1
|
Martini S, Thewissen L, Austin T, da Costa CS, de Boode WP, Dempsey E, Kooi E, Pellicer A, Rhee CJ, Riera J, Wolf M, Wong F. Near-infrared spectroscopy monitoring of neonatal cerebrovascular reactivity: where are we now? Pediatr Res 2024; 96:884-895. [PMID: 36997690 DOI: 10.1038/s41390-023-02574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Cerebrovascular reactivity defines the ability of the cerebral vasculature to regulate its resistance in response to both local and systemic factors to ensure an adequate cerebral blood flow to meet the metabolic demands of the brain. The increasing adoption of near-infrared spectroscopy (NIRS) for non-invasive monitoring of cerebral oxygenation and perfusion allowed investigation of the mechanisms underlying cerebrovascular reactivity in the neonatal population, confirming important associations with pathological conditions including the development of brain injury and adverse neurodevelopmental outcomes. However, the current literature on neonatal cerebrovascular reactivity is mainly still based on small, observational studies and is characterised by methodological heterogeneity; this has hindered the routine application of NIRS-based monitoring of cerebrovascular reactivity to identify infants most at risk of brain injury. This review aims (1) to provide an updated review on neonatal cerebrovascular reactivity, assessed using NIRS; (2) to identify critical points that need to be addressed with targeted research; and (3) to propose feasibility trials in order to fill the current knowledge gaps and to possibly develop a preventive or curative approach for preterm brain injury. IMPACT: NIRS monitoring has been largely applied in neonatal research to assess cerebrovascular reactivity in response to blood pressure, PaCO2 and other biochemical or metabolic factors, providing novel insights into the pathophysiological mechanisms underlying cerebral blood flow regulation. Despite these insights, the current literature shows important pitfalls that would benefit to be addressed in a series of targeted trials, proposed in the present review, in order to translate the assessment of cerebrovascular reactivity into routine monitoring in neonatal clinical practice.
Collapse
Affiliation(s)
- Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOU S. Orsola, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | | | - Topun Austin
- Neonatal Intensive Care Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Willem P de Boode
- Department of Neonatology, Radboud University Medical Center, Radboud Institute for Health Sciences, Amalia Children's Hospital, Nijmegen, The Netherlands
| | - Eugene Dempsey
- Department of Paediatrics and Child Health, INFANT Centre, University College Cork, Cork, Ireland
| | - Elisabeth Kooi
- Division of Neonatology, Beatrix Children's Hospital, University Medical Center, University of Groningen, Groningen, The Netherlands
| | - Adelina Pellicer
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
| | - Christopher J Rhee
- Section of Neonatology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | - Joan Riera
- Department of Neonatology, La Paz University Hospital, Madrid, Spain
- Center for Biomedical Technology, Technical University, Madrid, Spain
| | - Martin Wolf
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, Zurich, Switzerland
| | - Flora Wong
- Monash Newborn, Monash Children's Hospital, Hudson Institute of Medical Research, Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Fedriga M, Martini S, Iodice FG, Sortica da Costa C, Pezzato S, Moscatelli A, Beqiri E, Czosnyka M, Smielewski P, Agrawal S. Cerebral autoregulation in paediatric and neonatal intensive care: A scoping review. J Cereb Blood Flow Metab 2024:271678X241261944. [PMID: 38867574 DOI: 10.1177/0271678x241261944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Deranged cerebral autoregulation (CA) is associated with worse outcome in adult brain injury. Strategies for monitoring CA and maintaining the brain at its 'best CA status' have been implemented, however, this approach has not yet developed for the paediatric population. This scoping review aims to find up-to-date evidence on CA assessment in children and neonates with a view to identify patient categories in which CA has been measured so far, CA monitoring methods and its relationship with clinical outcome if any. A literature search was conducted for studies published within 31st December 2022 in 3 bibliographic databases. Out of 494 papers screened, this review includes 135 studies. Our literature search reveals evidence for CA measurement in the paediatric population across different diagnostic categories and age groups. The techniques adopted, indices and thresholds used to assess and define CA are heterogeneous. We discuss the relevance of available evidence for CA assessment in the paediatric population. However, due to small number of studies and heterogeneity of methods used, there is no conclusive evidence to support universal adoption of CA monitoring, technique, and methodology. This calls for further work to understand the clinical impact of CA monitoring in paediatric and neonatal intensive care.
Collapse
Affiliation(s)
- Marta Fedriga
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Silvia Martini
- Neonatal Intensive Care Unit, IRCCS AOUBO, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca G Iodice
- Paediatric Cardiac Anaesthesia and Intensive Care Unit, IRCCS, Bambino Gesu' Hospital, Rome, Italy
| | | | - Stefano Pezzato
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Andrea Moscatelli
- Neonatal and Paediatric Intensive Care Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Shruti Agrawal
- Department of Paediatric Intensive Care, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Troncoso F, Sandoval H, Ibañez B, López-Espíndola D, Bustos F, Tapia JC, Sandaña P, Escudero-Guevara E, Nualart F, Ramírez E, Powers R, Vatish M, Mistry HD, Kurlak LO, Acurio J, Escudero C. Reduced Brain Cortex Angiogenesis in the Offspring of the Preeclampsia-Like Syndrome. Hypertension 2023; 80:2559-2571. [PMID: 37767691 DOI: 10.1161/hypertensionaha.123.21756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Children from pregnancies affected by preeclampsia have an increased risk of cognitive and behavioral alterations via unknown pathophysiology. We tested the hypothesis that preeclampsia generated reduced brain cortex angiogenesis in the offspring. METHODS The preeclampsia-like syndrome (PELS) mouse model was generated by administering the nitric oxide inhibitor NG-nitroarginine methyl ester hydrochloride. Confirmatory experiments were done using 2 additional PELS models. While in vitro analysis used mice and human brain endothelial cells exposed to serum of postnatal day 5 pups or umbilical plasma from preeclamptic pregnancies, respectively. RESULTS We report significant reduction in the area occupied by blood vessels in the motor and somatosensory brain cortex of offspring (postnatal day 5) from PELS compared with uncomplicated control offspring. These data were confirmed using 2 additional PELS models. Furthermore, circulating levels of critical proangiogenic factors, VEGF (vascular endothelial growth factor), and PlGF (placental growth factor) were lower in postnatal day 5 PELS. Also we found lower VEGF receptor 2 (KDR [kinase insert domain-containing receptor]) levels in mice and human endothelial cells exposed to the serum of postnatal day 5 PELS or fetal plasma of preeclamptic pregnancies, respectively. These changes were associated with lower in vitro angiogenic capacity, diminished cell migration, larger F-actin filaments, lower number of filopodia, and lower protein levels of F-actin polymerization regulators in brain endothelial cells exposed to serum or fetal plasma of offspring from preeclampsia. CONCLUSIONS Offspring from preeclampsia exhibited diminished brain cortex angiogenesis, associated with lower circulating VEGF/PlGF/KDR protein levels, impaired brain endothelial migration, and dysfunctional assembly of F-actin filaments. These alterations may predispose to structural and functional alterations in long-term brain development.
Collapse
Affiliation(s)
- Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (F.T., H.S., B.I., E.E.-G., J.A., C.E.)
| | - Hermes Sandoval
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (F.T., H.S., B.I., E.E.-G., J.A., C.E.)
| | - Belén Ibañez
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (F.T., H.S., B.I., E.E.-G., J.A., C.E.)
| | - Daniela López-Espíndola
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Chile (D.L.-E., F.B.)
- Group of Research and Innovation in Vascular Health, Chillan, Chile (D.L.-E., C.E.)
| | - Francisca Bustos
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Chile (D.L.-E., F.B.)
| | - Juan Carlos Tapia
- Stem Cells and Neuroscience Center, School of Medicine, University of Talca, Chile (J.C.T.)
| | - Pedro Sandaña
- Anatomopatholy Unit, Hospital Clinico Herminda Martin, Chillan, Chile (P.S.)
| | - Esthefanny Escudero-Guevara
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (F.T., H.S., B.I., E.E.-G., J.A., C.E.)
| | - Francisco Nualart
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA Bio-Bio, Faculty of Biological Sciences, University of Concepcion, Chile (F.N., E.R.)
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile (F.N.)
| | - Eder Ramírez
- Laboratory of Neurobiology and Stem Cells NeuroCellT, Department of Cellular Biology, Center for Advanced Microscopy CMA Bio-Bio, Faculty of Biological Sciences, University of Concepcion, Chile (F.N., E.R.)
| | - Robert Powers
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, PA (R.P.)
| | - Manu Vatish
- Nuffield Department of Women's Health and Reproductive Research, University of Oxford, England (M.V.)
| | - Hiten D Mistry
- Division of Women and Children's Health, School of Life Course and Population Sciences, King's College London, United Kingdom (H.D.M.)
| | - Lesia O Kurlak
- Stroke Trials Unit, School of Medicine, University of Nottingham, United Kingdom (L.O.K.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (F.T., H.S., B.I., E.E.-G., J.A., C.E.)
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (F.T., H.S., B.I., E.E.-G., J.A., C.E.)
- Group of Research and Innovation in Vascular Health, Chillan, Chile (D.L.-E., C.E.)
| |
Collapse
|
4
|
Liu Y, Xu B, Fan C. Single-Cell RNA Sequencing and Microarray Analysis Reveal the Role of Lipid-Metabolism-Related Genes and Cellular Immune Infiltration in Pre-Eclampsia and Identify Novel Biomarkers for Pre-Eclampsia. Biomedicines 2023; 11:2328. [PMID: 37626824 PMCID: PMC10452287 DOI: 10.3390/biomedicines11082328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Pre-eclampsia (PE) is a gestational hypertensive disorder that is characterized by hypertension and proteinuria, typically occurring after 20 weeks of gestation. Despite its global impact on pregnant women, the precise pathogenic mechanisms of PE remain unclear. Dysregulated lipid metabolism and immune cell infiltration contribute to PE development. Our study aimed to identify lipid-metabolism-related genes (LMRG-PEs) and investigate their association with immune infiltration. We utilized the "Seurat" R package for data quality control, cell clustering, and marker gene identification. The "SingleR" package enabled the matching of marker genes to specific cell types. Pseudotemporal ordering analysis was conducted using the "Monocle" package. Weighted correlation network analysis (WGCNA), gene set variation analysis (GSVA), and gene set enrichment analysis (GSEA) approaches were employed to explore lipid-metabolism-related genes, while potential targeted drugs were predicted using the drug-gene interaction database (DGIdb). Hub gene expression was validated through RT-qPCR. By analyzing single-cell RNA sequencing data, we identified and classified 20 cell clusters into 5 distinct types. Differential gene expression analysis revealed 186 DEGs. WGCNA identified 9 critical modules and 265 genes significantly associated with PE diagnosis, emphasizing the importance of the core genes PLA2G7 and PTGS2. RT-qPCR confirmed the significantly decreased expression of PLA2G7 and PTGS2 in PE patient tissues. These findings offer valuable insights into the molecular mechanisms of PE, particularly those involving lipid metabolism and immune infiltration. The identified hub genes have potential as therapeutic targets and biomarkers for future research and clinical applications.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Borui Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China;
| | - Cuifang Fan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| |
Collapse
|
5
|
Escudero C, Kupka E, Ibañez B, Sandoval H, Troncoso F, Wikström AK, López-Espíndola D, Acurio J, Torres-Vergara P, Bergman L. Brain Vascular Dysfunction in Mothers and Their Children Exposed to Preeclampsia. Hypertension 2023; 80:242-256. [PMID: 35920147 DOI: 10.1161/hypertensionaha.122.19408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Preeclampsia is a maternal syndrome characterized by the new onset of hypertension and proteinuria after 20 weeks of gestation associated with multisystemic complications, including brain alterations. Indeed, brain complications associated with preeclampsia are the leading direct causes of fetal and maternal morbidity and mortality, especially in low- and middle-income countries. In addition to the well-recognized long-term adverse cardiovascular effects of preeclampsia, women who have had preeclampsia have higher risk of stroke, dementia, intracerebral white matter lesions, epilepsy, and perhaps also cognitive decline postpartum. Furthermore, increasing evidence has also associated preeclampsia with similar cognitive and cerebral disorders in the offspring. However, the mechanistic links between these associations remain unresolved. This article summarizes the current knowledge about the cerebrovascular complications elicited by preeclampsia and the potential pathophysiological mechanisms involved, emphasizing the impaired brain vascular function in the mother and their offspring.
Collapse
Affiliation(s)
- Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.).,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.)
| | - Ellen Kupka
- Institute of Clinical Sciences, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Sweden (E.K.)
| | - Belen Ibañez
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Hermes Sandoval
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Felipe Troncoso
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.)
| | - Anna-Karin Wikström
- Department of Women's and Children's Health, Uppsala University, Sweden (A.K.W., L.B.)
| | - Daniela López-Espíndola
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Chile (D.L.-E.)
| | - Jesenia Acurio
- Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, University of Bío-Bío, Chillán, Chile (C.E., B.I., H.S., F.T., J.A.).,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.)
| | - Pablo Torres-Vergara
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile (C.E., J.A., P.T.-V.).,Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile (P.T.-V.)
| | - Lina Bergman
- Department of Women's and Children's Health, Uppsala University, Sweden (A.K.W., L.B.).,Department of Obstetrics and Gynecology, Stellenbosch University, South Africa (L.B.).,Department of clinical sciences, Sahlgrenska Academy, Gothenburg University, Sweden (L.B.)
| |
Collapse
|
6
|
Abstract
Cerebrovascular autoregulation is the ability to maintain stable cerebral blood flow within a range of cerebral perfusion pressures. When cerebral perfusion pressure is outside the limits of effective autoregulation, the brain is subjected to hypoperfusion or hyperperfusion, which may cause vascular injury, hemorrhage, and/or hypoxic white matter injury. Infants born preterm, after fetal growth restriction, with congenital heart disease, or with hypoxic-ischemic encephalopathy are susceptible to a failure of cerebral autoregulation. Bedside assessment of cerebrovascular autoregulation would offer the opportunity to prevent brain injury. Clinicians need to know which patient populations and circumstances are associated with impaired/absent cerebral autoregulation.
Collapse
Affiliation(s)
- Elisabeth M W Kooi
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, PO Box 30001, Groningen 9700 RB, The Netherlands.
| | - Anne E Richter
- Division of Neonatology, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Hanzeplein 1, PO Box 30001, Groningen 9700 RB, The Netherlands
| |
Collapse
|