1
|
Lasheen NN, Allam S, Elgarawany A, Aswa DW, Mansour R, Farouk Z. Limitations and potential strategies of immune checkpoint blockade in age-related neurodegenerative disorders. J Physiol Sci 2024; 74:46. [PMID: 39313800 PMCID: PMC11421184 DOI: 10.1186/s12576-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Neurological disorders such as Alzheimer's disease (AD), and Parkinson's disease (PD) have no disease-modifying treatments, resulting in a global dementia crisis that affects more than 50 million people. Amyloid-beta (Aβ), tau, and alpha-synuclein (α-Syn) are three crucial proteins that are involved in the pathogenesis of these age-related neurodegenerative diseases. Only a few approved AD medications have been used in the clinic up to this point, and their results are only partial symptomatic alleviation for AD patients and cannot stop the progression of AD. Immunotherapies have attracted considerable interest as they target certain protein strains and conformations as well as promote clearance. Immunotherapies also have the potential to be neuroprotective: as they limit synaptic damage and spread of neuroinflammation by neutralizing extracellular protein aggregates. Lately, disease-modifying therapies (DMTs) that can alter the pathophysiology that underlies AD with anti-Aβ monoclonal antibodies (MAbs) (e.g., aducanumab, lecanemab, gantenerumab, donanemab, solanezumab, crenezumab, tilavonemab). Similarly, in Parkinson's disease (PD), DMTs utilizing anti-αSyn (MAbs) (e.g., prasinezumab, cinpanemab,) are progressively being developed and evaluated in clinical trials. These therapies are based on the hypothesis that both AD and PD may involve systemic impairments in cell-dependent clearance mechanisms of amyloid-beta (Aβ) and alpha-synuclein (αSyn), respectively, meaning the body's overall inability to effectively remove Aβ and αSyn due to malfunctioning cellular mechanisms. In this review we will provide possible evidence behind the use of immunotherapy with MAbs in AD and PD and highlight the recent clinical development landscape of anti-Aβ (MAbs) and anti-αSyn (MAbs) from these clinical trials in order to better investigate the therapeutic possibilities and adverse effects of these anti-Aβ and anti-αSyn MAbs on AD and PD.
Collapse
Affiliation(s)
- Noha N Lasheen
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Suez, Egypt.
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Salma Allam
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | | | - Darin W Aswa
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Rana Mansour
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| | - Ziad Farouk
- Faculty of Medicine, Galala University, Galala City, Suez, Egypt
| |
Collapse
|
2
|
Kim AY, Al Jerdi S, MacDonald R, Triggle CR. Alzheimer's disease and its treatment-yesterday, today, and tomorrow. Front Pharmacol 2024; 15:1399121. [PMID: 38868666 PMCID: PMC11167451 DOI: 10.3389/fphar.2024.1399121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024] Open
Abstract
Alois Alzheimer described the first patient with Alzheimer's disease (AD) in 1907 and today AD is the most frequently diagnosed of dementias. AD is a multi-factorial neurodegenerative disorder with familial, life style and comorbidity influences impacting a global population of more than 47 million with a projected escalation by 2050 to exceed 130 million. In the USA the AD demographic encompasses approximately six million individuals, expected to increase to surpass 13 million by 2050, and the antecedent phase of AD, recognized as mild cognitive impairment (MCI), involves nearly 12 million individuals. The economic outlay for the management of AD and AD-related cognitive decline is estimated at approximately 355 billion USD. In addition, the intensifying prevalence of AD cases in countries with modest to intermediate income countries further enhances the urgency for more therapeutically and cost-effective treatments and for improving the quality of life for patients and their families. This narrative review evaluates the pathophysiological basis of AD with an initial focus on the therapeutic efficacy and limitations of the existing drugs that provide symptomatic relief: acetylcholinesterase inhibitors (AChEI) donepezil, galantamine, rivastigmine, and the N-methyl-D-aspartate receptor (NMDA) receptor allosteric modulator, memantine. The hypothesis that amyloid-β (Aβ) and tau are appropriate targets for drugs and have the potential to halt the progress of AD is critically analyzed with a particular focus on clinical trial data with anti-Aβ monoclonal antibodies (MABs), namely, aducanumab, lecanemab and donanemab. This review challenges the dogma that targeting Aβ will benefit the majority of subjects with AD that the anti-Aβ MABs are unlikely to be the "magic bullet". A comparison of the benefits and disadvantages of the different classes of drugs forms the basis for determining new directions for research and alternative drug targets that are undergoing pre-clinical and clinical assessments. In addition, we discuss and stress the importance of the treatment of the co-morbidities, including hypertension, diabetes, obesity and depression that are known to increase the risk of developing AD.
Collapse
Affiliation(s)
- A. Y. Kim
- Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| | | | - R. MacDonald
- Health Sciences Library, Weill Cornell Medicine—Qatar, Doha, Qatar
| | - C. R. Triggle
- Department of Pharmacology and Medical Education, Weill Cornell Medicine—Qatar, Doha, Qatar
| |
Collapse
|
3
|
Schreiner TG, Croitoru CG, Hodorog DN, Cuciureanu DI. Passive Anti-Amyloid Beta Immunotherapies in Alzheimer's Disease: From Mechanisms to Therapeutic Impact. Biomedicines 2024; 12:1096. [PMID: 38791059 PMCID: PMC11117736 DOI: 10.3390/biomedicines12051096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease, the most common type of dementia worldwide, lacks effective disease-modifying therapies despite significant research efforts. Passive anti-amyloid immunotherapies represent a promising avenue for Alzheimer's disease treatment by targeting the amyloid-beta peptide, a key pathological hallmark of the disease. This approach utilizes monoclonal antibodies designed to specifically bind amyloid beta, facilitating its clearance from the brain. This review offers an original and critical analysis of anti-amyloid immunotherapies by exploring several aspects. Firstly, the mechanisms of action of these therapies are reviewed, focusing on their ability to promote Aβ degradation and enhance its efflux from the central nervous system. Subsequently, the extensive history of clinical trials involving anti-amyloid antibodies is presented, from initial efforts using first-generation molecules leading to mixed results to recent clinically approved drugs. Along with undeniable progress, the authors also highlight the pitfalls of this approach to offer a balanced perspective on this topic. Finally, based on its potential and limitations, the future directions of this promising therapeutic strategy for Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Cristina Georgiana Croitoru
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
- Department of Immunology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Nicoleta Hodorog
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| | - Dan Iulian Cuciureanu
- Department of Medical Specialties III, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- First Neurology Clinic, “N. Oblu” Clinical Emergency Hospital, 700309 Iasi, Romania
| |
Collapse
|
4
|
Therriault J, Schindler SE, Salvadó G, Pascoal TA, Benedet AL, Ashton NJ, Karikari TK, Apostolova L, Murray ME, Verberk I, Vogel JW, La Joie R, Gauthier S, Teunissen C, Rabinovici GD, Zetterberg H, Bateman RJ, Scheltens P, Blennow K, Sperling R, Hansson O, Jack CR, Rosa-Neto P. Biomarker-based staging of Alzheimer disease: rationale and clinical applications. Nat Rev Neurol 2024; 20:232-244. [PMID: 38429551 DOI: 10.1038/s41582-024-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Disease staging, whereby the spatial extent and load of brain pathology are used to estimate the severity of Alzheimer disease (AD), is pivotal to the gold-standard neuropathological diagnosis of AD. Current in vivo diagnostic frameworks for AD are based on abnormal concentrations of amyloid-β and tau in the cerebrospinal fluid or on PET scans, and breakthroughs in molecular imaging have opened up the possibility of in vivo staging of AD. Focusing on the key principles of disease staging shared across several areas of medicine, this Review highlights the potential for in vivo staging of AD to transform our understanding of preclinical AD, refine enrolment criteria for trials of disease-modifying therapies and aid clinical decision-making in the era of anti-amyloid therapeutics. We provide a state-of-the-art review of recent biomarker-based AD staging systems and highlight their contributions to the understanding of the natural history of AD. Furthermore, we outline hypothetical frameworks to stage AD severity using more accessible fluid biomarkers. In addition, by applying amyloid PET-based staging to recently published anti-amyloid therapeutic trials, we highlight how biomarker-based disease staging frameworks could illustrate the numerous pathological changes that have already taken place in individuals with mildly symptomatic AD. Finally, we discuss challenges related to the validation and standardization of disease staging and provide a forward-looking perspective on potential clinical applications.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Suzanne E Schindler
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Gemma Salvadó
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andréa Lessa Benedet
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- NIHR Biomedical Research Centre, South London and Maudsley NHS Foundation, London, UK
| | - Thomas K Karikari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Liana Apostolova
- Department of Neurology, University of Indiana School of Medicine, Indianapolis, IN, USA
| | | | - Inge Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Jacob W Vogel
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Department of Clinical Sciences, Malmö, SciLifeLab, Lund University, Lund, Sweden
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Tracy Family SILQ Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip Scheltens
- Alzheimer Centre Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Reisa Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | | | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Appleman ML, Thomas JL, Weiss AR, Nilaver BI, Cervera-Juanes R, Kohama SG, Urbanski HF. Effect of hormone replacement therapy on amyloid beta (Aβ) plaque density in the rhesus macaque amygdala. Front Aging Neurosci 2024; 15:1326747. [PMID: 38274989 PMCID: PMC10808750 DOI: 10.3389/fnagi.2023.1326747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Background Amyloid beta (Aβ) plaque density was examined in the amygdala of rhesus macaques, to elucidate the influence of age, diet and hormonal environment. Methods Luminex technology was used to measure cerebrospinal fluid (CSF) concentrations of Aβ40 and Aβ42 across three decades, while immunohistochemistry was used to examine Aβ plaque density in the amygdala. Results Aβ40 was found to be the predominant isoform of Aβ in the CSF, but neither Aβ40 or Aβ42 concentrations showed an age-related change, and the ratio of Aβ42 to Aβ40 showed only a marginal increase. Significantly fewer Aβ plaques were detected in the amygdala of old ovariectomized animals if they received estradiol HRT (p < 0.001); similar results were obtained regardless of whether they had been maintained on a regular monkey chow for ∼48 months or on a high-fat, high-sugar, Western-style diet for ∼30 months. Conclusion The results demonstrate that HRT involving estrogen can reduce Aβ plaque load in a cognitive brain region of aged non-human primates. The results from this translational animal model may therefore have clinical relevance to the treatment of AD in post-menopausal women, whether used alone, or as a supplement to current pharmacological and monoclonal antibody-based interventions.
Collapse
Affiliation(s)
- Maria-Luisa Appleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Jeremy L. Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Alison R. Weiss
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Benjamin I. Nilaver
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Rita Cervera-Juanes
- Department of Physiology and Pharmacology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, United States
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, United States
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
6
|
Rathee S, Sen D, Pandey V, Jain SK. Advances in Understanding and Managing Alzheimer's Disease: From Pathophysiology to Innovative Therapeutic Strategies. Curr Drug Targets 2024; 25:752-774. [PMID: 39039673 DOI: 10.2174/0113894501320096240627071400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder characterized by the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles, leading to cognitive and physical decline. Representing the majority of dementia cases, AD poses a significant burden on healthcare systems globally, with onset typically occurring after the age of 65. While most cases are sporadic, about 10% exhibit autosomal forms associated with specific gene mutations. Neurofibrillary tangles and Aβ plaques formed by misfolded tau proteins and Aβ peptides contribute to neuronal damage and cognitive impairment. Currently, approved drugs, such as acetylcholinesterase inhibitors and N-methyl D-aspartate receptor agonists, offer only partial symptomatic relief without altering disease progression. A promising development is using lecanemab, a humanized IgG1 monoclonal antibody, as an immune therapeutic approach. Lecanemab demonstrates selectivity for polymorphic Aβ variants and binds to large soluble Aβ aggregates, providing a potential avenue for targeted treatment. This shift in understanding the role of the adaptive immune response in AD pathogenesis opens new possibilities for therapeutic interventions aiming to address the disease's intricate mechanisms. This review aims to summarize recent advancements in understanding Alzheimer's disease pathophysiology and innovative therapeutic approaches, providing valuable insights for both researchers and clinicians.
Collapse
Affiliation(s)
- Sunny Rathee
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Debasis Sen
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Vishal Pandey
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| |
Collapse
|
7
|
Patwekar M, Patwekar F, Khan S, Sharma R, Kumar D. Navigating the Alzheimer's Treatment Landscape: Unraveling Amyloid-beta Complexities and Pioneering Precision Medicine Approaches. Curr Top Med Chem 2024; 24:1665-1682. [PMID: 38644708 DOI: 10.2174/0115680266295495240415114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
A variety of cutting-edge methods and good knowledge of the illness's complex causes are causing a sea change in the field of Alzheimer's Disease (A.D.) research and treatment. Precision medicine is at the vanguard of this change, where individualized treatment plans based on genetic and biomarker profiles give a ray of hope for customized therapeutics. Combination therapies are becoming increasingly popular as a way to address the multifaceted pathology of Alzheimer's by simultaneously attacking Aβ plaques, tau tangles, neuroinflammation, and other factors. The article covers several therapeutic design efforts, including BACE inhibitors, gamma- secretase modulators, monoclonal antibodies (e.g., Aducanumab and Lecanemab), and anti- Aβ vaccinations. While these techniques appear promising, clinical development faces safety concerns and uneven efficacy. To address the complicated Aβ pathology in Alzheimer's disease, a multimodal approach is necessary. The statement emphasizes the continued importance of clinical trials in addressing safety and efficacy concerns. Looking ahead, it suggests that future treatments may take into account genetic and biomarker traits in order to provide more personalized care. Therapies targeting Aβ, tau tangles, neuroinflammation, and novel drug delivery modalities are planned. Nanoparticles and gene therapies are only two examples of novel drug delivery methods that have the potential to deliver treatments more effectively, with fewer side effects, and with better therapeutic results. In addition, medicines that target tau proteins in addition to Aβ are in the works. Early intervention, based on precise biomarkers, is a linchpin of Alzheimer's care, emphasizing the critical need for detecting the disease at its earliest stages. Lifestyle interventions, encompassing diet, exercise, cognitive training, and social engagement, are emerging as key components in the fight against cognitive decline. Data analytics and art are gaining prominence as strategies to mitigate the brain's inflammatory responses. To pool knowledge and resources in the fight against Alzheimer's, international cooperation between scientists, doctors, and pharmaceutical companies is still essential. In essence, a complex, individualized, and collaborative strategy will characterize Alzheimer's research and therapy in the future. Despite obstacles, these encouraging possibilities show the ongoing commitment of the scientific and medical communities to combat A.D. head-on, providing a glimmer of hope to the countless people and families touched by this savage sickness.
Collapse
Affiliation(s)
- Mohsina Patwekar
- Department of Pharmacology, Luqman College of Pharmacy, P.B. 86, old Jewargi road, Gulbarga, Karnataka, 585102, India
| | - Faheem Patwekar
- Department of Pharmacognosy, Luqman College of Pharmacy, P.B. 86, old Jewargi Road, Gulbarga, Karnataka, 585102, India
| | - Shahzad Khan
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa City, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra 411038, India
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
8
|
Ashique S, Sirohi E, Kumar S, Rihan M, Mishra N, Bhatt S, Gautam RK, Singh SK, Gupta G, Chellappan DK, Dua K. Aducanumab in Alzheimer's Disease: A Critical Update. Curr Med Chem 2024; 31:5004-5026. [PMID: 37497712 DOI: 10.2174/0929867331666230727103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/23/2023] [Accepted: 05/19/2023] [Indexed: 07/28/2023]
Abstract
Alzheimer's disease (AD) is a complex neurological disorder that results in cognitive decline. The incidence rates of AD have been increasing, particularly among individuals 60 years of age or older. In June 2021, the US FDA approved aducanumab, the first humanized monoclonal antibody, as a potential therapeutic option for AD. Clinical trials have shown this drug to effectively target the accumulation of Aβ (beta-amyloid) plaques in the brain, and its effectiveness is dependent on the dosage and duration of treatment. Additionally, aducanumab has been associated with improvements in cognitive function. Biogen, the pharmaceutical company responsible for developing and marketing aducanumab, has positioned it as a potential breakthrough for treating cerebral damage in AD. However, the drug has raised concerns due to its high cost, limitations, and potential side effects. AD is a progressive neurological condition that affects memory, cognitive function, and behaviour. It significantly impacts the quality of life of patients and caregivers and strains healthcare systems. Ongoing research focuses on developing disease-modifying therapies that can halt or slow down AD progression. The pathogenesis of AD involves various molecular cascades and signaling pathways. However, the formation of extracellular amyloid plaques is considered a critical mechanism driving the development and progression of the disease. Aducanumab, as a monoclonal antibody, has shown promising results in inhibiting amyloid plaque formation, which is the primary pathological feature of AD. This review explores the signaling pathways and molecular mechanisms through which aducanumab effectively prevents disease pathogenesis in AD.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT), Meerut 250103, UP, India
| | - Ekta Sirohi
- Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT), Meerut 250103, UP, India
| | - Shubneesh Kumar
- Department of Pharmaceutical Science, School of Pharmacy, Bharat Institute of Technology (BIT), Meerut 250103, UP, India
| | - Mohd Rihan
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab 160062, India
| | - Neeraj Mishra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior 474005, Madhya Pradesh, India
| | - Shvetank Bhatt
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Gwalior 474005, Madhya Pradesh, India
| | - Rupesh K Gautam
- MM School of Pharmacy, Maharishi Markandeshwar University, Sadopur, Ambala, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
9
|
Bracoud L, Klein G, Lyons M, Scelsi MA, Wojtowicz J, Bullain S, Purcell D, Fiebach JB, Barakos J, Suhy J. Validation of 3- and 5-point severity scales to assess ARIA-E. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12503. [PMID: 38026755 PMCID: PMC10667607 DOI: 10.1002/dad2.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Anti-amyloid-β (Aβ) monoclonal antibodies (mAbs) offer the promise of disease modification and are emerging treatment options in Alzheimer's disease. Anti-Aβ mAbs require brain magnetic resonance imaging (MRI) examinations to detect anti-amyloid-induced amyloid-related imaging abnormalities (ARIA), important adverse drug reactions associated with some anti-Aβ mAbs currently available in the United States and in clinical development. We present a simple rating system for ARIA-edema (ARIA-E) that can assess severity on a 3- or 5-point scale based upon a single linear measurement of the largest area of lesion, and dissemination in space, termed the 3-point Severity Scale of ARIA-E (SSAE-3) and the 5-point Severity Scale of ARIA-E (SSAE-5), respectively. METHODS MRI results were collected from 75 participants from the SCarlet RoAD (NCT01224106) and Marguerite RoAD (NCT02051608) studies of gantenerumab. Three neuroradiologists experienced with the detection of ARIA-E were selected to read all cases independently. One rater was then chosen for a second read to assess intra-reader reproducibility. RESULTS The three raters had high agreement in identifying and grading ARIA-E. The Cohen/Fleiss kappa (κ) scores (95% confidence interval [CI]) for the inter- and intra-reader comparisons for SSAE-3 and SSAE-5 were 0.79 (0.70-1.00), 0.94 (0.94-1.00), 0.73 (0.66-1.00), and 0.90 (0.90-1.00), respectively. DISCUSSION Our study suggests that SSAE-3 and SSAE-5 are valid ARIA-E rating scales for use in routine clinical practice by experienced radiologists in specialized settings. The application of these scales in everyday use in clinical practice will support the expansion of anti-Aβ mAbs as a treatment option for people living with Alzheimer's disease. Highlights A simple rating scale is needed to rate severity of amyloid-related imaging abnormalities-edema (ARIA-E) in both research and clinical settings.The 3- and 5-point Severity Scales of ARIA-E (SSAE-3/-5) have good inter- and intra-reader agreement.The SSAE-3/-5 have been used in most major Alzheimer's disease (AD) trials to date and are suitable for large-scale use in routine clinical practice, which may help support the expansion of anti-amyloid antibodies as treatment options for AD.
Collapse
Affiliation(s)
- Luc Bracoud
- Clario, Inc. (formerly Bioclinica, Inc.)LyonFrance
| | | | | | | | | | | | - Derk Purcell
- California Pacific Medical CenterSan FranciscoCaliforniaUSA
| | - Jochen B. Fiebach
- Center for Stroke Research BerlinCharité – Universitätsmedizin BerlinBerlinGermany
| | - Jerome Barakos
- California Pacific Medical CenterSan FranciscoCaliforniaUSA
| | - Joyce Suhy
- Clario, Inc. (formerly Bioclinica, Inc.)San MateoCaliforniaUSA
| |
Collapse
|
10
|
Loeffler DA. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. J Alzheimers Dis Rep 2023; 7:873-899. [PMID: 37662616 PMCID: PMC10473157 DOI: 10.3233/adr-230025] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023] Open
Abstract
Immunotherapeutic efforts to slow the clinical progression of Alzheimer's disease (AD) by lowering brain amyloid-β (Aβ) have included Aβ vaccination, intravenous immunoglobulin (IVIG) products, and anti-Aβ monoclonal antibodies. Neither Aβ vaccination nor IVIG slowed disease progression. Despite conflicting phase III results, the monoclonal antibody Aducanumab received Food and Drug Administration (FDA) approval for treatment of AD in June 2021. The only treatments unequivocally demonstrated to slow AD progression to date are the monoclonal antibodies Lecanemab and Donanemab. Lecanemab received FDA approval in January 2023 based on phase II results showing lowering of PET-detectable Aβ; phase III results released at that time indicated slowing of disease progression. Topline results released in May 2023 for Donanemab's phase III trial revealed that primary and secondary end points had been met. Antibody binding to Aβ facilitates its clearance from the brain via multiple mechanisms including promoting its microglial phagocytosis, activating complement, dissolving fibrillar Aβ, and binding of antibody-Aβ complexes to blood-brain barrier receptors. Antibody binding to Aβ in peripheral blood may also promote cerebral efflux of Aβ by a peripheral sink mechanism. According to the amyloid hypothesis, for Aβ targeting to slow AD progression, it must decrease downstream neuropathological processes including tau aggregation and phosphorylation and (possibly) inflammation and oxidative stress. This review discusses antibody-mediated mechanisms of Aβ clearance, findings in AD trials involving Aβ vaccination, IVIG, and anti-Aβ monoclonal antibodies, downstream effects reported in those trials, and approaches which might improve the Aβ-clearing ability of monoclonal antibodies.
Collapse
Affiliation(s)
- David A. Loeffler
- Beaumont Research Institute, Department of Neurology, Corewell Health, Royal Oak, MI, USA
| |
Collapse
|
11
|
Leisher S, Bohorquez A, Gay M, Garcia V, Jones R, Baldaranov D, Rafii MS. Amyloid-Lowering Monoclonal Antibodies for the Treatment of Early Alzheimer's Disease. CNS Drugs 2023; 37:671-677. [PMID: 37470978 PMCID: PMC10439019 DOI: 10.1007/s40263-023-01021-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Numerous biomarker studies have clearly demonstrated that AD has a long asymptomatic phase, with the development of pathology occurring at least 2 decades prior to the development of any symptoms. These pathological changes include a stepwise development of amyloid-β (Aβ) plaques, followed by tau neurofibrillary tangles and subsequently extensive neurodegeneration in the brain. In this review, we discuss the first class of drugs intended to be disease modifying to be approved by the US Food and Drug Administration (FDA) for AD-anti-Aβ monoclonal antibodies-and the scientific rationale with which they were developed.
Collapse
Affiliation(s)
- Solana Leisher
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Adriana Bohorquez
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Marcus Gay
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Victoria Garcia
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Renarda Jones
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Dobri Baldaranov
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of University of Southern California, San Diego, CA, 92130, USA.
| |
Collapse
|
12
|
Noel RL, Gorman SL, Batts AJ, Konofagou EE. Getting ahead of Alzheimer's disease: early intervention with focused ultrasound. Front Neurosci 2023; 17:1229683. [PMID: 37575309 PMCID: PMC10412991 DOI: 10.3389/fnins.2023.1229683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The amyloid-β (Aβ) hypothesis implicates Aβ protein accumulation in Alzheimer's disease (AD) onset and progression. However, therapies targeting Aβ have proven insufficient in achieving disease reversal, prompting a shift to focus on early intervention and alternative therapeutic targets. Focused ultrasound (FUS) paired with systemically-introduced microbubbles (μB) is a non-invasive technique for targeted and transient blood-brain barrier opening (BBBO), which has demonstrated Aβ and tau reduction, as well as memory improvement in models of late-stage AD. However, similar to drug treatments for AD, this approach is not sufficient for complete reversal of advanced, symptomatic AD. Here we aim to determine whether early intervention with FUS-BBBO in asymptomatic AD could delay disease onset. Thus, the objective of this study is to measure the protective effects of FUS-BBBO on anxiety, memory and AD-associated protein levels in female and male triple transgenic (3xTg) AD mice treated at an early age and disease state. Here we show that early, repeated intervention with FUS-BBBO decreased anxiety-associated behaviors in the open field test by 463.02 and 37.42% in male and female cohorts, respectively. FUS-BBBO preserved female aptitude for learning in the active place avoidance paradigm, reducing the shock quadrant time by 30.03 and 31.01% in the final long-term and reversal learning trials, respectively. Finally, FUS-BBBO reduced hippocampal accumulation of Aβ40, Aβ42, and total tau in females by 12.54, 13.05, and 3.57%, respectively, and reduced total tau in males by 18.98%. This demonstration of both cognitive and pathological protection could offer a solution for carriers of AD-associated mutations as a safe, non-invasive technique to delay the onset of the cognitive and pathological effects of AD.
Collapse
Affiliation(s)
- Rebecca L. Noel
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Samantha L. Gorman
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Alec J. Batts
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
- Department of Radiology, Columbia University, New York, NY, United States
| |
Collapse
|
13
|
Nichols E, Brickman AM, Casaletto KB, Dams-O’Connor K, George KM, Kumar RG, Palta P, Rabin JS, Satizabal CL, Schneider J, Pa J, La Joie R. AD and non-AD mediators of the pathway between the APOE genotype and cognition. Alzheimers Dement 2023; 19:2508-2519. [PMID: 36516004 PMCID: PMC10264550 DOI: 10.1002/alz.12885] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The apolipoprotein E (APOE) genotype is a driver of cognitive decline and dementia. We used causal mediation methods to characterize pathways linking the APOE genotype to late-life cognition through Alzheimer's disease (AD) and non-AD neuropathologies. METHODS We analyzed autopsy data from 1671 individuals from the Religious Orders Study, Memory and Aging Project, and Minority Aging Research Study (ROS/MAP/MARS) studies with cognitive assessment within 5 years of death and autopsy measures of AD (amyloid beta (Aβ), neurofibrillary tangles), vascular (athero/arteriolo-sclerosis, micro-infarcts/macro-infarcts), and non-AD neurodegenerative neuropathologies (TAR DNA protein 43 [TDP-43], Lewy bodies, amyloid angiopathy, hippocampal sclerosis). RESULTS The detrimental effect of APOE ε4 on cognition was mediated by summary measures of AD and non-AD neurodegenerative neuropathologies but not vascular neuropathologies; effects were strongest in individuals with dementia. The protective effect of APOE ε2 was partly mediated by AD neuropathology and stronger in women than in men. DISCUSSION The APOE genotype influences cognition and dementia through multiple neuropathological pathways, with implications for different therapeutic strategies targeting people at increased risk for dementia. HIGHLIGHTS Both apolipoprotein E (APOE) ε2 and APOE ε4 effects on late-life cognition are mediated by AD neuropathology. The estimated mediated effects of most measures of AD neuropathology were similar. Non-Alzheimer's disease (AD) neurodegenerative pathologies mediate the effect of ε4 independently from AD. Non-AD vascular pathologies did not mediate the effect of the APOE genotype on cognition. The protective effect of APOE ε2 on cognition was stronger in women.
Collapse
Affiliation(s)
- Emma Nichols
- Department of Epidemiology, Johns Hopkins Bloomberg School
of Public Health, Baltimore, MD, USA
| | - Adam M. Brickman
- Taub Institute for Research on Alzheimer’s Disease
and the Aging Brain, Department of Neurology, College of Physicians and Surgeons,
Columbia University, New York, NY, USA
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, Weill
Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Kristen M. George
- Department of Public Health Sciences, University of
California Davis School of Medicine, Davis, CA, USA
| | - Raj G. Kumar
- Department of Rehabilitation and Human Performance, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
| | - Priya Palta
- Departments of Medicine and Epidemiology, Columbia
University Irving Medical Center, New York, NY, USA
| | - Jennifer S. Rabin
- Division of Neurology, Department of Medicine, Sunnybrook
Health Sciences Centre, University of Toronto, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain
Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of
Toronto, Canada
| | - Claudia L. Satizabal
- Department of Population Health Science and Biggs
Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San
Antonio, San Antonio, TX, USA
- Department of Neurology, Boston University School of
Medicine, Boston, MA, USA
| | - Julie Schneider
- Rush Alzheimer’s Disease Center, Chicago, IL,
USA
- Rush University Medical Center, Chicago, IL, USA
| | - Judy Pa
- Department of Neuroscience, University of California San
Diego, San Diego, CA, USA
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill
Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Romei MG, Leonard B, Kim I, Kim HS, Lazar GA. Antibody-guided proteases enable selective and catalytic degradation of challenging therapeutic targets. J Biol Chem 2023; 299:104685. [PMID: 37031819 DOI: 10.1016/j.jbc.2023.104685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
The exquisite specificity, natural biological functions, and favorable development properties of antibodies make them highly effective agents as drugs. Monoclonal antibodies are particularly strong as inhibitors of systemically accessible targets where trough-level concentrations can sustain full target occupancy. Yet beyond this pharmacologic wheelhouse, antibodies perform suboptimally for targets of high abundance and those not easily accessible from circulation. Fundamentally, this restraint on broader application is due largely to the stoichiometric nature of their activity - one drug molecule is generally able to inhibit a maximum of two target molecules at a time. Enzymes in contrast are able to catalytically turnover multiple substrates, making them a natural sub-stoichiometric solution for targets of high abundance or in poorly accessible sites of action. However, enzymes have their own limitations as drugs, including, in particular the polypharmacology and broad specificity often seen with native enzymes. In this study, we introduce antibody-guided proteolytic enzymes to enable selective sub-stoichiometric turnover of therapeutic targets. We demonstrate that antibody-mediated substrate targeting can enhance enzyme activity and specificity, with proof of concept for two challenging target proteins, amyloid-β (Aβ) and immunoglobulin G (IgG). This work advances a new biotherapeutic platform that combines the favorable properties of antibodies and proteolytic enzymes to more effectively suppress high-bar therapeutic targets.
Collapse
Affiliation(s)
- Matthew G Romei
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA.
| | - Brandon Leonard
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Ingrid Kim
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Hok Seon Kim
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
15
|
Paganelli R, Paganelli A, Pawelec G, Di Iorio A. Natural IgG antibodies to β amyloid are decreased in patients with Parkinson's disease. Immun Ageing 2023; 20:13. [PMID: 36906630 PMCID: PMC10007830 DOI: 10.1186/s12979-023-00336-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/03/2023] [Indexed: 03/13/2023]
Abstract
Natural antibodies (nAbs) against aggregation-prone proteins have been found in healthy normal subjects. These proteins likely have a pathogenetic role in neurodegenerative diseases of ageing. They include the amyloid β (Aβ) protein which may play an important role in Alzheimer's dementia (AD), and α-synuclein, a major determinant of Parkinson's disease (PD). We measured nAbs to Aβ in a group of Italian patients with AD, vascular dementia, non-demented PD patients and healthy elderly controls. We found that Aβ antibody levels in AD were similar to age- and sex-matched controls, but contrary to our expectations, they were significantly reduced in PD. This may identify patients that could be more prone to amyloid aggregation.
Collapse
Affiliation(s)
- Roberto Paganelli
- Department of Medicine and Sciences of Aging, University "G. D'Annunzio", Chieti, Italy. .,Saint Camillus International University of Health and Medical Sciences, Rome, Italy. .,UniCamillus International Medical School, Via Di Sant'Alessandro, 8 - 00131, Rome, Italy.
| | - Alessia Paganelli
- Department of Biological, Metabolic and Neurological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Angelo Di Iorio
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
16
|
Lenka A, Jankovic J. How should future clinical trials be designed in the search for disease-modifying therapies for Parkinson's disease? Expert Rev Neurother 2023; 23:107-122. [PMID: 36803618 DOI: 10.1080/14737175.2023.2177535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
INTRODUCTION Although there has been substantial progress in research and innovations in symptomatic treatments, similar success has not been achieved in disease-modifying therapy (DMT) for Parkinson's disease (PD). Considering the enormous motor, psychosocial and financial burden associated with PD, safe and effective DMT is of paramount importance. AREAS COVERED One of the reasons for the lack of progress in DMT for PD is poor or inappropriate design of clinical trials. In the first part of the article, the authors focus on the plausible reasons why the previous trials have failed and in the latter part, they provide their perspectives on future DMT trials. EXPERT OPINION There are several potential reasons why previous trials have failed, including broad clinical and etiopathogenic heterogeneity of PD, poor definition and documentation of target engagement, lack of appropriate biomarkers and outcome measures, and short duration of follow-up. To address these deficiencies, future trials may consider- (i) a more customized approach to select the most suitable participants and therapeutic approaches, (ii) explore combination therapies that would target multiple pathogenetic mechanisms, and (iii) moving beyond targeting only motor symptoms to also assessing non-motor features of PD in well-designed longitudinal studies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Lambracht-Washington D, Fu M, Manouchehri N, Hynan LS, Stuve O, Rosenberg RN. Glial cell transcriptome analyses in 3xTg-AD mice: Effects of aging, disease progression, and anti-Aβ immunotherapy. AGING BRAIN 2023; 3:100066. [PMID: 36911262 PMCID: PMC9997156 DOI: 10.1016/j.nbas.2023.100066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background To investigate how changes in expression of glial genes relate to a progression of Alzheimer's disease (AD) pathology, and how anti-Aβ immunotherapy impact these changes, we conducted a transcriptomic analysis for brains from cohorts of 2-, 10-, and 20 month old 3xTg-AD mice, and a cross-sectional study in groups of 20 month-old mice treated with active DNA Aβ42 immunization, passive immunotherapy, untreated, and wild-type (wt) controls. Methods Twenty-four Formalin-Fixed Paraffin-Embedded (FFPE) mouse brain sections were used for the gene expression analyses (nanostring). Adjacent sections from these and additional mouse brains were stained for microglia using antibodies detecting IbaI and Gal3. For a semi-quantitative analysis of increased tau and amyloid pathology with aging and disease progression, a comparison of ELISA results from brains of 12 and 20 months old 3xTg-AD mice were shown. Results Based on the different comparisons of transcript numbers found the 3xTg-AD age groups with the senescent 20 months old wt control mouse brains, and the 20 months old 3xTg-AD mouse brains with the 20 months old wt control mouse brains, genes were assigned as upregulated due to aging, or due to disease progression, or due to both. The immunohistochemistry of microglia markers revealed that Gal3 might be an important marker for phagocytosing microglia around amyloid plaques. The comparison of the two anti-Aβ immunotherapy approaches showed a differential downregulation of inflammatory glial genes. Conclusion These results are relevant for future clinical trials using active anti-amyloid immunotherapy.
Collapse
Affiliation(s)
| | - Min Fu
- Department of Neurology, UT Southwestern Medical Center Dallas, USA
| | | | - Linda S Hynan
- Departments of Population and Data Sciences (Biostatistics) & Psychiatry, UT Southwestern Medical Center Dallas, USA
| | - Olaf Stuve
- Department of Neurology, UT Southwestern Medical Center Dallas, USA.,VA North Texas Health Care System, VA Medical Center Dallas, USA
| | | |
Collapse
|
18
|
Kwan ATH, Arfaie S, Therriault J, Azizi Z, Lussier FZ, Tissot C, Chamoun M, Bezgin G, Servaes S, Stevenon J, Rahmouni N, Pallen V, Gauthier S, Rosa-Neto P. Medial temporal tau predicts memory decline in cognitively unimpaired elderly. Brain Commun 2022; 5:fcac325. [PMID: 36627889 PMCID: PMC9814120 DOI: 10.1093/braincomms/fcac325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease can be detected in living people using in vivo biomarkers of amyloid-β and tau, even in the absence of cognitive impairment during the preclinical phase. [18F]-MK-6420 is a high-affinity PET tracer that quantifies tau neurofibrillary tangles, but its ability to predict cognitive changes associated with early Alzheimer's disease symptoms, such as memory decline, is unclear. Here, we assess the prognostic accuracy of baseline [18F]-MK-6420 tau-PET for predicting longitudinal memory decline in asymptomatic elderly individuals. In a longitudinal observational study, we evaluated a cohort of cognitively normal elderly participants (n = 111) from the translational biomarkers in ageing and dementia study (data collected between October 2017 and July 2020, with a follow-up period of 12 months). All participants underwent tau-PET with [18F]-MK-6420 and amyloid-β PET with [18F]-AZD-4694. The exclusion criteria included the presence of head trauma, stroke or other neurological disorders. There were 111 eligible participants selected based on the availability of amyloid-β PET, tau-PET, MRI and APOEɛ4 genotyping. Among these participants, the mean standard deviation age was 70.1 (8.6) years; 20 (18%) were tau-PET-positive and 71 of 111 (63.9%) were women. A significant association between the baseline Braak Stages I-II [18F]-MK-6240 standardized uptake value ratio positivity and change in composite memory score were observed at the 12-month follow-up, after correcting for age, sex and years of education [logical memory and Rey Auditory Verbal Learning Test, standardized beta = -0.52 (-0.82-0.21), P < 0.001, for dichotomized tau-PET and -1.22 (-1.84-(-0.61)], P < 0.0001, for continuous tau-PET]. Moderate cognitive decline was observed for A + T + over the follow-up period, whereas no significant change was observed for A-T+, A + T- and A-T-, although it should be noted that the A-T + group was small. Our results indicate that baseline tau neurofibrillary tangle pathology is associated with longitudinal changes in memory function, supporting the use of [18F]-MK-6420 PET to predict the likelihood of asymptomatic elderly individuals experiencing future memory decline. Overall, [18F]-MK-6420 PET is a promising tool for predicting memory decline in older adults without cognitive impairment at baseline. This is of critical relevance as the field is shifting towards a biological model of Alzheimer's disease defined by the aggregation of pathologic tau. Therefore, early detection of tau pathology using [18F]-MK-6420 PET provides us with hope that living patients with Alzheimer's disease may be diagnosed during the preclinical phase before it is too late.
Collapse
Affiliation(s)
- Angela T H Kwan
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
| | - Saman Arfaie
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| | - Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Zahra Azizi
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Cecile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Gleb Bezgin
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Stijn Servaes
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Jenna Stevenon
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Vanessa Pallen
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, Montreal, QC H4H 1R3, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC H3A 1A1, Canada
- Department of Medicine, McGill University Health Centre, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
19
|
Klein G, Scelsi MA, Barakos J, Fiebach JB, Bracoud L, Suhy J, Delmar P, Lyons M, Wojtowicz J, Bullain S, Barkhof F, Purcell D. Comparing ARIA-E severity scales and effects of treatment management thresholds. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12376. [PMID: 36474747 PMCID: PMC9716634 DOI: 10.1002/dad2.12376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2023]
Abstract
Introduction Amyloid-related imaging abnormalities-edema (ARIA-E) is associated with anti-amyloid beta monoclonal antibody treatment. ARIA-E severity may be assessed using the Barkhof Grand Total Scale (BGTS) or the 3- or 5-point Severity Scales of ARIA-E (SSAE-3/SSAE-5). We assessed inter- and intra-reader correlations between SSAE-3/5 and BGTS. Methods Magnetic resonance imaging scans were collected from 75 participants in the SCarlet RoAD and Marguerite RoAD studies. Three neuroradiologists reviewed scans at baseline and at follow-up. Concordance in dichotomized ARIA-E ratings was assessed for a range of BGTS thresholds. Results SSAE-3/5 scores correlated with BGTS scores, with high inter-reader intraclass correlation coefficients across all scales. There was high agreement in dichotomized ratings for SSAE-3 > 1 versus BGTS > 3 for all readers (accuracy 0.85-0.93) and between pairs of readers. Discussion SSAE-3/5 showed high degrees of correlation with BGTS, potentially allowing seamless transition from the BGTS to SSAE-3/5 for ARIA-E management.
Collapse
Affiliation(s)
| | | | - Jerome Barakos
- California Pacific Medical CenterSan FranciscoCaliforniaUSA
| | - Jochen B. Fiebach
- Center for Stroke Research BerlinCharité Universitätsmedizin BerlinBerlinGermany
| | - Luc Bracoud
- ClarioInc. (formerly Bioclinica, Inc.)LyonFrance
| | - Joyce Suhy
- ClarioInc. (formerly Bioclinica, Inc.)San MateoCaliforniaUSA
| | | | | | | | | | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMCVrije UniversiteitAmsterdamNetherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Derk Purcell
- California Pacific Medical CenterSan FranciscoCaliforniaUSA
| |
Collapse
|
20
|
Morató X, Pytel V, Jofresa S, Ruiz A, Boada M. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer's Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int J Mol Sci 2022; 23:9305. [PMID: 36012569 PMCID: PMC9409252 DOI: 10.3390/ijms23169305] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Since 1906, when Dr. Alois Alzheimer first described in a patient "a peculiar severe disease process of the cerebral cortex", people suffering from this pathology have been waiting for a breakthrough therapy. Alzheimer's disease (AD) is an irreversible, progressive neurodegenerative brain disorder and the most common form of dementia in the elderly with a long presymptomatic phase. Worldwide, approximately 50 million people are living with dementia, with AD comprising 60-70% of cases. Pathologically, AD is characterized by the deposition of amyloid β-peptide (Aβ) in the neuropil (neuritic plaques) and blood vessels (amyloid angiopathy), and by the accumulation of hyperphosphorylated tau in neurons (neurofibrillary tangles) in the brain, with associated loss of synapses and neurons, together with glial activation, and neuroinflammation, resulting in cognitive deficits and eventually dementia. The current competitive landscape in AD consists of symptomatic treatments, of which there are currently six approved medications: three AChEIs (donepezil, rivastigmine, and galantamine), one NMDA-R antagonist (memantine), one combination therapy (memantine/donepezil), and GV-971 (sodium oligomannate, a mixture of oligosaccharides derived from algae) only approved in China. Improvements to the approved therapies, such as easier routes of administration and reduced dosing frequencies, along with the developments of new strategies and combined treatments are expected to occur within the next decade and will positively impact the way the disease is managed. Recently, Aducanumab, the first disease-modifying therapy (DMT) has been approved for AD, and several DMTs are in advanced stages of clinical development or regulatory review. Small molecules, mAbs, or multimodal strategies showing promise in animal studies have not confirmed that promise in the clinic (where small to moderate changes in clinical efficacy have been observed), and therefore, there is a significant unmet need for a better understanding of the AD pathogenesis and the exploration of alternative etiologies and therapeutic effective disease-modifying therapies strategies for AD. Therefore, a critical review of the disease-modifying therapy pipeline for Alzheimer's disease is needed.
Collapse
Affiliation(s)
- Xavier Morató
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Vanesa Pytel
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sara Jofresa
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Agustín Ruiz
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
21
|
Haddad HW, Malone GW, Comardelle NJ, Degueure AE, Poliwoda S, Kaye RJ, Murnane KS, Kaye AM, Kaye AD. Aduhelm, a novel anti-amyloid monoclonal antibody, for the treatment of Alzheimer's Disease: A comprehensive review. Health Psychol Res 2022; 10:37023. [PMID: 35910244 DOI: 10.52965/001c.37023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of individuals, including family members who often take on the role of caregivers. This debilitating disease reportedly consumes 8% of the total United States healthcare expenditure, with medical and nursing outlays accounting for an estimated $290 billion. Cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists have historically been the most widely used pharmacologic therapies for patients with AD; however, these drugs are not curative. The present investigation describes the epidemiology, pathophysiology, risk factors, presentation, and current treatment of AD followed by the role of the novel monoclonal antibody, Adulhelm, in the treatment of AD. Currently, Adulhelm is the only Food and Drug Administration (FDA) approved drug that acts to slow the progression of this disease. Adulhelm is an anti-amyloid drug that functions by selectively binding amyloid aggregates in both the oligomeric and fibrillar states. Studies show Adulhelm may help to restore neurological function in patients with AD by reducing beta-amyloid plaques and reestablishing neuronal calcium permeability. At present, there is concern the magnitude of this drug's benefit may only be statistically significant, although not clinically significant. Despite skepticism, Adulhelm has proven to significantly decrease amyloid in all cortical brain regions examined. With such high stakes and potential, further research into Adulhelm's clinical efficacy is warranted in the treatment of AD.
Collapse
Affiliation(s)
| | - Garett W Malone
- Louisiana State University Health Shreveport, College of Medicine
| | | | | | | | - Rachel J Kaye
- Medical University of South Carolina, Charleston, SC
| | - Kevin S Murnane
- Department of Pharmacology, Louisiana State University Health Shreveport, Shreveport, LA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA
| | - Alan D Kaye
- Department of Anesthesiology,, Louisiana State University Health Shreveport, Shreveport, LA
| |
Collapse
|
22
|
Khoury R, Gallop A, Roberts K, Grysman N, Lu J, Grossberg GT. Pharmacotherapy for Alzheimer’s disease: what’s new on the horizon? Expert Opin Pharmacother 2022; 23:1305-1323. [DOI: 10.1080/14656566.2022.2097868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rita Khoury
- Department of Psychiatry and Clinical Psychology, St. Georges Hospital University Medical Center, Beirut, Lebanon
- University of Balamand, Faculty of Medicine, Beirut, Lebanon
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Amy Gallop
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Kelsey Roberts
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Noam Grysman
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - Jiaxi Lu
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| | - George T. Grossberg
- Department of Psychiatry and Behavioral Neuroscience, St Louis University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
23
|
Svaldi DO, Higgins IA, Holdridge KC, Yaari R, Case M, Bracoud L, Scott D, Shcherbinin S, Sims JR. Magnetic resonance imaging measures of brain volumes across the EXPEDITION trials in mild and moderate Alzheimer's disease dementia. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12313. [PMID: 35783453 PMCID: PMC9237342 DOI: 10.1002/trc2.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 11/07/2022]
Abstract
Introduction Solanezumab is a monoclonal antibody that preferentially binds soluble amyloid beta and promotes its clearance from the brain. The aim of this post hoc analysis was to assess the effect of low-dose solanezumab (400 mg) on global brain volume measures in patients with mild or moderate Alzheimer's disease (AD) dementia quantified using volumetric magnetic resonance imaging (vMRI) data from the EXPEDITION clinical trial program. Methods Patients with mild or moderate AD (EXPEDITION and EXPEDITION2) and mild AD (EXPEDITION3), were treated with either placebo or solanezumab (400 mg) every 4 weeks (Q4W) for 76 weeks. vMRI scans were acquired at baseline and at 80 weeks from 427 MRI facilities using a standardized imaging protocol. Whole brain volume (WBV) and ventricle volume (VV) changes were estimated at 80 weeks using either boundary shift integral (EXPEDITION and EXPEDITION2) or tensor-based morphometry (EXPEDITION3). Results The pooled cohort used for this study consisted of participants with vMRI at baseline and week 80 across the three trials. Analyzed patient subgroups comprised full patient cohort (N = 2933), apolipoprotein E (APOE) ε4+ carriers (N = 1835), and patients with mild (N = 2497) or moderate AD dementia (N = 428). No significant effect (all P-values ≥.05) of treatment was observed in the pooled sample, individual trials, or subgroups of patients with mild or moderate AD or APOE ε4 carriers, in either WBV or VV change. Discussion Analysis of patients with mild or moderate AD dementia from baseline to 80 weeks using vMRI measures of WBV and VV changes suggested that low-dose solanezumab was not linked to changes in volumes at 80 weeks. Analysis of the pooled cohort did not demonstrate an effect on brain volumes with treatment. Evaluation of a higher dose of solanezumab in the preclinical stage of AD is currently being undertaken.
Collapse
Affiliation(s)
| | | | | | - Roy Yaari
- Eli Lilly and CompanyIndianapolisIndianaUSA
| | | | | | | | | | | |
Collapse
|
24
|
Staging of Alzheimer's disease: past, present, and future perspectives. Trends Mol Med 2022; 28:726-741. [PMID: 35717526 DOI: 10.1016/j.molmed.2022.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
For many years Alzheimer's disease (AD) was associated with the dementia stage of the disease, the tail end of a pathophysiological process that lasts approximately two decades. Whereas early disease staging assessments focused on progressive deterioration of clinical functioning, brain imaging with positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarker studies highlighted the long preclinical phase of AD in which a cascade of detectable biological abnormalities precede cognitive decline. The recent proliferation of imaging and fluid biomarkers of AD pathophysiology provide an opportunity for the identification of several biological stages in the preclinical phase of AD. We discuss the use of clinical and biomarker information in past, present, and future staging of AD. We highlight potential applications of PET, CSF, and plasma biomarkers for staging AD severity in vivo.
Collapse
|
25
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
26
|
Shi M, Chu F, Zhu F, Zhu J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer's Disease: A Focus on Aducanumab and Lecanemab. Front Aging Neurosci 2022; 14:870517. [PMID: 35493943 PMCID: PMC9039457 DOI: 10.3389/fnagi.2022.870517] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of age-related dementia in the world, and its main pathological features consist of amyloid-β (Aβ) plaque deposits and neurofibrillary tangles formed by hyperphosphorylated tau protein. So far, only a few AD treatments approved have been applied in the clinic, but the effects of these drugs are limited only for partial symptomatic relief to patients with AD and are unable to alter AD progression. Later, all efforts for AD treatments with targeting the pathogenic factors were unsuccessful over the past decades, which suggested that the pathogenesis of AD is complex. Recently, disease-modifying therapies (DMTs) that can change the underlying pathophysiology of AD, with anti-Aβ monoclonal antibodies (mabs) (e.g., aducanumab, bapineuzumab, gantenerumab, solanezumab, and lecanemab) have been developed successively and conducted in clinical trials based on the theory that a systemic failure of cell-mediated Aβ clearance contributes to AD occurrence and progression. In the review, we summarized recent studies on the therapeutic effects and clinical trial results of these mabs in patients with AD. Specifically, we focused on the discussion of the impact of aducanumab and lecanemab on AD pathology and clinical profiles. The review provides a possible evidence for applying immunotherapy with anti-Aβ mabs in AD and analyzes lessons learned from these clinical trials in order to further study the therapeutic and adverse effects of these anti-Aβ mabs on AD.
Collapse
Affiliation(s)
- Mingchao Shi
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Fengna Chu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Feiqi Zhu
- Cognitive Impairment Ward of Neurology Department, The Third Affiliated Hospital of Shenzhen University Medical College, Shenzhen, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Division of Neurogeriatrcs, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
27
|
Beshir SA, Aadithsoorya AM, Parveen A, Goh SSL, Hussain N, Menon VB. Aducanumab Therapy to Treat Alzheimer's Disease: A Narrative Review. Int J Alzheimers Dis 2022; 2022:9343514. [PMID: 35308835 PMCID: PMC8926483 DOI: 10.1155/2022/9343514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/16/2022] [Indexed: 12/19/2022] Open
Abstract
Background Aducanumab, a new monoclonal antibody that targets β-amyloid aggregates, has been granted conditional approval by the U.S. FDA for treatment of mild Alzheimer's disease (AD). The approval of this drug without a confirmed significant clinical impact has resulted in several debates. Objective In this narrative review, aducanumab approval-related controversy, the drug's pharmacokinetics and pharmacodynamic characteristics, evidence from the efficacy and safety trials of aducanumab, implications of the drug approval, and the future directions in the management of patients with AD are summarized. Methods Using relevant keywords, Google Scholar, Web of Science, and MEDLINE databases and manufacturer's website were searched. Results Infusion of aducanumab at a higher dose resulted in a modest slowing of cognitive decline among patients with mild cognitive impairment or early-onset AD dementia. The drug however can cause amyloid-related imaging abnormalities. Due to modest impact on cognition, the use of this drug by patients with AD will most likely be limited. The manufacturer is required to run an extended phase IIIb trial to verify the benefit of this drug. Access to therapy requires a careful selection of patients and periodic monitoring to ensure the optimal use of the drug. Conclusion Despite the limitations, aducanumab is the first disease-modifying therapy approved for the treatment of AD. Aducanumab addresses a part of the pathogenesis of AD; therefore, drugs that can act on multiple targets are needed. In addition, the search for preventive strategies, validated plasma-based assays, and newer drugs for AD, which are effective, safe, convenient, and affordable, is vital.
Collapse
Affiliation(s)
- Semira Abdi Beshir
- Clinical Pharmacy & Pharmacotherapeutics Department, Dubai Pharmacy College, Dubai, UAE
| | | | - Affana Parveen
- College of Pharmacy, Gulf Medical University, Ajman, UAE
| | - Sheron Sir Loon Goh
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain, Abu Dhabi, UAE
| | | |
Collapse
|
28
|
Haddad HW, Malone GW, Comardelle NJ, Degueure AE, Kaye AM, Kaye AD. Aducanumab, a Novel Anti-Amyloid Monoclonal Antibody, for the Treatment of Alzheimer's Disease: A Comprehensive Review. Health Psychol Res 2022; 10:31925. [PMID: 35928986 PMCID: PMC9346954 DOI: 10.52965/001c.31925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting millions of individuals, including family members who often take on the role as caregiver. This debilitating disease reportedly consumes 8% of the total United States healthcare expenditure, with medical and nursing outlays accounting for an estimated $290 billion. Cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists have historically been the most widely used pharmacologic therapies for patients with AD, however, these drugs are not curative. This review discusses the epidemiology, pathophysiology, risk factors, presentation, and current treatment of AD followed by the role of the novel monoclonal antibody, aducanumab, in treatment of AD. Currently aducanumab is the only Food and Drug Administration (FDA) approved drug that acts to slow progression of this disease. Aducanumab is an anti-amyloid drug which functions by selectively binding amyloid aggregates in both the oligomeric and fibrillar states. Studies show aducanumab may help to restore neurological function in patients with AD by reducing beta-amyloid plaques and reestablishing neuronal calcium permeability. However, there is concern the magnitude of this drug's benefit may only be statistically significant and not clinically significant. Despite this skepticism, aducanumab has proven to significantly decrease amyloid in all cortical brain regions examined. In summary, aducanumab has provided hope for those working toward the goal of providing patients a safe and viable treatment option in the management of AD.
Collapse
Affiliation(s)
- Hannah W Haddad
- College of Medicine, Kansas City University of Medicine and Biosciences, Kansas City, MO
| | - Garett W Malone
- College of Medicine, Louisiana State University Health Shreveport, Shreveport, LA
| | | | - Arielle E Degueure
- College of Medicine, Louisiana State University Health Shreveport, Shreveport, LA
| | - Adam M Kaye
- Department of Pharmacy Practice, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Shreveport, Shreveport, LA
| |
Collapse
|
29
|
Wilhelmus MMM, Tonoli E, Coveney C, Boocock DJ, Jongenelen CAM, Brevé JJP, Verderio EAM, Drukarch B. The Transglutaminase-2 Interactome in the APP23 Mouse Model of Alzheimer's Disease. Cells 2022; 11:cells11030389. [PMID: 35159198 PMCID: PMC8834516 DOI: 10.3390/cells11030389] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Amyloid-beta (Aβ) deposition in the brain is closely linked with the development of Alzheimer’s disease (AD). Unfortunately, therapies specifically targeting Aβ deposition have failed to reach their primary clinical endpoints, emphasizing the need to broaden the search strategy for alternative targets/mechanisms. Transglutaminase-2 (TG2) catalyzes post-translational modifications, is present in AD lesions and interacts with AD-associated proteins. However, an unbiased overview of TG2 interactors is lacking in both control and AD brain. Here we aimed to identify these interactors using a crossbreed of the AD-mimicking APP23 mouse model with wild type and TG2 knock-out (TG2−/−) mice. We found that absence of TG2 had no (statistically) significant effect on Aβ pathology, soluble brain levels of Aβ1–40 and Aβ1–42, and mRNA levels of TG family members compared to APP23 mice at 18 months of age. Quantitative proteomics and network analysis revealed a large cluster of TG2 interactors involved in synaptic transmission/assembly and cell adhesion in the APP23 brain typical of AD. Comparative proteomics of wild type and TG2−/− brains revealed a TG2-linked pathological proteome consistent with alterations in both pathways. Our data show that TG2 deletion leads to considerable network alterations consistent with a TG2 role in (dys)regulation of synaptic transmission and cell adhesion in APP23 brains.
Collapse
Affiliation(s)
- Micha M. M. Wilhelmus
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.M.M.W.); (C.A.M.J.); (J.J.P.B.); (B.D.)
| | - Elisa Tonoli
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.T.); (C.C.); (D.J.B.)
| | - Clare Coveney
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.T.); (C.C.); (D.J.B.)
| | - David J. Boocock
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.T.); (C.C.); (D.J.B.)
| | - Cornelis A. M. Jongenelen
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.M.M.W.); (C.A.M.J.); (J.J.P.B.); (B.D.)
| | - John J. P. Brevé
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.M.M.W.); (C.A.M.J.); (J.J.P.B.); (B.D.)
| | - Elisabetta A. M. Verderio
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (E.T.); (C.C.); (D.J.B.)
- Department of Biological Sciences, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy
- Correspondence: ; Tel.: +44-115-8486628
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; (M.M.M.W.); (C.A.M.J.); (J.J.P.B.); (B.D.)
| |
Collapse
|
30
|
Lacorte E, Ancidoni A, Zaccaria V, Remoli G, Tariciotti L, Bellomo G, Sciancalepore F, Corbo M, Lombardo FL, Bacigalupo I, Canevelli M, Piscopo P, Vanacore N. Safety and Efficacy of Monoclonal Antibodies for Alzheimer's Disease: A Systematic Review and Meta-Analysis of Published and Unpublished Clinical Trials. J Alzheimers Dis 2022; 87:101-129. [PMID: 35275549 PMCID: PMC9198746 DOI: 10.3233/jad-220046] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are currently among the most investigated targets for potential disease-modifying therapies in Alzheimer's disease (AD). OBJECTIVE Our objectives were to identify all registered trials investigating mAbs in MCI due to AD or AD at any stage, retrieve available published and unpublished data from all registered trials, and analyze data on safety and efficacy outcomes. METHODS A systematic search of all registered trials on ClinicalTrials.gov and EUCT was performed. Available results were searched on both platforms and on PubMed, ISI Web of Knowledge, and The Cochrane Library. RESULTS Overall, 101 studies were identified on 27 mAbs. Results were available for 50 trials investigating 12 mAbs. For 18 trials, data were available from both published and unpublished sources, for 21 trials only from published sources, and for 11 trials only from unpublished sources. Meta-analyses of amyloid-related imaging abnormalities (ARIA) events showed overall risk ratios of 10.65 for ARIA-E and of 1.75 for ARIA-H. The meta-analysis of PET-SUVR showed an overall significant effect of mAbs in reducing amyloid (SMD -0.88), but when considering clinical efficacy, data on CDR-SB showed that treated patients had a statistically significant but clinically non-relevant lower worsening (MD -0.15). CONCLUSION Our results suggest that the risk-benefit profile of mAbs remains unclear. Research should focus on clarifying the effect of amyloid on cognitive decline, providing data on treatment response rate, and accounting for minimal clinically important difference. Research on mAbs should also investigate the possible long-term impact of ARIA events, including potential factors predicting their onset.
Collapse
Affiliation(s)
- Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Valerio Zaccaria
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Leonardo Tariciotti
- Neurosurgery Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Guido Bellomo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Francesco Sciancalepore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Flavia L. Lombardo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Ilaria Bacigalupo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| | - Marco Canevelli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Rome, Italy
| |
Collapse
|
31
|
Peschiulli A, Oehlrich D, Van Gool M, Austin N, Van Brandt S, Surkyn M, De Cleyn M, Vos A, Tresadern G, Rombouts FJR, Macdonald GJ, Moechars D, Trabanco A, Gijsen HJM. A Brain-Penetrant and Bioavailable Pyrazolopiperazine BACE1 Inhibitor Elicits Sustained Reduction of Amyloid β In Vivo. ACS Med Chem Lett 2021; 13:76-83. [PMID: 35059126 PMCID: PMC8762732 DOI: 10.1021/acsmedchemlett.1c00445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023] Open
Abstract
We recently disclosed a set of heteroaryl-fused piperazine inhibitors of BACE1 that combined nanomolar potency with good intrinsic permeability and low Pgp-mediated efflux. Herein we describe further work on two prototypes of this family of inhibitors aimed at modulating their basicity and reducing binding to the human ether-a-go-go-related gene (hERG) channel. This effort has led to the identification of compound 36, a highly potent (hAβ42 cell IC50 = 1.3 nM), cardiovascularly safe, and orally bioavailable compound that elicited sustained Aβ42 reduction in mouse and dog animal models.
Collapse
Affiliation(s)
- Aldo Peschiulli
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium,
| | - Daniel Oehlrich
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium,
| | - Michiel Van Gool
- Discovery
Chemistry, Discovery Sciences, Janssen Research
& Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Nigel Austin
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Sven Van Brandt
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Michel Surkyn
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Michel De Cleyn
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Ann Vos
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gary Tresadern
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Frederik J. R. Rombouts
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gregor J. Macdonald
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Diederik Moechars
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Andrés
A. Trabanco
- Discovery
Chemistry, Discovery Sciences, Janssen Research
& Development, Janssen-Cilag S.A., C/Jarama 75A, 45007 Toledo, Spain
| | - Harrie J. M. Gijsen
- †Discovery
Chemistry, Discovery Sciences, §DMPK, Discovery Sciences, and ∥Neuroscience
Biology, Janssen Research & Development, Janssen Pharmaceutica N.V., Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
32
|
Armbrust F, Bickenbach K, Marengo L, Pietrzik C, Becker-Pauly C. The Swedish dilemma - the almost exclusive use of APPswe-based mouse models impedes adequate evaluation of alternative β-secretases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119164. [PMID: 34699873 DOI: 10.1016/j.bbamcr.2021.119164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, however incurable so far. It is widely accepted that aggregated amyloid β (Aβ) peptides play a crucial role for the pathogenesis of AD, as they cause neurotoxicity and deposit as so-called Aβ plaques in AD patient brains. Aβ peptides derive from the amyloid precursor protein (APP) upon consecutive cleavage at the β- and γ-secretase site. Hence, mutations in the APP gene are often associated with autosomal dominant inherited AD. Almost thirty years ago, two mutations at the β-secretase site were observed in two Swedish families (termed Swedish APP (APPswe) mutations), which led to early-onset AD. Consequently, APPswe was established in almost every common AD mouse model, as it contributes to early Aβ plaque formation and cognitive impairments. Analyzing these APPswe-based mouse models, the aspartyl protease BACE1 has been evolving as the prominent β-secretase responsible for Aβ release in AD and as the most important therapeutic target for AD treatment. However, with respect to β-secretase processing, the very rare occurring APPswe variant substantially differs from wild-type APP. BACE1 dominates APPswe processing resulting in the release of Aβ1-x, whereas N-terminally truncated Aβ forms are scarcely generated. However, these N-terminally truncated Aβ species such as Aβ2-x, Aβ3-x and Aβ4-x are elevated in AD patient brains and exhibit an increased potential to aggregate compared to Aβ1-x peptides. Proteases such as meprin β, cathepsin B and ADAMTS4 were identified as alternative β-secretases being capable of generating these N-terminally truncated Aβ species from wild-type APP. However, neither meprin β nor cathepsin B are capable of generating N-terminally truncated Aβ peptides from APPswe. Hence, the role of BACE1 for the Aβ formation during AD might be overrepresented through the excessive use of APPswe mouse models. In this review we critically discuss the consideration of BACE1 as the most promising therapeutic target. Shifting the focus of AD research towards alternative β secretases might unveil promising alternatives to BACE1 inhibitors constantly failing in clinical trials due to ineffectiveness and harmful side effects.
Collapse
Affiliation(s)
- Fred Armbrust
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany
| | - Kira Bickenbach
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany
| | - Liana Marengo
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Claus Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Christoph Becker-Pauly
- Biochemical Institute, Unit for Degradomics of the Protease Web, University of Kiel, Kiel, Germany.
| |
Collapse
|
33
|
Bursavich MG, Harrison BA, Acharya R, Costa DE, Freeman EA, Hrdlicka LA, Jin H, Kapadnis S, Moffit JS, Murphy D, Nolan SJ, Patzke H, Tang C, Van Voorhies HE, Wen M, Koenig G, Blain JF, Burnett DA. Discovery of the Oxadiazine FRM-024: A Potent CNS-Penetrant Gamma Secretase Modulator. J Med Chem 2021; 64:14426-14447. [PMID: 34550687 DOI: 10.1021/acs.jmedchem.1c00904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The recent approval of aducanumab for Alzheimer's disease has heightened the interest in therapies targeting the amyloid hypothesis. Our research has focused on identification of novel compounds to improve amyloid processing by modulating gamma secretase activity, thereby addressing a significant biological deficit known to plague the familial form of the disease. Herein, we describe the design, synthesis, and optimization of new gamma secretase modulators (GSMs) based on previously reported oxadiazine 1. Potency improvements with a focus on predicted and measured properties afforded high-quality compounds further differentiated via robust Aβ42 reductions in both rodents and nonhuman primates. Extensive preclinical profiling, efficacy studies, and safety studies resulted in the nomination of FRM-024, (+)-cis-5-(4-chlorophenyl)-6-cyclopropyl-3-(6-methoxy-5-(4-methyl-1H-imidazole-1-yl)pyridin-2-yl)-5,6-dihydro-4H-1,2,4-oxadiazine, as a GSM preclinical candidate for familial Alzheimer's disease.
Collapse
Affiliation(s)
- Matthew G Bursavich
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Bryce A Harrison
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Raksha Acharya
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Donald E Costa
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Emily A Freeman
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Lori A Hrdlicka
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Hong Jin
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Sudarshan Kapadnis
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Jeffrey S Moffit
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Deirdre Murphy
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Scott J Nolan
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Holger Patzke
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Cuyue Tang
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | | | - Melody Wen
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Gerhard Koenig
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Jean-François Blain
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| | - Duane A Burnett
- FORUM Pharmaceuticals, 225 Second Avenue, Waltham, Massachusetts 02451, United States
| |
Collapse
|
34
|
Therriault J, Pascoal TA, Sefranek M, Mathotaarachchi S, Benedet AL, Chamoun M, Lussier FZ, Tissot C, Bellaver B, Lukasewicz PS, Zimmer ER, Saha-Chaudhuri P, Gauthier S, Rosa-Neto P. Amyloid-dependent and amyloid-independent effects of Tau in individuals without dementia. Ann Clin Transl Neurol 2021; 8:2083-2092. [PMID: 34617688 PMCID: PMC8528464 DOI: 10.1002/acn3.51457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/11/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
Objective To investigate the relationship between the topography of amyloid‐β plaques, tau neurofibrillary tangles, and the overlap between the two, with cognitive dysfunction in individuals without dementia. Methods We evaluated 154 individuals who were assessed with amyloid‐β PET with [18F]AZD4694, tau‐PET with [18F]MK6240, structural MRI, and neuropsychological testing. We also evaluated an independent cohort of 240 individuals who were assessed with amyloid‐β PET with [18F]Florbetapir, tau‐PET with [18F]Flortaucipir, structural MRI, and neuropsychological testing. Using the VoxelStats toolbox, we conducted voxel‐wise linear regressions between amyloid‐PET, tau‐PET, and their interaction with cognitive function, correcting for age, sex, and years of education. Results In both cohorts, we observed that tau‐PET standardized uptake value ratio in medial temporal lobes was associated with clinical dementia rating Sum of Boxes (CDR‐SoB) scores independently of local amyloid‐PET uptake (FWE corrected at p < 0.001). We also observed in both cohorts that in regions of the neocortex, associations between neocortical tau‐PET and clinical function were dependent on local amyloid‐PET (FWE corrected at p < 0.001). Interpretation In medial temporal brain regions, characterized by the accumulation of tau pathology in the absence of amyloid‐β, tau had direct associations with cognitive dysfunction. In brain regions characterized by the accumulation of both amyloid‐β and tau pathologies such as the posterior cingulate and medial frontal cortices, tau’s relationship with cognitive dysfunction was dependent on local amyloid‐β concentrations. Our results provide evidence that amyloid‐β in Alzheimer’s disease influences cognition by potentiating the deleterious effects of tau pathology.
Collapse
Affiliation(s)
- Joseph Therriault
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada.,Montreal Neurological Institute, Montreal, Canada.,Douglas Hospital Research Centre, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Canada
| | - Tharick A Pascoal
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada.,Montreal Neurological Institute, Montreal, Canada.,Douglas Hospital Research Centre, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Canada
| | - Marcus Sefranek
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada
| | - Sulantha Mathotaarachchi
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada
| | - Andrea L Benedet
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada.,Montreal Neurological Institute, Montreal, Canada.,Douglas Hospital Research Centre, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Canada
| | - Mira Chamoun
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada.,Montreal Neurological Institute, Montreal, Canada
| | - Firoza Z Lussier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada.,Montreal Neurological Institute, Montreal, Canada.,Douglas Hospital Research Centre, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada.,Montreal Neurological Institute, Montreal, Canada.,Douglas Hospital Research Centre, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Canada
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pamela S Lukasewicz
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Pharmacology, Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Serge Gauthier
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada.,Montreal Neurological Institute, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada.,Montreal Neurological Institute, Montreal, Canada.,Douglas Hospital Research Centre, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | |
Collapse
|
35
|
Song XJ, Zhou HY, Sun YY, Huang HC. Phosphorylation and Glycosylation of Amyloid-β Protein Precursor: The Relationship to Trafficking and Cleavage in Alzheimer's Disease. J Alzheimers Dis 2021; 84:937-957. [PMID: 34602469 DOI: 10.3233/jad-210337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder in the central nervous system, and this disease is characterized by extracellular senile plaques and intracellular neurofibrillary tangles. Amyloid-β (Aβ) peptide is the main constituent of senile plaques, and this peptide is derived from the amyloid-β protein precursor (AβPP) through the successive cleaving by β-site AβPP-cleavage enzyme 1 (BACE1) and γ-secretase. AβPP undergoes the progress of post-translational modifications, such as phosphorylation and glycosylation, which might affect the trafficking and the cleavage of AβPP. In the recent years, about 10 phosphorylation sites of AβPP were identified, and they play complex roles in glycosylation modification and cleavage of AβPP. In this article, we introduced the transport and the cleavage pathways of AβPP, then summarized the phosphorylation and glycosylation sites of AβPP, and further discussed the links and relationship between phosphorylation and glycosylation on the pathways of AβPP trafficking and cleavage in order to provide theoretical basis for AD research.
Collapse
Affiliation(s)
- Xi-Jun Song
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - He-Yan Zhou
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Yu-Ying Sun
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China.,Research Institute of Functional Factors and Brain Science, Beijing Union University, Beijing, China
| |
Collapse
|
36
|
Thomas E, Wasunna‐Smith B, Kuruvilla T. Aducanumab and disease modifying treatments for Alzheimer's disease. PROGRESS IN NEUROLOGY AND PSYCHIATRY 2021. [DOI: 10.1002/pnp.711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emily Thomas
- Dr Thomas and Dr Wasunna‐Smith are both General Adult Psychiatry Specialist Registrars and Dr Kuruvilla is a Consultant in Old Age Psychiatry & Clinical Director for Dementia Research, all at Gloucestershire Health and Care NHS Foundation Trust, UK
| | - Brenda Wasunna‐Smith
- Dr Thomas and Dr Wasunna‐Smith are both General Adult Psychiatry Specialist Registrars and Dr Kuruvilla is a Consultant in Old Age Psychiatry & Clinical Director for Dementia Research, all at Gloucestershire Health and Care NHS Foundation Trust, UK
| | - Tarun Kuruvilla
- Dr Thomas and Dr Wasunna‐Smith are both General Adult Psychiatry Specialist Registrars and Dr Kuruvilla is a Consultant in Old Age Psychiatry & Clinical Director for Dementia Research, all at Gloucestershire Health and Care NHS Foundation Trust, UK
| |
Collapse
|
37
|
Sun ZT, Ma C, Li GJ, Zheng XY, Hao YT, Yang Y, Wang X. Application of Antibody Fragments Against Aβ With Emphasis on Combined Application With Nanoparticles in Alzheimer's Disease. Front Pharmacol 2021; 12:654611. [PMID: 33967797 PMCID: PMC8100690 DOI: 10.3389/fphar.2021.654611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases and accumulating evidences suggest a key role of amyloid-β (Aβ) peptide in the pathogenesis of AD. According to the amyloid cascade hypothesis, the imbalance of producing and clearing Aβ is the beginning of neurodegeneration and dementia. Consequently, immunotherapy becomes popular through using antibodies against Aβ. However, many studies of monoclonal antibodies were stopped because adverse effects appeared or there were no evident benefits observed. Some antibody fragments have many advantages over monoclonal antibodies, such as small sizes, lack of the crystallizable fraction (Fc) and so on. There are three main antibody fragments, including single chain variable fragments (scFvs), Fab fragments and single-domain antibody fragments. Nanoparticles can facilitate the entry of drug molecules across the blood-brain barrier, making them become excellent carriers. Various kinds of nanoparticles have been applied in the treatment of AD. The combination of nanoparticles and antibody fragments against amyloid-β can be used in the diagnosis and treatment of Alzheimer’s disease. In this review, we summarize the progress of antibody fragments against amyloid-β in AD, focusing on the combined application with nanoparticles in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhi-Ting Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Chi Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Guang-Jian Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yi-Tong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|