1
|
He P, Lu X, Zhong M, Weng H, Wang J, Zhang X, Jiang C, Geng F, Shi Y, Zhang G. Plasma alpha-trypsin inhibitor heavy chain 4 as an age-specific biomarker in the diagnosis and treatment of major depressive disorder. Front Psychiatry 2024; 15:1449202. [PMID: 39323962 PMCID: PMC11422199 DOI: 10.3389/fpsyt.2024.1449202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background The diagnosis of major depressive disorder (MDD) mainly depends on subjective clinical symptoms, without an acceptable objective biomarker for the clinical application of MDD. Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) showed a high specificity as biomarker for the diagnosis and treatment of MDD. The present study aimed to investigate differences in plasma ITIH4 in two different aged MDD patients and underlying pathological mechanisms of plasma ITIH4 in the occurrence and development of MDD. Methods Sixty-five adult MDD patients, 51 adolescent MDD patients, and 64 healthy controls (HCs) were included in the present study. A 14-days' antidepressive treatment was conducted in all MDD patients. Psychological assessments were performed and plasma ITIH4 and astrocyte-related markers were detected for all participants. Results (1) Plasma levels of ITIH4 in adult MDD patients were significantly higher than adolescent MDD patients and HCs, and significantly increased plasma ITIH4 levels was observed in adolescent MDD patients compared with HCs (2). There were positive correlations between plasma ITIH4 levels and 24-item Hamilton Depression Scale (HAMD-24) scores and plasma glial fibrillary acidic protein (GFAP) levels in MDD patients, however, plasma ITIH4 levels were significantly correlated with age just in adult MDD patients (3). Plasma ITIH4 showed area under the curve values of 0.824 and 0.729 to differentiate adult MDD patients and adolescent MDD patients from HCs, respectively (4). There was significant decrease in plasma levels of ITIH4 between before and after antidepressive treatment in adult MDD patients, but not in adolescent MDD patients (5). Changed value of ITIH4 levels were correlated with the changed value of GFAP levels and changed rate of HAMD-24 scores in adult MDD patients following antidepressive treatment. Conclusion Plasma ITIH4 may be potential plasma biomarkers of MDD with age-related specificity, which was associated with depressive symptoms astrocyte-related pathologic changes, and antidepressive treatment efficacy.
Collapse
Affiliation(s)
- Ping He
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xuefang Lu
- Department of Rehabilitation Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Mengmeng Zhong
- Department of Functional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Hui Weng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jialu Wang
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Chen Jiang
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Geng
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Gaojia Zhang
- Department of Psychology and Sleep Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Zhong Q, Lai S, He J, Zhong S, Song X, Wang Y, Zhang Y, Chen G, Yan S, Jia Y. Gender-related alterations of serum trace elements and neurometabolism in the anterior cingulate cortex of patients with major depressive disorder. J Affect Disord 2024; 360:176-187. [PMID: 38723680 DOI: 10.1016/j.jad.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND It is widely known that sex differences have a significant impact on patients with major depressive disorder (MDD). This study aims to evaluate the sex-related connection between serum trace elements and changes in neurometabolism in the anterior cingulate cortex (ACC) of MDD patients. METHODS 109 untreated MDD patients and 59 healthy controls underwent proton magnetic resonance spectroscopy (1H-MRS) under resting conditions. We measured metabolic ratios in the ACC from both sides. Additionally, venous blood samples were taken from all participants to detect calcium (Ca), phosphorus, magnesium (Mg), copper (Cu), ceruloplasmin (CER), zinc (Zn), and iron (Fe) levels. We performed association and interaction analyses to explore the connections between the disease and gender. RESULTS In individuals with MDD, the Cu/Zn ratio increased, while the levels of Mg, CER, Zn and Fe decreased. Male MDD patients had lower Cu levels, while female patients had an increased Cu/Zn ratio. We observed significant gender differences in Cu, CER and the Cu/Zn ratio in MDD. Male patients showed a reduced N-acetyl aspartate (NAA)/phosphocreatine + creatine (PCr + Cr) ratio in the left ACC. The NAA/PCr + Cr ratio decreased in the right ACC in patients with MDD. In the left ACC of male MDD patients, the Cu/Zn ratio was inversely related to the NAA/PCr + Cr ratio, and Fe levels were negatively associated with the GPC + PC/PCr + Cr ratio. CONCLUSIONS Our findings highlight gender-specific changes in Cu homeostasis among male MDD patients. The Cu/Zn ratio and Fe levels in male MDD patients were significantly linked to neurometabolic alterations in the ACC.
Collapse
Affiliation(s)
- Qilin Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| | - Xiaodong Song
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shuya Yan
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
3
|
Chen G, Zhang W, Li D, Song J, Dong M. Testosterone synthesis was inhibited in the testis metabolomics of a depression mouse model. J Affect Disord 2024; 350:627-635. [PMID: 38244803 DOI: 10.1016/j.jad.2024.01.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Depression is a common emotional disorder. Previous studies have suggested that depression is associated with the central nervous system. Recent studies have suggested that reduced testosterone level is the core inducement of depression. Testis is the vital organ for the synthesis of testosterone. How does testis mediate depression is still unknown. OBJECTIVES We adopted a classical depression model of mouse caused through chronic mild stress (CMS). The metabolomics liquid chromatography-mass spectrometry was adopted to analyse the influence of CMS on testis metabolism. Then we confirmed the possible abnormal metabolism of the testis in depression mice by pathway analysis and molecular biological technique. RESULTS Compared with control mice, 16 differential metabolites were found in CMS mice by multivariate statistical analysis. In comparison with control mice, CMS mice showed higher levels for campesterol, ribitol, citric acid, platelet activating factor, guanosine, cytosine and xanthine and lower levels for docosahexaenoic acid, hippuric acid, creatine, testosterone, dehydroepiandrosterone, progesterone, l-carnitine, acetyl carnitine and propionyl carnitine. The pathway analysis indicated that these differential metabolites are associated with steroid hormone synthesis, purine metabolism and phenylalanine metabolism. In addition, we also first discovered that testicular morphology in depression mice was damaged and steroid hormone synthetases (including steroidogenic acute regulatory protein and P450 cholesterol side chain cleavage) were inhibited. CONCLUSION These findings may be helpful to parse molecular mechanisms of pathophysiology of depression. It also pointed out the direction to search for potential therapy schedules for male depression and provide novel insights into exploring the pathogenesis of male depression.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenbin Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongyan Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Song
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
4
|
Cui L, Li S, Wang S, Wu X, Liu Y, Yu W, Wang Y, Tang Y, Xia M, Li B. Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal Transduct Target Ther 2024; 9:30. [PMID: 38331979 PMCID: PMC10853571 DOI: 10.1038/s41392-024-01738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/10/2024] Open
Abstract
Worldwide, the incidence of major depressive disorder (MDD) is increasing annually, resulting in greater economic and social burdens. Moreover, the pathological mechanisms of MDD and the mechanisms underlying the effects of pharmacological treatments for MDD are complex and unclear, and additional diagnostic and therapeutic strategies for MDD still are needed. The currently widely accepted theories of MDD pathogenesis include the neurotransmitter and receptor hypothesis, hypothalamic-pituitary-adrenal (HPA) axis hypothesis, cytokine hypothesis, neuroplasticity hypothesis and systemic influence hypothesis, but these hypothesis cannot completely explain the pathological mechanism of MDD. Even it is still hard to adopt only one hypothesis to completely reveal the pathogenesis of MDD, thus in recent years, great progress has been made in elucidating the roles of multiple organ interactions in the pathogenesis MDD and identifying novel therapeutic approaches and multitarget modulatory strategies, further revealing the disease features of MDD. Furthermore, some newly discovered potential pharmacological targets and newly studied antidepressants have attracted widespread attention, some reagents have even been approved for clinical treatment and some novel therapeutic methods such as phototherapy and acupuncture have been discovered to have effective improvement for the depressive symptoms. In this work, we comprehensively summarize the latest research on the pathogenesis and diagnosis of MDD, preventive approaches and therapeutic medicines, as well as the related clinical trials.
Collapse
Affiliation(s)
- Lulu Cui
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Shu Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Siman Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Xiafang Wu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yingyu Liu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yijun Wang
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China
- China Medical University Centre of Forensic Investigation, Shenyang, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Maosheng Xia
- Department of Orthopaedics, The First Hospital, China Medical University, Shenyang, China.
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, China.
- China Medical University Centre of Forensic Investigation, Shenyang, China.
| |
Collapse
|
5
|
Jing D, Hou X, Guo X, Zhao X, Zhang K, Zhang J, Kan C, Han F, Liu J, Sun X. Astrocytes in Post-Stroke Depression: Roles in Inflammation, Neurotransmission, and Neurotrophin Signaling. Cell Mol Neurobiol 2023; 43:3301-3313. [PMID: 37470888 DOI: 10.1007/s10571-023-01386-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Post-stroke depression (PSD) is a frequent and disabling complication of stroke that affects up to one-third of stroke survivors. The pathophysiology of PSD involves multiple mechanisms, including neurochemical, neuroinflammatory, neurotrophic, and neuroplastic changes. Astrocytes are a type of glial cell that is plentiful and adaptable in the central nervous system. They play key roles in various mechanisms by modulating neurotransmission, inflammation, neurogenesis, and synaptic plasticity. This review summarizes the latest evidence of astrocyte involvement in PSD from human and animal studies, focusing on the alterations of astrocyte markers and functions in relation to monoamine neurotransmitters, inflammatory cytokines, brain-derived neurotrophic factor, and glutamate excitotoxicity. We also discuss the potential therapeutic implications of targeting astrocytes for PSD prevention and treatment. Astrocytes could be new candidates for antidepressant medications and other interventions that aim to restore astrocyte homeostasis and function in PSD. Astrocytes could be new candidates for antidepressant medications and other interventions that aim to restore astrocyte homeostasis and function in PSD.
Collapse
Affiliation(s)
- Dongqing Jing
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoli Hou
- Department of General Practice, Weifang Sixth People's Hospital, Weifang, China
| | - Xiao Guo
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xin Zhao
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junling Liu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
| |
Collapse
|
6
|
Kozlowski T, Bargiel W, Grabarczyk M, Skibinska M. Peripheral S100B Protein Levels in Five Major Psychiatric Disorders: A Systematic Review. Brain Sci 2023; 13:1334. [PMID: 37759935 PMCID: PMC10527471 DOI: 10.3390/brainsci13091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Five major psychiatric disorders: schizophrenia, major depressive disorder, bipolar disorder, autistic spectrum disorder, and attention-deficit/hyperactivity disorder, show a shared genetic background and probably share common pathobiological mechanisms. S100B is a calcium-binding protein widely studied in psychiatric disorders as a potential biomarker. Our systematic review aimed to compare studies on peripheral S100B levels in five major psychiatric disorders with shared genetic backgrounds to reveal whether S100B alterations are disease-specific. EMBASE, Web of Science, and PubMed databases were searched for relevant studies published until the end of July 2023. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA) guidelines. Overall, 1215 publications were identified, of which 111 full-text articles were included in the systematic review. Study designs are very heterogeneous, performed mostly on small groups of participants at different stages of the disease (first-episode or chronic, drug-free or medicated, in the exacerbation of symptoms or in remission), and various clinical variables are analyzed. Published results are inconsistent; most reported elevated S100B levels across disorders included in the review. Alterations in S100B peripheral levels do not seem to be disease-specific.
Collapse
Affiliation(s)
- Tomasz Kozlowski
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Weronika Bargiel
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maksymilian Grabarczyk
- Student’s Research Group “Biology of the Neuron”, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maria Skibinska
- Protein Biomarkers Unit, Department of Psychiatric Genetics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
7
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RAE, Stark CEL. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease. Anal Biochem 2023; 676:115227. [PMID: 37423487 PMCID: PMC10561665 DOI: 10.1016/j.ab.2023.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
Proton (1H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo. Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Alyssa L Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Jocelyn H Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Jiang G, Sheng C, Yan L, Wang Z, Wang Q, Chen R, Zhao Y. Increased Serum S100β Concentration is Associated with Depression in Parkinson's Disease. Neuropsychiatr Dis Treat 2023; 19:1865-1873. [PMID: 37663392 PMCID: PMC10473424 DOI: 10.2147/ndt.s423312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose To explore the relationship between the serum level of S100 calcium-binding protein, beta chain (S100β) and Parkinson's disease (PD) with depression. Patients and Methods A total of 145 patients with PD and 60 healthy controls matched for sex, age, and years of education in our hospital were selected. Fluorescence quantitative immunochromatography was used to quantify the level of S100β in serum. Clinical manifestations were assessed by Unified Parkinson's Disease Rating Scale part-III (UPDRS-III), Hoehn & Yahr (H-Y) stage and 17-item Hamilton Rating Scale for Depression (HAMD-17). According to the results of HAMD-17, PD patients were divided into PD with depression group and PD without depression group. The relationship between serum S100β and HAMD-17 scores in PD patients with depression was investigated through correlation analysis and multivariate regression analysis, and receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of serum S100β. Results The level of serum S100β in PD with depression group was significantly higher than that in PD without depression group and control group. In PD patients with depression, serum S100β level was positively correlated with UPDRS-III score, H-Y Scale and HAMD-17 score. The HAMD-17 score was positively correlated with the UPDRS-III and H-Y scales, and the increase in the HAMD-17 score was associated with women. Elevated serum S100β level and UPDRS-III score are independent risk factors for PD with depression. Analysis of receiver operating characteristic (ROC) curves showed that the serum S100β level with a cutoff of 0.28 ng/mL distinguished patients with PD with or without depression with an area under the ROC curve (AUC) of 0.742, sensitivity of 0.696, and specificity of 0.779. Conclusion The serum S100β level could be a biomarker of PD with depression.
Collapse
Affiliation(s)
- Guanghui Jiang
- Department of Neurology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Cuicui Sheng
- Department of Neurology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Luxia Yan
- Department of Neurology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Zipeng Wang
- Department of Neurology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Qing Wang
- Department of Neurology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, People’s Republic of China
| | - Ying Zhao
- Department of Neurology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, People’s Republic of China
| |
Collapse
|
9
|
Gudmundson AT, Koo A, Virovka A, Amirault AL, Soo M, Cho JH, Oeltzschner G, Edden RA, Stark C. Meta-analysis and Open-source Database for In Vivo Brain Magnetic Resonance Spectroscopy in Health and Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528046. [PMID: 37205343 PMCID: PMC10187197 DOI: 10.1101/2023.02.10.528046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Proton ( 1 H) Magnetic Resonance Spectroscopy (MRS) is a non-invasive tool capable of quantifying brain metabolite concentrations in vivo . Prioritization of standardization and accessibility in the field has led to the development of universal pulse sequences, methodological consensus recommendations, and the development of open-source analysis software packages. One on-going challenge is methodological validation with ground-truth data. As ground-truths are rarely available for in vivo measurements, data simulations have become an important tool. The diverse literature of metabolite measurements has made it challenging to define ranges to be used within simulations. Especially for the development of deep learning and machine learning algorithms, simulations must be able to produce accurate spectra capturing all the nuances of in vivo data. Therefore, we sought to determine the physiological ranges and relaxation rates of brain metabolites which can be used both in data simulations and as reference estimates. Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we've identified relevant MRS research articles and created an open-source database containing methods, results, and other article information as a resource. Using this database, expectation values and ranges for metabolite concentrations and T 2 relaxation times are established based upon a meta-analyses of healthy and diseased brains.
Collapse
Affiliation(s)
- Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Annie Koo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Anna Virovka
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Alyssa L. Amirault
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Madelene Soo
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Jocelyn H. Cho
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| | - Georg Oeltzschner
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Craig Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA
| |
Collapse
|
10
|
Lu X, Lai S, Luo A, Huang X, Wang Y, Zhang Y, He J, Chen G, Zhong S, Jia Y. Biochemical metabolism in the anterior cingulate cortex and cognitive function in major depressive disorder with or without insomnia syndrome. J Affect Disord 2023; 335:256-263. [PMID: 37164065 DOI: 10.1016/j.jad.2023.04.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/20/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) and insomnia have been linked to deficiencies in cognitive performance. However, the underlying mechanism of cognitive impairment in MDD patients with insomnia symptoms (IS) remains unclear. This study aimed to explore the effects of IS in patients with MDD by comparing cognitive function indices among those with IS, those without insomnia symptoms (NIS), and healthy controls (HCs). In addition, we assessed whether the dysfunction of central nervous system (CNS) is one of the important pathophysiologic mechanisms of IS in patients with MDD by comparing the biochemical metabolism ratios in the anterior cingulate cortex (ACC). METHOD Fifty-five MDD with IS, 39 MDD without IS, and 47 demographically matched HCs underwent the MATRICS Consensus Cognitive Battery (MCCB) assessment and proton magnetic resonance spectroscopy (1H-MRS). MCCB cognitive scores and biochemical metabolism in ACC were assessed and compared between groups. RESULTS Compared to the HCs group, IS and NIS groups scored significantly lower in seven MCCB cognitive domains (speed of processing, attention/vigilance, working memory, verbal learning, visual learning, reasoning problem solving and social cognition). IS group showed a lower speed of processing and lower Cho/Cr ratio in the left ACC vs. NIS group and HCs. Also, in IS group, the Cho/Cr ratio in the left ACC was positively correlated with the composite T-score. CONCLUSION Patients with comorbidity of MDD with IS may exhibit more common MCCB cognitive impairments than those without IS, particularly speed of processing. Also, dysfunction of ACC may underlie the neural substrate of cognitive impairment in MDD with IS.
Collapse
Affiliation(s)
- Xiaodan Lu
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China; Department of Psychiatry, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Aimin Luo
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China; Guangzhou Baiyun Psychological Hospital, Guangzhou 510440, China
| | - Xiaosi Huang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Department of Psychiatry, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China; Department of Psychiatry, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital, Jinan University, Guangzhou 510630, China; Department of Psychiatry, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China.
| |
Collapse
|
11
|
Xie X, Shi Y, Ma L, Yang W, Pu J, Shen Y, Liu Y, Zhang H, Lv F, Hu L. Altered neurometabolite levels in the brains of patients with depression: A systematic analysis of magnetic resonance spectroscopy studies. J Affect Disord 2023; 328:95-102. [PMID: 36521666 DOI: 10.1016/j.jad.2022.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Numerous magnetic resonance spectroscopy (MRS) studies have reported metabolic abnormalities in the brains of patients with depression, although inconsistent results have been reported. The aim of this study was to explore changes in neurometabolite levels in patients with depression across large-scale MRS studies. METHOD A total of 307 differential metabolite entries associated with depression were retrieved from 180 MRS studies retrieved from the Metabolite Network of Depression Database. The vote-counting method was used to identify consistently altered metabolites in the whole brain and specific brain regions of patients with depression. RESULTS Only few differential neurometabolites showed a stable change trend. The levels of total choline (tCho) and the tCho/N-acetyl aspartate (NAA) ratio were consistently higher in the brains of patients with depression, and that the levels of NAA, glutamate and glutamine (Glx), and gamma-aminobutyric acid (GABA) were lower. For specific brain regions, we found lower Glx levels in the prefrontal cortex and lower GABA concentrations in the occipital cortex. We also found lower concentrations of NAA in the anterior cingulate cortex and prefrontal cortex. The levels of tCho were higher in the prefrontal cortex and putamen. CONCLUSION Our results revealed that most altered neurometabolites in previous studies lack of adequate reproducibility. Through vote-counting method with large-scale studies, downregulation of glutamatergic neurometabolites, impaired neuronal integrity, and disturbed membrane metabolism were found in the pathobiology of depression, which contribute to existing knowledge of neurometabolic changes in depression. Further studies based on a larger dataset are needed to confirm our findings.
Collapse
Affiliation(s)
- Xiongfei Xie
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Shi
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ma
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqin Yang
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqing Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Liangbo Hu
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
12
|
He J, Wang D, Ban M, Kong L, Xiao Q, Yuan F, Zhu X. Regional metabolic heterogeneity in anterior cingulate cortex in major depressive disorder: A multi-voxel 1H magnetic resonance spectroscopy study. J Affect Disord 2022; 318:263-271. [PMID: 36087788 DOI: 10.1016/j.jad.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous studies have shown major depressive disorder (MDD) is associated with altered neuro-metabolites in the anterior cingulate cortex (ACC). However, the regional metabolic heterogeneity in the ACC in individuals with MDD remains unclear. METHODS We recruited 59 first-episode, treatment-naive young adults with MDD and 50 healthy controls who underwent multi-voxel 1H-MRS scanning at 3 T (Tesla) with voxels placed in the ACC, which was divided into two subregions, pregenual ACC (pACC) and anterior midcingulate cortex (aMCC). Between and within-subjects metabolite concentration variations were analyzed with SPSS. RESULTS Compared with control subjects, patients with MDD exhibited higher glutamate (Glu) and glutamine (Gln) levels in the pACC and higher myo-inositol (MI) level in the aMCC. We observed higher Glu and Gln levels and lower N-acetyl-aspartate (NAA) level in the pACC than those in the aMCC in both MDD and healthy control (HC) groups. More importantly, the metabolite concentration gradients of Glu, Gln and NAA were more pronounced in MDD patients relative to HCs. In the MDD group, the MI level in the aMCC positively correlated with the age of onset. LIMITATIONS The use of the relative concentration of metabolites constitutes a key study limitation. CONCLUSIONS We observed inconsistent alterations and distribution of neuro-metabolites concentration in the pACC and aMCC, revealing regional metabolic heterogeneity of ACC in first-episode, treatment-naive young individuals with MDD. These results provided new evidence for abnormal neuro-metabolites of ACC in the pathophysiology of MDD and suggested that pACC and aMCC might play different roles in MDD.
Collapse
Affiliation(s)
- Jincheng He
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiting Ban
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xiao
- Mental Health Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
Tural U, Irvin MK, Iosifescu DV. Correlation between S100B and severity of depression in MDD: A meta-analysis. World J Biol Psychiatry 2022; 23:456-463. [PMID: 34854356 DOI: 10.1080/15622975.2021.2013042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Previous studies have demonstrated elevated levels of the S100B protein (located in glial cells) in major depressive disorder (MDD) as compared to healthy controls. However, studies reporting correlation between S100B levels and depression severity have been conflicting. METHODS We investigated, through systematic review and meta-analysis, whether the correlation between S100B levels and depression severity is significant in patients with MDD. Pearson correlation coefficients reported in the individual studies were converted to Fisher's Z scores, then pooled using the random effects model. Meta-regression was used to test modifiers of the effect size. RESULTS Sixteen studies including 658 patients with MDD met eligibility criteria. No publication bias was observed. There was a significant and positive correlation between serum S100B level and depression severity (r = 0.204, z = 2.297, p = 0.022). A meta-regression determined that onset age of MDD and percentage of female participants are significant modifiers of this correlation. A moderate, but non-significant heterogeneity was observed in serum studies (44%). CONCLUSION As many studies have reported significantly increased levels of S100B in MDD compared to controls, this meta-analysis supports the assumption that the increase in S100B correlates with the severity of MDD. Additional studies investigating the precise biological connection between S100B and MDD are indicated.
Collapse
Affiliation(s)
- Umit Tural
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Molly Kennedy Irvin
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Dan Vlad Iosifescu
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Psychiatry Department, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Childhood trauma history is linked to abnormal brain metabolism of non-medicated adult patients with major depressive disorder. J Affect Disord 2022; 302:101-109. [PMID: 34965400 DOI: 10.1016/j.jad.2021.12.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Childhood trauma is a risk factor that may lead to persistent brain metabolic abnormalities, predisposing individuals to major depressive disorder (MDD). To better elucidate the pathogenesis of MDD, we investigated the neurometabolic changes in unmedicated MDD patients who had experienced childhood trauma (CT). METHODS In this study, 37 unmedicated MDD patients with CT, 35 unmedicated MDD patients without CT, and 30 healthy control participants underwent high-resolution proton magnetic resonance spectroscopy (1H-MRS) examination. Bilateral metabolic ratios of N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr in the prefrontal white matter (PWM), anterior cingulate cortex (ACC), putamen, and cerebellum were obtained. RESULTS MDD patients showed neurometabolic changes in the cortico-striato-cerebellar (CSC) circuit. Furthermore, MDD patients showed significantly lower NAA/Cr and higher Cho/Cr ratio in the bilateral ACC and putamen, and higher NAA/Cr and lower Cho/Cr ratio in the cerebellum. Childhood trauma reduced the Cho/Cr ratio in the left ACC, which played an important role in longer and more episodes of depression. CONCLUSION Early childhood trauma has a long-lasting impact on the metabolism of adult MDD patients, leading to abnormal choline metabolism of the left ACC. Abnormal biochemical metabolism in the CSC circuit may be an underlying pathophysiology of MDD. LIMITATION As this is a small cross-sectional study, the impact of childhood trauma on the different stages of depression has not been observed.
Collapse
|
15
|
Zhang D, Ji Y, Chen X, Chen R, Wei Y, Peng Q, Lin J, Yin J, Li H, Cui L, Lin Z, Cai Y. Peripheral Blood Circular RNAs as a Biomarker for Major Depressive Disorder and Prediction of Possible Pathways. Front Neurosci 2022; 16:844422. [PMID: 35431783 PMCID: PMC9009243 DOI: 10.3389/fnins.2022.844422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/10/2022] [Indexed: 12/27/2022] Open
Abstract
Circular RNAs (circRNAs) are highly expressed in the central nervous system and have been reported to be associated with neuropsychiatric diseases, but their potential role in major depressive disorder (MDD) remains unclear. Here, we demonstrated that there was a disorder of circRNAs in the blood of MDD patients. It has been preliminarily proved that hsa_circ_0002473, hsa_circ_0079651, hsa_circ_0137187, hsa_circ_0006010, and hsa_circ_0113010 were highly expressed in MDD patients and can be used as diagnostic markers for MDD. Bioinformatics analysis revealed that hsa_circ_0079651, hsa_circ_0137187, hsa_circ_0006010, and hsa_circ_0113010 may affect the neuroplasticity of MDD through the ceRNA mechanism.
Collapse
Affiliation(s)
- Dandan Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yao Ji
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiongjin Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - RunSen Chen
- Department of Rehabilitation Medicine Guangzhou Red Cross Hospital Affiliated to Jinan University, Guangzhou, China
| | - Yaxue Wei
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qian Peng
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juda Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hezhan Li
- School of Humanities and Management, Guangdong Medical University, Dongguan, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhixiong Lin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Zhixiong Lin,
| | - Yujie Cai
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Yujie Cai,
| |
Collapse
|
16
|
Kazakov AS, Sofin AD, Avkhacheva NV, Deryusheva EI, Rastrygina VA, Permyakova ME, Uversky VN, Permyakov EA, Permyakov SE. Interferon-β Activity Is Affected by S100B Protein. Int J Mol Sci 2022; 23:ijms23041997. [PMID: 35216109 PMCID: PMC8877046 DOI: 10.3390/ijms23041997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Interferon-β (IFN-β) is a pleiotropic cytokine secreted in response to various pathological conditions and is clinically used for therapy of multiple sclerosis. Its application for treatment of cancer, infections and pulmonary diseases is limited by incomplete understanding of regulatory mechanisms of its functioning. Recently, we reported that IFN-β activity is affected by interactions with S100A1, S100A4, S100A6, and S100P proteins, which are members of the S100 protein family of multifunctional Ca2+-binding proteins possessing cytokine-like activities (Int J Mol Sci. 2020;21(24):9473). Here we show that IFN-β interacts with one more representative of the S100 protein family, the S100B protein, involved in numerous oncological and neurological diseases. The use of chemical crosslinking, intrinsic fluorescence, and surface plasmon resonance spectroscopy revealed IFN-β binding to Ca2+-loaded dimeric and monomeric forms of the S100B protein. Calcium depletion blocks the S100B–IFN-β interaction. S100B monomerization increases its affinity to IFN-β by 2.7 orders of magnitude (equilibrium dissociation constant of the complex reaches 47 pM). Crystal violet assay demonstrated that combined application of IFN-β and S100B (5–25 nM) eliminates their inhibitory effects on MCF-7 cell viability. Bioinformatics analysis showed that the direct modulation of IFN-β activity by the S100B protein described here could be relevant to progression of multiple oncological and neurological diseases.
Collapse
Affiliation(s)
- Alexey S. Kazakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Alexander D. Sofin
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Nadezhda V. Avkhacheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Victoria A. Rastrygina
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Maria E. Permyakova
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya Str., 7, Pushchino, 142290 Moscow, Russia; (A.S.K.); (A.D.S.); (N.V.A.); (E.I.D.); (V.A.R.); (M.E.P.); (E.A.P.)
- Correspondence: (V.N.U.); (S.E.P.); Tel.: +7-(495)-143-7741 (S.E.P.); Fax: +7-(4967)-33-05-22 (S.E.P.)
| |
Collapse
|
17
|
Steinacker P, Al Shweiki MR, Oeckl P, Graf H, Ludolph AC, Schönfeldt-Lecuona C, Otto M. Glial fibrillary acidic protein as blood biomarker for differential diagnosis and severity of major depressive disorder. J Psychiatr Res 2021; 144:54-58. [PMID: 34600287 DOI: 10.1016/j.jpsychires.2021.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/17/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022]
Abstract
Neuroinflammation has been connected to the pathophysiology of major depressive disorder (MDD) and neurochemical biomarkers of glial pathology could aid the diagnosis and might support patient stratification and monitoring in clinical trials. Our study aimed to determine the utility of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, for the differential diagnosis and monitoring of MDD. Employing Simoa technology we measured levels of GFAP in prospectively collected serum samples from 81 age-matched patients with MDD, schizophrenia (SZ), bipolar disorder (BP), and healthy controls (HC). Highest GFAP levels were determined for MDD. At a cut-off of 130 pg/ml, MDD could be discriminated with 87% sensitivity from SZ and BP (specificity 70%) and from HC (specificity 56%). GFAP levels increased with age (r = 0.5236, p = 0.0002) and with MDD severity quantified based on the Montgomery-Åsberg Depression Rating Scale (r = 0.4308, p = 0.0221). Neurofilament light chain serum levels were not different in the diagnostic groups and not associated with GFAP levels (r = 0.0911, p = 0.576) pointing to an independence of astrocyte activation on neurodegeneration. Our study provides first evidence that serum GFAP levels could improve the differential diagnosis of MDD and that depression severity could be objectively quantified using serum GFAP levels. Furthermore, serum GFAP might represent a marker to monitor astroglial pathology in the course of MDD.
Collapse
Affiliation(s)
- Petra Steinacker
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany
| | | | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Heiko Graf
- Department of Psychiatry and Psychotherapy III, Ulm University Hospital, 89075, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany; Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
18
|
Kantrowitz JT, Dong Z, Milak MS, Rashid R, Kegeles LS, Javitt DC, Lieberman JA, John Mann J. Ventromedial prefrontal cortex/anterior cingulate cortex Glx, glutamate, and GABA levels in medication-free major depressive disorder. Transl Psychiatry 2021; 11:419. [PMID: 34354048 PMCID: PMC8342485 DOI: 10.1038/s41398-021-01541-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Glutamate (Glu) and gamma-aminobutyric acid (GABA) are implicated in the pathophysiology of major depressive disorder (MDD). GABA levels or GABAergic interneuron numbers are generally low in MDD, potentially disinhibiting Glu release. It is unclear whether Glu release or turnover is increased in depression. Conversely, a meta-analysis of prefrontal proton magnetic resonance spectroscopy (1H MRS) studies in MDD finds low Glx (combination of glutamate and glutamine) in medicated MDD. We hypothesize that elevated Glx or Glu may be a marker of more severe, untreated MDD. We examined ventromedial prefrontal cortex/anterior cingulate cortex (vmPFC/ACC) Glx and glutamate levels using 1H MRS in 34 medication-free, symptomatic, chronically ill MDD patients and 32 healthy volunteers, and GABA levels in a subsample. Elevated Glx and Glu were observed in MDD compared with healthy volunteers, with the highest levels seen in males with MDD. vmPFC/ACC GABA was low in MDD. Higher Glx levels correlated with more severe depression and lower GABA. MDD severity and diagnosis were both linked to higher Glx in vmPFC/ACC. Low GABA in a subset of these patients is consistent with our hypothesized model of low GABA leading to glutamate disinhibition in MDD. This finding and model are consistent with our previously reported findings that the NMDAR-antagonist antidepressant effect is proportional to the reduction of vmPFC/ACC Glx or Glu levels.
Collapse
Affiliation(s)
- Joshua T. Kantrowitz
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA ,grid.250263.00000 0001 2189 4777Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY USA
| | - Zhengchao Dong
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Matthew S. Milak
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Rain Rashid
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - Lawrence S. Kegeles
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA ,grid.21729.3f0000000419368729Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, NY USA
| | - Daniel C. Javitt
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA ,grid.250263.00000 0001 2189 4777Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY USA
| | - Jeffrey A. Lieberman
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA
| | - J. John Mann
- grid.21729.3f0000000419368729Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, NY USA ,grid.413734.60000 0000 8499 1112New York State Psychiatric Institute, New York, NY USA ,grid.21729.3f0000000419368729Department of Radiology, Columbia University, College of Physicians and Surgeons, New York, NY USA
| |
Collapse
|
19
|
Gu X, Ke S, Wang Q, Zhuang T, Xia C, Xu Y, Yang L, Zhou M. Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomed Pharmacother 2021; 141:111869. [PMID: 34225015 DOI: 10.1016/j.biopha.2021.111869] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is a serious psychiatric disorder that associated with high rate of disability and increasing suicide rate, and the pathogenesis is still unclear. Many researches showed that the energy metabolism of patients with depression is impaired, which may be the direction of depression treatment. In this review, we focus on the "omics" technologies such as genomics, proteomics, transcriptomics and metabolomics, as well as imaging, and the progress on energy metabolism of MDD. These findings indicate that abnormal energy metabolism is one of the important mechanisms for the occurrence and development of depression. Although the research on various mechanisms of depression is still ongoing, the rapid development of new technologies and the joint use of various technologies will help to clarify the pathogenesis of depression and explore efficient diagnosis and treatment methods.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Ke
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
20
|
Levchuk LA, Roshchina OV, Simutkin GG, Bokhan NA, Ivanova SA. Peripheral Markers of Nervous Tissue Damage in Addictive and Affective Disorders. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
O'Leary LA, Mechawar N. Implication of cerebral astrocytes in major depression: A review of fine neuroanatomical evidence in humans. Glia 2021; 69:2077-2099. [PMID: 33734498 DOI: 10.1002/glia.23994] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Postmortem investigations have implicated astrocytes in many neurological and psychiatric conditions. Multiple brain regions from individuals with major depressive disorder (MDD) have lower expression levels of astrocyte markers and lower densities of astrocytes labeled for these markers, suggesting a loss of astrocytes in this mental illness. This paper reviews the general properties of human astrocytes, the methods to study them, and the postmortem evidence for astrocyte pathology in MDD. When comparing astrocyte density and morphometry studies, astrocytes are more abundant and smaller in human subcortical than cortical brain regions, and immunohistochemical labeling for the astrocyte markers glial fibrillary acidic protein (GFAP) and vimentin (VIM) reveals fewer than 15% of all astrocytes that are present in cortical and subcortical regions, as revealed using other staining techniques. By combining astrocyte densities and morphometry, a model was made to illustrate that domain organization is mostly limited to GFAP-IR astrocytes. Using these markers and others, alterations of astrocyte densities appear more widespread than those for astrocyte morphologies throughout the brain of individuals having died with MDD. This review suggests how reduced astrocyte densities may relate to the association of depressive episodes in MDD with elevated S100 beta (S100B) cerebrospinal fluid serum levels. Finally, a potassium imbalance theory is proposed that integrates the reduced astrocyte densities generated from postmortem studies with a hypothesis for the antidepressant effects of ketamine generated from rodent studies.
Collapse
Affiliation(s)
- Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Brief mindfulness training increased glutamate metabolism in the anterior cingulate cortex. Neuroreport 2020; 31:1142-1145. [PMID: 32991525 DOI: 10.1097/wnr.0000000000001527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mindfulness meditation has become a promising intervention for promoting health and well-being. Neuroimaging studies have shown its beneficial effects on brain functional activity, connectivity, and structures following months to years of practice. A series of randomized controlled trials indicated that one form of mindfulness meditation, the integrative body-mind training (IBMT) induces brain functional and structural changes in brain regions related to self-control networks such as the anterior cingulate cortex (ACC) after 2-10 h of practice. However, whether IBMT could change brain metabolism in the ACC remains unexplored. Utilizing a noninvasive 3T proton magnetic resonance spectroscopy, our results showed a significant increase in glutamate metabolism in the rostral ACC following 10 h of IBMT, suggesting that brief training not only increases ACC activity and structure, but also induces neurochemical changes in regions of the self-control networks. To our knowledge, this is the first study demonstrating the positive effects on brain metabolism in the ACC following brief intervention, suggesting a potential mechanism and implications of mindfulness meditation in ameliorating disorders such as addiction, depression and schizophrenia, which often involve the dysfunction of self-control networks and glutamatergic system (i.e. lower glutamate metabolism).
Collapse
|