1
|
Istiban MN, De Fruyt N, Kenis S, Beets I. Evolutionary conserved peptide and glycoprotein hormone-like neuroendocrine systems in C. elegans. Mol Cell Endocrinol 2024; 584:112162. [PMID: 38290646 PMCID: PMC11004728 DOI: 10.1016/j.mce.2024.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/01/2024]
Abstract
Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.
Collapse
Affiliation(s)
- Majdulin Nabil Istiban
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Nathan De Fruyt
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Signe Kenis
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Isabel Beets
- Neural Signaling and Circuit Plasticity, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Koysombat K, McGown P, Nyunt S, Abbara A, Dhillo WS. New advances in menopause symptom management. Best Pract Res Clin Endocrinol Metab 2024; 38:101774. [PMID: 37076317 DOI: 10.1016/j.beem.2023.101774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Vasomotor symptoms (VMS) are characteristic of menopause experienced by over 75% of postmenopausal women with significant health and socioeconomic implications. Although the average duration of symptoms is seven years, 10% of women experience symptoms for more than a decade. Although menopausal hormone therapy (MHT) remains an efficacious and cost-effective treatment, its use may not be suitable in all women, such as those at an increased risk of breast cancer or gynaecological malignancy. The neurokinin B (NKB) signaling pathway, together with its intricate connection to the median preoptic nucleus (MnPO), has been postulated to provide integrated reproductive and thermoregulatory responses, with a central role in mediating postmenopausal VMS. This review describes the physiological hypothalamo-pituitary-ovary (HPO) axis, and subsequently the neuroendocrine changes that occur with menopause using evidence derived from animal and human studies. Finally, data from the latest clinical trials using novel therapeutic agents that antagonise NKB signaling are reviewed.
Collapse
Affiliation(s)
- Kanyada Koysombat
- Section of Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Patrick McGown
- Section of Investigative Medicine, Imperial College London, London, United Kingdom
| | - Sandhi Nyunt
- Section of Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Section of Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Section of Investigative Medicine, Imperial College London, London, United Kingdom; Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom.
| |
Collapse
|
3
|
Morris PG, Herbison AE. Mechanism of Arcuate Kisspeptin Neuron Synchronization in Acute Brain Slices From Female Mice. Endocrinology 2023; 164:bqad167. [PMID: 37936337 PMCID: PMC10652333 DOI: 10.1210/endocr/bqad167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
The mechanism by which arcuate kisspeptin (ARNKISS) neurons co-expressing glutamate, neurokinin B, and dynorphin intermittently synchronize their activity to drive pulsatile hormone secretion remains unclear in females. In order to study spontaneous synchronization within the ARNKISS neuron network, acute brain slices were prepared from adult female Kiss1-GCaMP6 mice. Analysis of both spontaneous synchronizations and those driven by high frequency stimulation of individual ARNKISS neurons revealed that the network exhibits semi-random emergent excitation dependent upon glutamate signaling through AMPA receptors. No role for NMDA receptors was identified. In contrast to male mice, ongoing tachykinin receptor tone within the slice operated to promote spontaneous synchronizations in females. As previously observed in males, we found that ongoing dynorphin transmission in the slice did not contribute to synchronization events. These observations indicate that a very similar AMPA receptor-dependent mechanism underlies ARNKISS neuron synchronizations in the female mouse supporting the "glutamate two-transition" model for kisspeptin neuron synchronization. However, a potentially important sex difference appears to exist with a more prominent facilitatory role for tachykinin transmission in the female.
Collapse
Affiliation(s)
- Paul G Morris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Allan E Herbison
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
4
|
Uenoyama Y, Tsukamura H. KNDy neurones and GnRH/LH pulse generation: Current understanding and future aspects. J Neuroendocrinol 2023; 35:e13285. [PMID: 37232103 DOI: 10.1111/jne.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Uncovering the central mechanism underlying mammalian reproduction is warranted to develop new therapeutic approaches for reproductive disorders in humans and domestic animals. The present study focused on the role of arcuate kisspeptin neurones (also known as KNDy neurones) as an intrinsic gonadotropin-releasing hormone (GnRH) pulse generator, which plays a fundamental role in mammalian reproduction via the stimulation of pituitary gonadotropin synthesis and release and thereby in gametogenesis and steroidogenesis in the gonads of mammals. We also discuss the mechanism that inhibits pulsatile GnRH/gonadotropin release under a negative energy balance, considering that reproductive disorders often occur during malnutrition in humans and livestock.
Collapse
Affiliation(s)
| | - Hiroko Tsukamura
- Laboratory of Animal Reproduction, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Xie Y, Shi X, Xiao K, Zhou L, Shu T, Du H, Yang J, Hu G. Sequences analysis and pituitary actions of tachykinins in Chinese sturgeon (Acipenser sinensis). Gene 2023:147592. [PMID: 37356741 DOI: 10.1016/j.gene.2023.147592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Tachykinins belong to a large, evolutionarily conserved family of brain/gut peptides that are involved in a variety of physiological functions in mammals, such as reproductive regulation. However, little information was available about tachykinins in ancient fish lineage. In the present study, we firstly identified three tachykinin genes (named tac1, tac3 and tac4) and three neurokinin receptors (named nk1r, nk2r and nk3r) from Chinese sturgeon brain and pituitary. Sequence analysis showed that tac1 encoded substance P (SP) and neurokinin A (NKA), tac3 encoded neurokinin B (NKB) and NKB-related peptide (NKBRP), and tac4 encoded hemokin 1 (HK-1) and hemokin 2 (HK-2), respectively. The luciferase reporter assay results showed that NK1R preferentially selected asSP, NK2R preferentially selected asNKA, and NK3R preferentially selected asNKB. Tissue expression analysis showed that the three tac genes were highly detected in the telencephalon and hypothalamus, whereas nkr genes were widely expressed in peripheral tissues. Spatio-temporal expression analysis showed that all three tac genes were highly expressed in unknown sex individuals. Intraperitoneal injection experiments showed that both asSP and asNKB could stimulate luteinizing hormone (LH) release in Chinese sturgeon serum. At the transcriptional level, asSP and asNKB could significantly reduce pituitary follicle-stimulating hormone beta (fshβ) mRNA expression, but induce pituitary growth hormone (gh) mRNA expression. In addition, estradiol (E2) could stimulate tac3 mRNA expression in hypothalamus. Taken together, this study provided information on the tachykinin family in Chinese sturgeon and demonstrates that asNKB and asSP could be involved in reproductive and growth regulation in pituitary.
Collapse
Affiliation(s)
- Yunyi Xie
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Xuetao Shi
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Tingting Shu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei, 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei, 443100, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| |
Collapse
|
6
|
Ye L, Yang Y, Li C, Zhang J, Wang W, Ma M, Xu H, Zhang W, Zou F, Hu Z, Wang H, Tian J. Synthesis and evaluation of piperazinotriazoles. Discovery of a potent and orally bioavailable neurokinin-3 receptor inhibitor. Eur J Med Chem 2023; 257:115486. [PMID: 37247507 DOI: 10.1016/j.ejmech.2023.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
The neurokinin-3 receptor (NK3R) is one of three receptors that recognize neurokinins. The finding that pharmacological blockade of neurokinin B (NKB) signaling with an oral NK3R antagonist can significantly improve hot flash symptoms independent of any hormonal effect fits strongly suggest that NK3R is a viable drug target and that drugs targeting this receptor could be novel pharmacotherapies. Currently no NK3R ligands have been approved for the treatment of human disorders. Herein, we designed and synthesized a series of novel imidazolepiperazine derivatives (16a-16x, 20a-20f, 29a-29m) and performed molecular docking to confirm the design, among which the target compound 16x exhibited promising inhibitory activity against NK3R (IC50 = 430.60 nM) with excellent membrane permeability (Papp, A-B = 37.6 × 10-6 cm/s, ER < 1) and oral bioavailability (F% = 93.6%). Our in vivo studies demonstrated that 16x was orally active, efficacious, and well-tolerated in ovariectomy (OVX) model to suppress blood luteinizing hormone levels, which suggests that 16x is a viable lead compound for further optimization and development.
Collapse
Affiliation(s)
- Liang Ye
- School of Public Health and Management, Binzhou Medical University, Yantai, PR China.
| | - Yifei Yang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Jianzhao Zhang
- College of Life Sciences, Yantai University, Yantai, Shangdong, 264005, PR China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mingxu Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Hengwei Xu
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, PR China
| | - Wenjing Zhang
- R & D Center, Luye Pharma Group Ltd., Yantai, 264003, PR China
| | - Fangxia Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Zhengping Hu
- Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
7
|
Velasco I, Franssen D, Daza-Dueñas S, Skrapits K, Takács S, Torres E, Rodríguez-Vazquez E, Ruiz-Cruz M, León S, Kukoricza K, Zhang FP, Ruohonen S, Luque-Cordoba D, Priego-Capote F, Gaytan F, Ruiz-Pino F, Hrabovszky E, Poutanen M, Vázquez MJ, Tena-Sempere M. Dissecting the KNDy hypothesis: KNDy neuron-derived kisspeptins are dispensable for puberty but essential for preserved female fertility and gonadotropin pulsatility. Metabolism 2023; 144:155556. [PMID: 37121307 DOI: 10.1016/j.metabol.2023.155556] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Kiss1 neurons in the hypothalamic arcuate-nucleus (ARC) play key roles in the control of GnRH pulsatility and fertility. A fraction of ARC Kiss1 neurons, termed KNDy, co-express neurokinin B (NKB; encoded by Tac2). Yet, NKB- and Kiss1-only neurons are also found in the ARC, while a second major Kiss1-neuronal population is present in the rostral hypothalamus. The specific contribution of different Kiss1 neuron sub-sets and kisspeptins originating from them to the control of reproduction and eventually other bodily functions remains to be fully determined. METHODS To tease apart the physiological roles of KNDy-born kisspeptins, conditional ablation of Kiss1 in Tac2-expressing cells was implemented in vivo. To this end, mice with Tac2 cell-specific Kiss1 KO (TaKKO) were generated and subjected to extensive reproductive and metabolic characterization. RESULTS TaKKO mice displayed reduced ARC kisspeptin content and Kiss1 expression, with greater suppression in females, which was detectable at infantile-pubertal age. In contrast, Tac2/NKB levels were fully preserved. Despite the drop of ARC Kiss1/kisspeptin, pubertal timing was normal in TaKKO mice of both sexes. However, young-adult TaKKO females displayed disturbed LH pulsatility and sex steroid levels, with suppressed basal LH and pre-ovulatory LH surges, early-onset subfertility and premature ovarian insufficiency. Conversely, testicular histology and fertility were grossly conserved in TaKKO males. Ablation of Kiss1 in Tac2-cells led also to sex-dependent alterations in body composition, glucose homeostasis, especially in males, and locomotor activity, specifically in females. CONCLUSIONS Our data document that KNDy-born kisspeptins are dispensable/compensable for puberty in both sexes, but required for maintenance of female gonadotropin pulsatility and fertility, as well as for adult metabolic homeostasis. SIGNIFICANCE STATEMENT Neurons in the hypothalamic arcuate nucleus (ARC) co-expressing kisspeptins and NKB, named KNDy, have been recently suggested to play a key role in pulsatile secretion of gonadotropins, and hence reproduction. However, the relative contribution of this Kiss1 neuronal-subset, vs. ARC Kiss1-only and NKB-only neurons, as well as other Kiss1 neuronal populations, has not been assessed in physiological settings. We report here findings in a novel mouse-model with elimination of KNDy-born kisspeptins, without altering other kisspeptin compartments. Our data highlights the heterogeneity of ARC Kiss1 populations and document that, while dispensable/compensable for puberty, KNDy-born kisspeptins are required for proper gonadotropin pulsatility and fertility, specifically in females, and adult metabolic homeostasis. Characterization of this functional diversity is especially relevant, considering the potential of kisspeptin-based therapies for management of human reproductive disorders.
Collapse
Affiliation(s)
- Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Delphine Franssen
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; GIGA-Neurosciences Unit, University of Liège, Liège, Belgium
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Encarnación Torres
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Elvira Rodríguez-Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Silvia León
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Krisztina Kukoricza
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Fu-Ping Zhang
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Suvi Ruohonen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Diego Luque-Cordoba
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Analytical Chemistry, University of Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
| | - Feliciano Priego-Capote
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Analytical Chemistry, University of Córdoba, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Spain
| | - Francisco Gaytan
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - María J Vázquez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain; Hospital Universitario Reina Sofía, Cordoba, Spain; Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain.
| |
Collapse
|
8
|
Guarraci FA, Avendano L, Kelly M, Estoesta C, Sencherey B, Valdivia HS, Gale A, Yepez L, Belfield JB, Carter KM, Williams N, Gore AC. Chronic periadolescent leuprolide exposure affects the development of reproductive physiology and behavior of female and male rats differently, but both mature after treatment termination. Biol Sex Differ 2023; 14:1. [PMID: 36609535 PMCID: PMC9817282 DOI: 10.1186/s13293-022-00485-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND GnRH agonists have been used to halt the development of puberty in children with precocious puberty since the 1980s. Recently, drugs like Lupron Depot® (leuprolide acetate), have been used to suppress pubertal progression in adolescents who are questioning their gender identity. However, few preclinical studies have been conducted to investigate potential effects of using GnRH agonists in this context. METHODS The present study tested the effects of daily leuprolide treatment (50 µg/kg, postnatal day (PD) 25-50) on pubertal onset in female (i.e., vaginal opening) and male (i.e., preputial separation) Long-Evans rats. The first estrous cycle immediately after vaginal opening was also measured. Sexual behavior and sexual motivation were tested using the partner-preference paradigm. Female rats were tested during the first behavioral estrus after treatment ended (between PD 51-64). Male rats were tested weekly for four consecutive weeks starting three days after treatment ended (PD 53). RESULTS Consistent with previous findings, leuprolide significantly delayed pubertal onset in both female and male rats. In addition, the first estrous cycle during the treatment period was disrupted by leuprolide, as indicated by a failure to cycle into estrus after vaginal opening until treatment ended. However, leuprolide affected neither sexual motivation nor fertility when female rats were tested within 14 days of leuprolide treatment ending. In contrast, the development of copulatory behavior and sexual motivation was significantly delayed by leuprolide in male rats; however, mature reproductive behavior was observed by the fourth week post-treatment. CONCLUSIONS Taken together with previous findings, the present results indicate that male rats may be more sensitive to periadolescent leuprolide administration, taking longer to overcome the effects of leuprolide than female rats. Nevertheless, not long after leuprolide treatment is discontinued, sex-typical reproductive physiology and behavior emerge fully in female and male rats, indicating that the drug's effects are not permanent. If translatable to humans, leuprolide may be a reversible option to give adolescents more time to consider their gender identity with minimal long-term effects on sexual development.
Collapse
Affiliation(s)
- Fay A. Guarraci
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Layla Avendano
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Megan Kelly
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Cleriza Estoesta
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Bernard Sencherey
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Hannah S. Valdivia
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Amanda Gale
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Lily Yepez
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Jasmine B. Belfield
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Kristen M. Carter
- grid.256058.c0000 0001 0443 1092Department of Biology, Francis Marion University, Florence, SC 29506 USA
| | - Natalie Williams
- grid.263924.80000 0004 1936 8120Department of Psychology, Southwestern University, Georgetown, TX 78626 USA
| | - Andrea C. Gore
- grid.89336.370000 0004 1936 9924Division of Pharmacology and Toxicology, The University of Texas, at Austin, Austin, TX 78712 USA
| |
Collapse
|
9
|
Xie Y, Xiao K, Cai T, Shi X, Zhou L, Du H, Yang J, Hu G. Neuropeptides and hormones in hypothalamus-pituitary axis of Chinese sturgeon (Acipenser sinensis). Gen Comp Endocrinol 2023; 330:114135. [PMID: 36181879 DOI: 10.1016/j.ygcen.2022.114135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/25/2022] [Accepted: 09/25/2022] [Indexed: 12/14/2022]
Abstract
The hypothalamus and pituitary serve as important neuroendocrine center, which is able to secrete a variety of neuropeptides and hormones to participate in the regulation of reproduction, growth, stress and feeding in fish. Chinese sturgeon is a basal vertebrate lineage fish with a special evolutionary status, but the information on its neuroendocrine system is relatively scarce. Using the transcriptome data on the hypothalamus-pituitary axis of Chinese sturgeon as reference, we found out 46 hypothalamus neuropeptide genes, which were involved in regulation of reproduction, growth, stress and feeding. The results of sequence alignment showed that the neuroendocrine system of Chinese sturgeon evolves slowly, which confirms that Chinese sturgeon is a species with a slow phenotypic evolution rate. In addition, we also isolated six pituitary hormones genes from Chinese sturgeon, including reproductive hormones: follicle-stimulating homone (FSH) and luteinizing hormone (LH), growth-related hormones: growth hormone (GH)/prolactin (PRL)/somatolactin (SL), and stress-related hormone gene: proopiomelanocortin (POMC). Similar to teleost, immunostaining localization analysis in Chinese sturgeon pituitary showed that LH and FSH were located in the pituitary proximal pars distalis, SL was located in the pituitary rostral pars distalis, and POMC was located in the pituitary pars intermedia and pituitary rostral pars distalis. This study will give a contribution to enrich our information on the neuroendocrine system in Chinese sturgeon.
Collapse
Affiliation(s)
- Yunyi Xie
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Kan Xiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Tianyi Cai
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Xuetao Shi
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Lingling Zhou
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China
| | - Hejun Du
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Jing Yang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, Hubei 443100, China; Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, Hubei 443100, China
| | - Guangfu Hu
- College of Fisheries, Huazhong Agriculture University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
Shi X, Zhuang Y, Chen Z, Xu M, Kuang J, Sun XL, Gao L, Kuang X, Zhang H, Li W, Wong SZH, Liu C, Liu L, Jiang D, Pei D, Lin Y, Wu QF. Hierarchical deployment of Tbx3 dictates the identity of hypothalamic KNDy neurons to control puberty onset. SCIENCE ADVANCES 2022; 8:eabq2987. [PMID: 36383654 PMCID: PMC9668310 DOI: 10.1126/sciadv.abq2987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/23/2022] [Indexed: 05/17/2023]
Abstract
The neuroendocrine system consists of a heterogeneous collection of neuropeptidergic neurons in the brain, among which hypothalamic KNDy neurons represent an indispensable cell subtype controlling puberty onset. Although neural progenitors and neuronal precursors along the cell lineage hierarchy adopt a cascade diversification strategy to generate hypothalamic neuronal heterogeneity, the cellular logic operating within the lineage to specify a subtype of neuroendocrine neurons remains unclear. As human genetic studies have recently established a link between TBX3 mutations and delayed puberty onset, we systematically studied Tbx3-derived neuronal lineage and Tbx3-dependent neuronal specification and found that Tbx3 hierarchically established and maintained the identity of KNDy neurons for triggering puberty. Apart from the well-established lineage-dependent fate determination, we uncovered rules of interlineage interaction and intralineage retention operating through neuronal differentiation in the absence of Tbx3. Moreover, we revealed that human TBX3 mutations disturbed the phase separation of encoded proteins and impaired transcriptional regulation of key neuropeptides, providing a pathological mechanism underlying TBX3-associated puberty disorders.
Collapse
Affiliation(s)
- Xiang Shi
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yanrong Zhuang
- IDG/McGovern Institute for Brain Research, Tsinghua–Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Mingrui Xu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Junqi Kuang
- University of Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lisen Gao
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Kuang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huairen Zhang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Samuel Zheng Hao Wong
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chuanyu Liu
- BGI-ShenZhen, Shenzhen 518103, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Longqi Liu
- BGI-ShenZhen, Shenzhen 518103, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Danhua Jiang
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yi Lin
- IDG/McGovern Institute for Brain Research, Tsinghua–Peking Joint Centre for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Corresponding author. (Q.-F.W.); (Y.L.)
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China
- Chinese Institute for Brain Research, Beijing 102206, China
- Beijing Children’s Hospital, Capital Medical University, Beijing 100045, China
- Corresponding author. (Q.-F.W.); (Y.L.)
| |
Collapse
|
11
|
Roberts SA, Naulé L, Chouman S, Johnson T, Johnson M, Carroll RS, Navarro VM, Kaiser UB. Hypothalamic Overexpression of Makorin Ring Finger Protein 3 Results in Delayed Puberty in Female Mice. Endocrinology 2022; 163:bqac132. [PMID: 35974456 PMCID: PMC10233297 DOI: 10.1210/endocr/bqac132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/19/2022]
Abstract
Makorin ring finger protein 3 (MKRN3) is an important neuroendocrine player in the control of pubertal timing and upstream inhibitor of gonadotropin-releasing hormone secretion. In mice, expression of Mkrn3 in the hypothalamic arcuate and anteroventral periventricular nucleus is high early in life and declines before the onset of puberty. Therefore, we aimed to explore if the persistence of hypothalamic Mkrn3 expression peripubertally would result in delayed puberty. Female mice that received neonatal bilateral intracerebroventricular injections of a recombinant adeno-associated virus expressing Mkrn3 had delayed vaginal opening and first estrus compared with animals injected with control virus. Subsequent estrous cycles and fertility were normal. Interestingly, male mice treated similarly did not exhibit delayed puberty onset. Kiss1, Tac2, and Pdyn mRNA levels were increased in the mediobasal hypothalamus in females at postnatal day 28, whereas kisspeptin and neurokinin B protein levels in the arcuate nucleus were decreased, following Mkrn3 overexpression, compared to controls. Cumulatively, these data suggest that Mkrn3 may directly or indirectly target neuropeptides of Kiss1 neurons to degradation pathways. This mouse model suggests that MKRN3 may be a potential contributor to delayed onset of puberty, in addition to its well-established roles in central precocious puberty and the timing of menarche.
Collapse
Affiliation(s)
- Stephanie A Roberts
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Lydie Naulé
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Soukayna Chouman
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Tatyana Johnson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Marciana Johnson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Victor M Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Roa J, Ruiz-Cruz M, Ruiz-Pino F, Onieva R, Vazquez MJ, Sanchez-Tapia MJ, Ruiz-Rodriguez JM, Sobrino V, Barroso A, Heras V, Velasco I, Perdices-Lopez C, Ohlsson C, Avendaño MS, Prevot V, Poutanen M, Pinilla L, Gaytan F, Tena-Sempere M. Dicer ablation in Kiss1 neurons impairs puberty and fertility preferentially in female mice. Nat Commun 2022; 13:4663. [PMID: 35945211 PMCID: PMC9363423 DOI: 10.1038/s41467-022-32347-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.
Collapse
Affiliation(s)
- Juan Roa
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain. .,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain.
| | - Miguel Ruiz-Cruz
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Francisco Ruiz-Pino
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Rocio Onieva
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Maria J Vazquez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Maria J Sanchez-Tapia
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Jose M Ruiz-Rodriguez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Veronica Sobrino
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Alexia Barroso
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Violeta Heras
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Inmaculada Velasco
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Cecilia Perdices-Lopez
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Maria Soledad Avendaño
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, 59000, Lille, France
| | - Matti Poutanen
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden.,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland
| | - Leonor Pinilla
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Francisco Gaytan
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain.,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004, Córdoba, Spain. .,Hospital Universitario Reina Sofia, 14004, Córdoba, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004, Córdoba, Spain. .,Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Turku Center for Disease Modeling, University of Turku, 20520, Turku, Finland.
| |
Collapse
|
13
|
Goodman RL, Herbison AE, Lehman MN, Navarro VM. Neuroendocrine control of gonadotropin-releasing hormone: Pulsatile and surge modes of secretion. J Neuroendocrinol 2022; 34:e13094. [PMID: 35107859 PMCID: PMC9948945 DOI: 10.1111/jne.13094] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
The concept that different systems control episodic and surge secretion of gonadotropin-releasing hormone (GnRH) was well established by the time that GnRH was identified and formed the framework for studies of the physiological roles of GnRH, and later kisspeptin. Here, we focus on recent studies identifying the neural mechanisms underlying these two modes of secretion, with an emphasis on their core components. There is now compelling data that kisspeptin neurons in the arcuate nucleus that also contain neurokinin B (NKB) and dynorphin (i.e., KNDy cells) and their projections to GnRH dendrons constitute the GnRH pulse generator in mice and rats. There is also strong evidence for a similar role for KNDy neurons in sheep and goats, and weaker data in monkeys and humans. However, whether KNDy neurons act on GnRH dendrons and/or GnRH soma and dendrites that are found in the mediobasal hypothalamus (MBH) of these species remains unclear. The core components of the GnRH/luteinising hormone surge consist of an endocrine signal that initiates the process and a neural trigger that drives GnRH secretion during the surge. In all spontaneous ovulators, the core endocrine signal is a rise in estradiol secretion from the maturing follicle(s), with the site of estrogen positive feedback being the rostral periventricular kisspeptin neurons in rodents and neurons in the MBH of sheep and primates. There is considerable species variations in the neural trigger, with three major classes. First, in reflex ovulators, this trigger is initiated by coitus and carried to the hypothalamus by neural or vascular pathways. Second, in rodents, there is a time of day signal that originates in the suprachiasmatic nucleus and activates rostral periventricular kisspeptin neurons and GnRH soma and dendrites. Finally, in sheep nitric oxide-producing neurons in the ventromedial nucleus, KNDy neurons and rostral kisspeptin neurons all appear to participate in driving GnRH release during the surge.
Collapse
Affiliation(s)
- Robert L. Goodman
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Allan E. Herbison
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael N. Lehman
- Brain Health Research Institute, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Victor M. Navarro
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School and Department of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Rønnekleiv OK, Qiu J, Kelly MJ. Hypothalamic Kisspeptin Neurons and the Control of Homeostasis. Endocrinology 2022; 163:bqab253. [PMID: 34953135 PMCID: PMC8758343 DOI: 10.1210/endocr/bqab253] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 12/27/2022]
Abstract
Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to gonadotropin-releasing hormone (GnRH) neurons for the coordinated release of gonadotropins, estrous cyclicity, and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are 2 distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1AVPV/PeN neurons but decreases its expression in Kiss1ARH neurons. Also, Kiss1ARH neurons coexpress glutamate and Kiss1AVPV/PeN neurons coexpress gamma aminobutyric acid (GABA), both of which are upregulated by E2 in females. Also, Kiss1ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1ARH neurons project to and excite the anorexigenic proopiomelanocortin neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide neurons, highlighting their role in regulating feeding behavior. Kiss1ARH and Kiss1AVPV/PeN neurons also project to the preautonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
15
|
Meng Z, Chen H, Deng C, Meng S. Potential cellular endocrinology mechanisms underlying the effects of Chinese herbal medicine therapy on asthma. Front Endocrinol (Lausanne) 2022; 13:916328. [PMID: 36051395 PMCID: PMC9424672 DOI: 10.3389/fendo.2022.916328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.
Collapse
Affiliation(s)
- Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Shengxi Meng,
| |
Collapse
|
16
|
Hypothalamic neurokinin signalling and its application in reproductive medicine. Pharmacol Ther 2021; 230:107960. [PMID: 34273412 DOI: 10.1016/j.pharmthera.2021.107960] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
The discovery of the essential requirement for kisspeptin and subsequently neurokinin B signalling for human reproductive function has sparked renewed interest in the neuroendocrinology of reproduction. A key discovery has been a population of cells co-expressing both these neuropeptides and dynorphin in the hypothalamus, directly regulating gonadotropin hormone releasing hormone (GnRH) secretion and thus pituitary secretion of gonadotropins. These neurons also project to the vasomotor centre, and their overactivity in estrogen deficiency results in the common and debilitating hot flushes of the menopause. Several antagonists to the neurokinin 3 receptor, for which neurokinin B is the endogenous ligand, have been developed, and are entering clinical studies in human reproductive function and clinical trials. Even single doses can elicit marked declines in testosterone levels in men, and their use has elicited evidence of the regulation of ovarian follicle growth in women. The most advanced indication is the treatment of menopausal vasomotor symptoms, where these drugs show remarkable results in both the degree and speed of symptom control. A range of other reproductive indications are starting to be explored, notably in polycystic ovary syndrome, the most common endocrinopathy in women.
Collapse
|
17
|
Pawsey S, Mills EG, Ballantyne E, Donaldson K, Kerr M, Trower M, Dhillo WS. Elinzanetant (NT-814), a Neurokinin 1,3 Receptor Antagonist, Reduces Estradiol and Progesterone in Healthy Women. J Clin Endocrinol Metab 2021; 106:e3221-e3234. [PMID: 33624806 PMCID: PMC8277204 DOI: 10.1210/clinem/dgab108] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Indexed: 12/30/2022]
Abstract
CONTEXT The ideal therapy for endometriosis (EM) and uterine fibroids (UFs) would suppress estrogenic drive to the endometrium and myometrium, while minimizing vasomotor symptoms and bone loss associated with current treatments. An integrated neurokinin-kisspeptin system involving substance P and neurokinin B acting at the neurokinin (NK) receptors 1 and 3, respectively, modulates reproductive hormone secretion and represents a therapeutic target. OBJECTIVE This work aimed to assess the effects of the novel NK1,3 antagonist elinzanetant on reproductive hormone levels in healthy women. METHODS A randomized, single-blinded, placebo-controlled study was conducted in 33 women who attended for 2 consecutive menstrual cycles. In each cycle blood samples were taken on days 3 or 4, 9 or 10, 15 or 16, and 21 or 22 to measure serum reproductive hormones. In cycle 2, women were randomly assigned to receive once-daily oral elinzanetant 40, 80, 120 mg, or placebo (N = 8 or 9 per group). RESULTS Elinzanetant dose-dependently lowered serum luteinizing hormone, estradiol (120 mg median change across cycle: -141.4 pmol/L, P = .038), and luteal-phase progesterone (120 mg change from baseline on day 21 or 22: -19.400 nmol/L, P = .046). Elinzanetant 120 mg prolonged the cycle length by median of 7.0 days (P = .023). Elinzanetant reduced the proportion of women with a luteal-phase serum progesterone concentration greater than 30 nmol/L (a concentration consistent with ovulation) in a dose-related manner in cycle 2 (P = .002). Treatment did not produce vasomotor symptoms. CONCLUSION NK1,3 receptor antagonism with elinzanetant dose-dependently suppressed the reproductive axis in healthy women, with the 120-mg dose lowering estradiol to potentially ideal levels for UFs and EM. As such, elinzanetant may represent a novel therapy to manipulate reproductive hormone levels in women with hormone-driven disorders.
Collapse
Affiliation(s)
- Steve Pawsey
- NeRRe Therapeutics Limited, Stevenage, SG1 2FX, UK
| | - Edouard Gregory Mills
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 ONN, UK
| | | | | | - Mary Kerr
- NeRRe Therapeutics Limited, Stevenage, SG1 2FX, UK
| | - Mike Trower
- NeRRe Therapeutics Limited, Stevenage, SG1 2FX, UK
| | - Waljit Singh Dhillo
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, W12 ONN, UK
- Imperial Consultants, Imperial College London, London, SW7 2PG, UK
- Correspondence: Waljit S. Dhillo, PhD, MBBS, Section of Endocrinology and Investigative Medicine, Imperial College London, 6th Fl, Commonwealth Bldg, Hammersmith Hospital, Du Cane Rd, London W12 ONN, UK.
| |
Collapse
|
18
|
Sakai N, Ohno H, Yoshida M, Iwamoto E, Kurogi A, Jiang D, Sato T, Miyazato M, Kojima M, Kato J, Ida T. Characterization of putative tachykinin peptides in Caenorhabditis elegans. Biochem Biophys Res Commun 2021; 559:197-202. [PMID: 33945998 DOI: 10.1016/j.bbrc.2021.04.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022]
Abstract
Tachykinin-like peptides, such as substance P, neurokinin A, and neurokinin B, are among the earliest discovered and best-studied neuropeptide families, and research on them has contributed greatly to our understanding of the endocrine control of many physiological processes. However, there are still many orphan tachykinin receptor homologs for which cognate ligands have not yet been identified, especially in small invertebrates, such as the nematode Caenorhabditis elegans (C. elegans). We here show that the C. elegans nlp-58 gene encodes putative ligands for the orphan G protein-coupled receptor (GPCR) TKR-1, which is a worm ortholog of tachykinin receptors. We first determine, through an unbiased biochemical screen, that a peptide derived from the NLP-58 preprotein stimulates TKR-1. Three mature peptides that are predicted to be generated from NLP-58 show potent agonist activity against TKR-1. We designate these peptides as C. elegans tachykinin (CeTK)-1, -2, and -3. The CeTK peptides contain the C-terminal sequence GLR-amide, which is shared by tachykinin-like peptides in other invertebrate species. nlp-58 exhibits a strongly restricted expression pattern in several neurons, implying that CeTKs behave as neuropeptides. The discovery of CeTKs provides important information to aid our understanding of tachykinin-like peptides and their functional interaction with GPCRs.
Collapse
Affiliation(s)
- Naoko Sakai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hayao Ohno
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Morikatsu Yoshida
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Eri Iwamoto
- Clinical Research Center, Kurume University Hospital, Fukuoka, 830-0011, Japan
| | - Akito Kurogi
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Danfeng Jiang
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, 830-0011, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, 564-8565, Japan
| | - Masayasu Kojima
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka, 830-0011, Japan
| | - Johji Kato
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
19
|
Torres E, Velasco I, Franssen D, Heras V, Gaytan F, Leon S, Navarro VM, Pineda R, Candenas ML, Romero-Ruiz A, Tena-Sempere M. Congenital ablation of Tacr2 reveals overlapping and redundant roles of NK2R signaling in the control of reproductive axis. Am J Physiol Endocrinol Metab 2021; 320:E496-E511. [PMID: 33427049 PMCID: PMC8828271 DOI: 10.1152/ajpendo.00346.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tachykinin (TAC) signaling is an important element in the central control of reproduction. TAC family is mainly composed of substance P (SP), neurokinin A (NKA), and NKB, which bind preferentially to NK1, NK2, and NK3 receptors, respectively. While most studies have focused on the reproductive functions of NKB/NK3R, and to a lesser extent SP/NK1R, the relevance of NK2R, encoded by Tacr2, remains poorly characterized. Here, we address the physiological roles of NK2R in regulating the reproductive axis by characterizing a novel mouse line with congenital ablation of Tacr2. Activation of NK2R evoked acute luteinizing hormone (LH) responses in control mice, similar to those of agonists of NK1R and NK3R. Despite the absence of NK2R, Tacr2-/- mice displayed only partially reduced LH responses to an NK2R agonist, which, nonetheless, were abrogated after blockade of NK3R in Tacr2-/- males. While Tacr2-/- mice displayed normal pubertal timing, LH pulsatility was partially altered in Tacr2-/- females in adulthood, with suppression of basal LH levels, but no changes in the number of LH pulses. In addition, trends for increase in breeding intervals were detected in Tacr2-/- mice. However, null animals of both sexes were fertile, with no changes in estrous cyclicity or sex preference in social behavioral tests. In conclusion, stimulation of NK2R elicited LH responses in mice, while congenital ablation of Tacr2 partially suppressed basal and stimulated LH secretion, with moderate reproductive impact. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.NEW & NOTEWORTHY We have explored here the impact of congenital ablation of the gene (Tacr2) encoding the tachykinin receptor, NK2R, in terms of neuroendocrine control of the reproductive axis, using a novel Tacr2 KO mouse line. Our data support a modest, albeit detectable, role of NK2R in the control of the gonadotropic axis, with partially overlapping and redundant functions with other tachykinin receptors.
Collapse
Affiliation(s)
- Encarnacion Torres
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Inmaculada Velasco
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Delphine Franssen
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Violeta Heras
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Francisco Gaytan
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Silvia Leon
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Division of Endocrinology, Department of Medicine, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Victor M Navarro
- Division of Endocrinology, Department of Medicine, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rafael Pineda
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - M Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Seville, Spain
| | - Antonio Romero-Ruiz
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology and Immunology, Instituto Maimonides de Investigación Biomédica de Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Abstract
The tachykinin family of peptides has emerged as a critical component of the central control of the reproductive axis. Mounting evidence suggests that neurokinin B (NKB) plays an essential role in sexual maturation and fertility by directly stimulating the release of kisspeptin, with the contribution of additional tachykinins (neurokinin A [NKA] and substance P [SP]) in the fine tuning of the activity of Kiss1 neurons. The expression of tachykinins increases in the hypothalamus before puberty and, therefore, they are considered as initiators of pubertal development by stimulating the awakening of Kiss1 neurons. This is supported by studies showing delayed or absent puberty onset in humans and mice devoid of tachykinin signaling, and the advancement of puberty onset in rodents subjected to chronic activation of tachykinin receptors. This review compiles the current knowledge on the role of tachykinins in the control of puberty onset.
Collapse
Affiliation(s)
- Víctor M Navarro
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School
- Harvard Program in Neuroscience. Boston, 02115
| |
Collapse
|