Unit, Hospital Universitario La Princesa, Madrid, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Jantine J Wisse
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tobias Becher
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Annemijn H Jonkman
- Department of Intensive Care Medicine, Erasmus Medical Center, Rotterdam, The Netherlands.
- Dept. Intensive Care Volwassenen, Erasmus Medical Center, Room Ne-403, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Arriagada R, Bachmann MC, San Martin C, Rauseo M, Battaglini D. Electrical impedance tomography: Usefulness for respiratory physiotherapy in critical illnesses. Med Intensiva 2024; 48:403-410. [PMID: 38538496 DOI: 10.1016/j.medine.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 02/26/2024] [Indexed: 07/05/2024]
Abstract
Respiratory physiotherapy, including the management of invasive mechanical ventilation (MV) and noninvasive mechanical ventilation (NIV), is a key supportive intervention for critically ill patients. MV has potential for inducing ventilator-induced lung injury (VILI) as well as long-term complications related to prolonged bed rest, such as post-intensive care syndrome and intensive care unit acquired weakness. Physical and respiratory therapy, developed by the critical care team, in a timely manner, has been shown to prevent these complications. In this pathway, real-time bedside monitoring of changes in pulmonary aeration and alveolar gas distribution associated with postural positioning, respiratory physiotherapy techniques and changes in MV strategies can be crucial in guiding these procedures, providing safe therapy and prevention of potential harm to the patient. Along this path, electrical impedance tomography (EIT) has emerged as a new key non-invasive bedside strategy free of radiation, to allow visualization of lung recruitment. This review article presents the main and potential applications of EIT in relation to physiotherapy techniques in the ICU setting.
Collapse
Affiliation(s)
- Ricardo Arriagada
- Unidad de Paciente Crítico Adulto, Hospital Las Higueras de Talcahuano, Chile; Escuela de Kinesiología Universidad San Sebastián, Sede Tres Pascualas, Concepción, Chile; Unidad de Paciente Crìtico, Clìnica Biobìo, Hualpén, Chile
| | - María Consuelo Bachmann
- Unidad de Paciente Crítico Adulto, Hospital Clínico Pontificia Universidad Católica de Chile, Escuela de Kinesiología, Universidad de Los Andes, Santiago, Chile
| | - Constanza San Martin
- Unidad de Paciente Crítico Adulto, Hospital Las Higueras de Talcahuano, Chile; Escuela de Kinesiología Universidad San Sebastián, Sede Tres Pascualas, Concepción, Chile
| | - Michela Rauseo
- Anesthesia and Intensive Care Medicine, University of Foggia, Policlinico Riuniti di Foggia, Foggia, Italy
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
4
|
Gatti S, Rezoagli E, Madotto F, Foti G, Bellani G. A non-invasive continuous and real-time volumetric monitoring in spontaneous breathing subjects based on bioimpedance-ExSpiron®Xi: a validation study in healthy volunteers. J Clin Monit Comput 2024; 38:539-551. [PMID: 38238635 PMCID: PMC10994998 DOI: 10.1007/s10877-023-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/10/2023] [Indexed: 04/06/2024]
Abstract
Tidal volume (TV) monitoring breath-by-breath is not available at bedside in non-intubated patients. However, TV monitoring may be useful to evaluate the work of breathing. A non-invasive device based on bioimpedance provides continuous and real-time volumetric tidal estimation during spontaneous breathing. We performed a prospective study in healthy volunteers aimed at evaluating the accuracy, the precision and the trending ability of measurements of ExSpiron®Xi as compared with the gold standard (i.e. spirometry). Further, we explored whether the differences between the 2 devices would be improved by the calibration of ExSpiron®Xi with a pre-determined tidal volume. Analysis accounted for the repeated nature of measurements within each subject. We enrolled 13 healthy volunteers, including 5 men and 8 women. Tidal volume, TV/ideal body weight (IBW) and respiratory rate (RR) measured with spirometer (TVSpirometer) and with ExSpiron®Xi (TVExSpiron) showed a robust correlation, while minute ventilation (MV) showed a weak correlation, in both non/calibrated and calibrated steps. The analysis of the agreement showed that non-calibrated TVExSpiron underestimated TVspirometer, while in the calibrated steps, TVExSpiron overestimated TVspirometer. The calibration procedure did not reduce the average absolute difference (error) between TVSpirometer and TVExSpiron. This happened similarly for TV/IBW and MV, while RR showed high accuracy and precision. The trending ability was excellent for TV, TV/IBW and RR. The concordance rate (CR) was >95% in both calibrated and non-calibrated measurements. The trending ability of minute ventilation was limited. Absolute error for both calibrated and not calibrated values of TV, TV/IBW and MV accounting for repeated measurements was variably associated with BMI, height and smoking status. Conclusions: Non-invasive TV, TV/IBW and RR estimation by ExSpiron®Xi was strongly correlated with tidal ventilation according to the gold standard spirometer technique. This data was not confirmed for MV. The calibration of the device did not improve its performance. Although the accuracy of ExSpiron®Xi was mild and the precision was limited for TV, TV/IBW and MV, the trending ability of the device was strong specifically for TV, TV/IBW and RR. This makes ExSpiron®Xi a non-invasive monitoring system that may detect real-time tidal volume ventilation changes and then suggest the need to better optimize the patient ventilatory support.
Collapse
Affiliation(s)
- Stefano Gatti
- Department of Emergency and Intensive Care, Terapia Intensiva e Semintensiva adulti e Pediatrica, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Terapia Intensiva e Semintensiva adulti e Pediatrica, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Fabiana Madotto
- Department of Area Emergenza Urgenza, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Foti
- Department of Emergency and Intensive Care, Terapia Intensiva e Semintensiva adulti e Pediatrica, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Giacomo Bellani
- Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy.
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS Trento Largo Medaglie d'Oro, Trento, Italy.
| |
Collapse
|
5
|
Mosing M, Cheong JM, Müller B, Böhm S, Hosgood G, Raisis A. Determination of tidal volume by electrical impedance tomography (EIT) after indirect two-point calibration. Physiol Meas 2022; 43. [PMID: 35322796 DOI: 10.1088/1361-6579/ac604a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/23/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A linear relationship between impedance change (△Z) measured by thoracic electrical impedance tomography (EIT) and tidal volume (VT) has been demonstrated. This study evaluated the agreement between the displayed VT calculated by the EIT software (VTEIT) and spirometry (VTSPIRO) after an indirect two-point calibration. APPROACH The EIT software was programmed to execute a bedside two-point calibration from the subject-specific, linear equation defining the relationship between △Z and VTSPIROand displaying VTEITbreath-by-breath in 20 neutered male, juvenile pigs. After EIT calibration VTs of 8, 12, 16 and 20 mL kg-1were applied to the lungs. VTEITand VTSPIROwere recorded and analysed using Bland-Altman plot for multiple subject measurements. Volumetric capnography (VCap) and spirometry data were explored as components of variance using multiple regression. MAIN RESULTS A mean relative difference (bias) of 0.7% with 95% confidence interval (CI) of -10.4 - 10.7% were found between VTEITand VTSPIROfor the analysed data set. The variance in VTEITcould not be explained by any of the measured VCap or spirometry variables. SIGNIFICANCE The narrow CI estimated in this study allows the conclusion that EIT and its software can be used to measure and accurately convert △Z into mililitre VT at the bedside after applying an indirect two-point calibration.
Collapse
Affiliation(s)
- Martina Mosing
- School of Veterinary and Life Science, Murdoch University, 90 South Street, Perth, 6150, AUSTRALIA
| | | | - Beat Müller
- SenTec AG, Kantonsstrasse 14, Therwil, Basel-Landschaft, 7302, SWITZERLAND
| | - Stephan Böhm
- Rostock University Medical Center, Schillingallee 35, Rostock, Mecklenburg-Vorpommern, 18057, GERMANY
| | - Giselle Hosgood
- Murdoch University, 90 South Street, Murdoch, 6150, AUSTRALIA
| | - Anthea Raisis
- Murdoch University, 90 South Street, Murdoch, 6150, AUSTRALIA
| |
Collapse
|
6
|
Bedside Selection of Positive End Expiratory Pressure by Electrical Impedance Tomography in Patients Undergoing Veno-Venous Extracorporeal Membrane Oxygenation Support: A Comparison between COVID-19 ARDS and ARDS from Other Etiologies. J Clin Med 2022; 11:jcm11061639. [PMID: 35329965 PMCID: PMC8955184 DOI: 10.3390/jcm11061639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The interest in protective ventilation strategies and individualized approaches for patients with severe illness on veno venous extracorporeal support has increased in recent years. Wide heterogeneity exists among patients with COVID-19 related acute respiratory distress syndrome (C-ARDS) and ARDS from other etiologies (NC-ARDS). EIT is a useful tool for the accurate analysis of regional lung volume distribution and allows for a tailored ventilatory setting. The aim of this work is to retrospectively describe the results of EIT assessments performed in patients C-ARDS and NC-ARDS undergoing V-V ECMO support. Methods: A clinical EIT-guided decremental PEEP trail was conducted for all patients included in the study and mechanically ventilated. Results: 12 patients with C-ARDS and 12 patients with NC-ARDS were included in the study for a total of 13 and 18 EIT evaluations, respectively. No significant differences in arterial blood gas, respiratory parameters, and regional ventilation before and after the EIT exam were recorded. The subset of patients with NC-ARDS whose EIT exam led to PEEP modification was characterized by a lower baseline compliance compared with the C-ARDS group: 18 (16–28) vs. 27 (24–30) (p = 0.04). Overdistension significantly increased at higher steps only for the NC-ARDS group. A higher percentage of overdistension was described in patients with NC-ARDS when compared with patients with C-ARDS. Conclusions: EIT is feasible in patients with COVID-19-associated ARDS on veno-venous extracorporeal support and may help in tailoring the PEEP setting. Overall, severe COVID-19-related ARDS presents respiratory characteristics similar to severe “classical” NC-ARDS. However, C-ARDS is associated with a lower risk of overdistension at a higher PEEP level compared with NC-ARDS.
Collapse
|
7
|
The DELUX study: development of lung volumes during extubation of preterm infants. Pediatr Res 2022; 92:242-248. [PMID: 34465873 PMCID: PMC8406659 DOI: 10.1038/s41390-021-01699-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To measure changes in end-expiratory lung impedance (EELI) as a marker of functional residual capacity (FRC) during the entire extubation procedure of very preterm infants. METHODS Prospective observational study in preterm infants born at 26-32 weeks gestation being extubated to non-invasive respiratory support. Changes in EELI and cardiorespiratory parameters (heart rate, oxygen saturation) were recorded at pre-specified events during the extubation procedure compared to baseline (before first handling of the infant). RESULTS Overall, 2912 breaths were analysed in 12 infants. There was a global change in EELI during the extubation procedure (p = 0.029). EELI was lowest at the time of extubation [median (IQR) difference to baseline: -0.30 AU/kg (-0.46; -0.14), corresponding to an FRC loss of 10.2 ml/kg (4.8; 15.9), padj = 0.004]. The biggest EELI loss occurred during adhesive tape removal [median change (IQR): -0.18 AU/kg (-0.22; -0.07), padj = 0.004]. EELI changes were highly correlated with changes in the SpO2/FiO2 ratio (r = 0.48, p < 0.001). Forty per cent of FRC was re-recruited at the tenth breath after the initiation of non-invasive ventilation (p < 0.001). CONCLUSIONS The extubation procedure is associated with significant changes in FRC. This study provides novel information for determining the optimal way of extubating a preterm infant. IMPACT This study is the first to examine the development of lung volumes during the entire extubation procedure including the impact of associated events. The extubation procedure significantly affects functional residual capacity with a loss of approximately 10 ml/kg at the time of extubation. Removal of adhesive tape is the major contributing factor to FRC loss during the extubation procedure. Functional residual capacity is regained within the first breaths after initiation of non-invasive ventilation and is further increased after turning the infant into the prone position.
Collapse
|
8
|
Mannée DC, de Jongh F, van Helvoort H. Telemonitoring Techniques for Lung Volume Measurement: Accuracy, Artifacts and Effort. Front Digit Health 2021; 2:559483. [PMID: 34713036 PMCID: PMC8521879 DOI: 10.3389/fdgth.2020.559483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
Telemonitoring becomes more important in pulmonary research. It can be used to decrease the pressure on the health care system, to lower the costs of health care and to increase quality of life of patients. Previous studies show contradictory results regarding the effectiveness of telemonitoring. According to multiple researchers, inefficiency can be a result of poor study design, low data quality and usability issues. To counteract these issues, this review proves for an in-depth explanation of four (potential) telemonitoring systems in terms of work principle, accuracy, disturbing factors and usability. The evaluated systems are portable spirometry/breath-by-breath analyzers, respiratory inductance and magnetic plethysmography and electrical impedance tomography. These insights can be used to select the optimal technique for a specific purpose in future studies.
Collapse
Affiliation(s)
| | - Frans de Jongh
- Pulmonary Department, Medisch Spectrum Twente, Enschede, Netherlands
| | | |
Collapse
|
9
|
Rauseo M, Mirabella L, Laforgia D, Lamanna A, Vetuschi P, Soriano E, Ugliola D, Casiello E, Tullo L, Cinnella G. A Pilot Study on Electrical Impedance Tomography During CPAP Trial in Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia: The Bright Side of Non-invasive Ventilation. Front Physiol 2021; 12:728243. [PMID: 34566690 PMCID: PMC8458834 DOI: 10.3389/fphys.2021.728243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia phenotypes were described that match with different lung compliance and level of oxygenation, thus requiring a personalized ventilator setting. The burden of so many patients and the lack of intensive care unit (ICU) beds often force physicians to choose non-invasive ventilation (NIV) as the first approach, even if no consent has still been reached to discriminate whether it is safer to choose straightforward intubation, paralysis, and protective ventilation. Under such conditions, electrical impedance tomography (EIT), a non-invasive bedside tool to monitor lung ventilation and perfusion defects, could be useful to assess the response of patients to NIV and choose rapidly the right ventilatory strategy. Objective: The rationale behind this study is that derecruitment is a more efficient measure of positive end expiratory pressure (PEEP)-dependency of patients than recruitment. We hypothesized that patients who derecruit significantly when PEEP is reduced are the ones that do not need early intubation while small end-expiratory lung volume (ΔEELV) variations after a single step of PEEP de-escalation could be predictive of NIV failure. Materials and Methods: Consecutive patients admitted to ICU with confirmed SARS-CoV-2 pneumonia ventilated in NIV were enrolled. Exclusion criteria were former intubation or NIV lasting > 72 h. A trial of continuos positive airway pressure (CPAP) 12 was applied in every patient for at least 15 min, followed by the second period of CPAP 6, either in the supine or prone position. Besides standard monitoring, ventilation of patients was assessed by EIT, and end-expiratory lung impedance (ΔEELI) (%) was calculated as the difference in EELI between CPAP12 and CPAP6. Tidal volume (Vt), Ve, respiratory rate (RR), and FiO2 were recorded, and ABGs were measured. Data were analyzed offline using the dedicated software. The decision to intubate or continue NIV was in charge of treating physicians, independently from study results. Outcomes of patients in terms of intubation rate and ICU mortality were recorded. Results: We enrolled 10 male patients, with a mean age of 67 years. Six patients (60%) were successfully treated by NIV until ICU discharge (Group S), and four patients failed NIV and were intubated and switched to MV (Group F). All these patients died in ICU. During the supine CPAP decremental trial, all patients experienced an increase in RR and Ve. ΔEELI was < 40% in Group F and > 50% in Group S. In the prone trial, ΔEELI was > 50% in all patients, while RR decreased in Group S and remained unchanged in Group F. Conclusion: ΔEELI < 40% after a single PEEP de-escalation step in supine position seems to be a good predictor of poor recruitment and CPAP failure.
Collapse
Affiliation(s)
- Michela Rauseo
- Department of Anesthesia and Intensive Care, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Strodthoff N, Strodthoff C, Becher T, Weiler N, Frerichs I. Inferring Respiratory and Circulatory Parameters from Electrical Impedance Tomography With Deep Recurrent Models. IEEE J Biomed Health Inform 2021; 25:3105-3111. [PMID: 33577463 DOI: 10.1109/jbhi.2021.3059016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Electrical impedance tomography (EIT) is a noninvasive imaging modality that allows a continuous assessment of changes in regional bioimpedance of different organs. One of its most common biomedical applications is monitoring regional ventilation distribution in critically ill patients treated in intensive care units. In this work, we put forward a proof-of-principle study that demonstrates how one can reconstruct synchronously measured respiratory or circulatory parameters from the EIT image sequence using a deep learning model trained in an end-to-end fashion. For this purpose, we devise an architecture with a convolutional feature extractor whose output is processed by a recurrent neural network. We demonstrate that one can accurately infer absolute volume, absolute flow, normalized airway pressure and within certain limitations even the normalized arterial blood pressure from the EIT signal alone, in a way that generalizes to unseen patients without prior calibration. As an outlook with direct clinical relevance, we furthermore demonstrate the feasibility of reconstructing the absolute transpulmonary pressure from a combination of EIT and absolute airway pressure, as a way to potentially replace the invasive measurement of esophageal pressure. With these results, we hope to stimulate further studies building on the framework put forward in this work.
Collapse
|