1
|
Lin Z, Shi YY, Yu LY, Ma CX, Pan SY, Dou Y, Zhou QJ, Cao Y. Metabolic dysfunction associated steatotic liver disease in patients with plaque psoriasis: a case-control study and serological comparison. Front Med (Lausanne) 2024; 11:1400741. [PMID: 38813379 PMCID: PMC11133595 DOI: 10.3389/fmed.2024.1400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Background The relationship between plaque psoriasis and both MASLD and lean MASLD has not been sufficiently explored in the current literature. Method This retrospective and observational study was carried out from January 2021 to January 2023 at The First Affiliated Hospital of Zhejiang Chinese Medical University. Patients diagnosed with plaque psoriasis and a control group consisting of individuals undergoing routine physical examinations were enrolled. The incidence of MASLD and lean MASLD among these groups was compared. Additionally, patients with plaque psoriasis were divided into those with MASLD, those with lean MASLD, and a control group with only psoriasis for a serological comparative analysis. Results The incidence of MASLD in the observation group and the control group was 43.67% (69/158) and 22.15% (35/158), respectively (p < 0.01). Furthermore, the incidence of lean MASLD within the observation group and the control group was 10.76% (17/158) and 4.43% (7/158), respectively (p < 0.01). After controlling for potential confounding variables, plaque psoriasis was identified as an independent risk factor for MASLD with an odds ratio of 1.88 (95% cl: 1.10-3.21). In terms of serological comparison, compared to the simple psoriasis group, we observed a significant elevation in the tumor marker CYFRA21-1 levels in both groups compared to the control group with simple psoriasis (p < 0.01). Moreover, the MASLD group exhibited elevated levels of inflammatory markers and psoriasis score, whereas these effects were mitigated in the lean MASLD group. Conclusion The prevalence of MASLD and lean MASLD is higher among patients with psoriasis. Those suffering from psoriasis along with MASLD show increased psoriasis scores and inflammatory markers compared to those without metabolic disorders. MASLD likely worsens psoriasis conditions, indicating the necessity of targeted health education for affected individuals to reduce the risk of MASLD, this education should include guidelines on exercise and diet. In serological assessments, elevated levels of cytokeratin 19 fragment (CYFRA21-1) were noted in both MASLD and lean MASLD groups, implying a potential synergistic role between psoriasis and MASLD.
Collapse
Affiliation(s)
- Zheng Lin
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yue-yi Shi
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lu-yan Yu
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chen-xi Ma
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Si-yi Pan
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Dou
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiu-jun Zhou
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Kubatka P, Mazurakova A, Koklesova L, Kuruc T, Samec M, Kajo K, Kotorova K, Adamkov M, Smejkal K, Svajdlenka E, Dvorska D, Brany D, Baranovicova E, Sadlonova V, Mojzis J, Kello M. Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma. Front Pharmacol 2024; 15:1216199. [PMID: 38464730 PMCID: PMC10921418 DOI: 10.3389/fphar.2024.1216199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/25/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-β serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Klaudia Kotorova
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Vladimira Sadlonova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| |
Collapse
|
3
|
Khaled AM, Othman MS, Obeidat ST, Aleid GM, Aboelnaga SM, Fehaid A, Hathout HMR, Bakkar AA, Moneim AEA, El-Garawani IM, Morsi DS. Green-Synthesized Silver and Selenium Nanoparticles Using Berberine: A Comparative Assessment of In Vitro Anticancer Potential on Human Hepatocellular Carcinoma Cell Line (HepG2). Cells 2024; 13:287. [PMID: 38334679 PMCID: PMC10854975 DOI: 10.3390/cells13030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
A well-known natural ingredient found in several medicinal plants, berberine (Ber), has been shown to have anticancer properties against a range of malignancies. The limited solubility and bioavailability of berberine can be addressed using Ber-loaded nanoparticles. In this study, we compared the in vitro cytotoxic effects of both Ber-loaded silver nanoparticles (Ber-AgNPs) and Ber-loaded selenium nanoparticles (Ber-SeNPs) in the human liver cancer cell line (HepG2) and mouse normal liver cells (BNL). The IC50 values in HepG2 for berberine, Ber-AgNPs, Ber-SeNPs, and cisplatin were 26.69, 1.16, 0.04, and 0.33 µg/mL, respectively. Our results show that Ber and its Ag and Se nanoparticles exerted a good antitumor effect against HepG2 cells by inducing apoptosis via upregulating p53, Bax, cytosolic cytochrome C levels, and caspase-3 activity, and the down-regulation of Bcl-2 levels. Similarly, incubation with Ber and both Ber-NPs (Ag and Se) led to a significant dose-dependent elevation in inflammatory markers' (TNF-α, NF-κB, and COX-2) levels compared to the control group. In addition, it led to the arrest of the G1 cell cycle by depleting the expression of cyclin D1 and CDK-2 mRNA. Furthermore, Ber and both Ber-NPs (Ag and Se) caused a significant dose-dependent increase in LDH activity in HepG2 cells. Furthermore, our findings offer evidence that Ber and its nanoparticles intensified oxidative stress in HepG2 cells. Furthermore, the migration rate of cells subjected to berberine and its nanoforms was notably decreased compared to that of control cells. It can be inferred that Ber nanoparticles exhibited superior anticancer efficacy against HepG2 compared to unprocessed Ber, perhaps due to their improved solubility and bioavailability. Furthermore, Ber-SeNPs exhibited greater efficacy than Ber-AgNPs, possibly as a result of the inherent anticancer characteristics of selenium.
Collapse
Affiliation(s)
- Azza M. Khaled
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Mohamed S. Othman
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Sofian T. Obeidat
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (S.T.O.); (S.M.A.)
| | - Ghada M. Aleid
- Biochemistry Department, College of Medicine, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (A.M.K.); (M.S.O.); (G.M.A.)
| | - Shimaa M. Aboelnaga
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail P.O. Box 2440, Saudi Arabia; (S.T.O.); (S.M.A.)
| | - Alaa Fehaid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, El Mansoura 35516, Egypt;
| | - Heba M. R. Hathout
- Natural Resources Department, Faculty of African Postgraduate Studies, Cairo University, Giza 12613, Egypt;
| | - Ashraf A. Bakkar
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza 12566, Egypt;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Islam M. El-Garawani
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt; (I.M.E.-G.); (D.S.M.)
| | - Dalia S. Morsi
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt; (I.M.E.-G.); (D.S.M.)
| |
Collapse
|
4
|
El-Naseery NI, Elewa YHA, El-Behery EI, Dessouky AA. Human umbilical cord blood-derived mesenchymal stem cells restored hematopoiesis by improving radiation induced bone marrow niche remodeling in rats. Ann Anat 2023; 250:152131. [PMID: 37460043 DOI: 10.1016/j.aanat.2023.152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Functional hematopoiesis is governed by the bone marrow (BM) niche, which is compromised by radiotherapy, leading to radiation induced BM failure. The aim of this study was to demonstrate the radiation induced pathological remodeling of the niche and the efficacy of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in restoring hematopoiesis via improvement of the niche. METHODS Thirty male Wistar rats were equally assigned to three groups: control (CON), irradiated (IR), and IR+hUCB-MSCs. Biochemical, histopathological and immunohistochemical analyses were performed to detect collagen type III and IV, Aquaporin 1+ sinusoidal endothelial cells and immature hematopoietic cells, CD11c+ dendritic cells, Iba1+ macrophages, CD9+ megakaryocytes, Sca-1+, cKit+, CD133 and N-cadherin+ hematopoietic stem and progenitor cells, CD20+, Gr1+ mature hematopoietic cells, in addition to ki67+ proliferation, Bcl-2+ anti-apoptotic, caspase-3+ apoptotic, TNF-α+ inflammatory cells. Histoplanimetry data were statistically analyzed using the one-way analysis of variance followed by the post hoc Duncan's test. Moreover, Pearson's correlation was used to assess the correlation between various parameters. RESULTS In comparison to the IR group, the IR+hUCB-MSCs group showed restored cell populations and extracellular collagen components of the BM niche with significant increase in hematopoietic stem, progenitor, mature and proliferating cells, and a considerable decrease in apoptotic and inflammatory cells. Furthermore, highly significant correlations between BM niche and blood biochemical, histopathological, and immunohistochemical parameters were observed. CONCLUSION hUCB-MSCs restored functional hematopoiesis through amelioration of the BM niche components via reduction of oxidative stress, DNA damage, inflammation, and apoptosis with upregulation of cellular proliferation.
Collapse
Affiliation(s)
- Nesma I El-Naseery
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box, 44511, Zagazig, Egypt.
| | - Yaser H A Elewa
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, P.O. Box, 44511, Zagazig, Egypt; Laboratory of Anatomy, Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-818, Japan
| | - Eman I El-Behery
- Anatomy & Embryology Department, Faculty of Veterinary Medicine, Zagazig University, P.O. Box, 44511 Zagazig, Egypt
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, P.O. Box, 44519 Zagazig, Egypt
| |
Collapse
|
5
|
Sasaninia K, Kelley M, Abnousian A, Badaoui A, Alexander L, Sheren N, Owens J, Rajurkar S, Razo-Botello B, Chorbajian A, Yoon S, Dhama S, Avitia E, Ochoa C, Yutani R, Venketaraman V. Topical Absorption of Glutathione-Cyclodextrin Nanoparticle Complex in Healthy Human Subjects Improves Immune Response against Mycobacterium avium Infection. Antioxidants (Basel) 2023; 12:1375. [PMID: 37507915 PMCID: PMC10376088 DOI: 10.3390/antiox12071375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Glutathione (GSH) is an important intracellular antioxidant responsible for neutralizing reactive oxygen species (ROS). Our laboratory previously demonstrated that the oral administration of liposomal GSH improves immune function against mycobacterium infections in healthy patients along with patients with HIV and Type 2 diabetes. We aim to determine if the topical application of a glutathione-cyclodextrin nanoparticle complex (GSH-CD) confers a therapeutic effect against mycobacterium infections. In our study, healthy participants received either topical GSH-CD (n = 15) or placebo (n = 15) treatment. Subjects were sprayed four times twice a day for three days topically on the abdomen. Blood draws were collected prior to application, and at 1, 4, and 72 h post-initial topical application. GSH, malondialdehyde (MDA), and cytokine levels were assessed in the processed blood samples of study participants. Additionally, whole blood cultures from study participants were challenged with Mycobacterium avium (M. avium) infection in vitro to assess mycobacterium survival post-treatment. Topical GSH-CD treatment was observed to elevate GSH levels in peripheral blood mononuclear cells (PBMCs) and red blood cells and decrease MDA levels in PBMCs 72 h post-treatment. An increase in plasma IL-2, IFN-γ, IL-12p70, and TNF-α was observed at 72 h post-topical GSH-CD treatment. Enhanced mycobacterium clearance was observed at 4 h and 72 h post-topical GSH-CD treatment. Overall, topical GSH-CD treatment was associated with improved immune function against M. avium infection. The findings of this pilot study suggest GSH-cyclodextrin complex formulation can be used topically as a safe alternative mode of GSH delivery in the peripheral blood.
Collapse
Affiliation(s)
- Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Melissa Kelley
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Arbi Abnousian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Logan Alexander
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - James Owens
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Shlok Rajurkar
- Division of Biological Sciences, University of California Berkeley, Berkeley, CA 94720, USA
| | - Brianna Razo-Botello
- College of Natural and Agricultural Science, University of California Riverside, Riverside, CA 92521, USA
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Sonyeol Yoon
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Sanya Dhama
- Keck Science Department, Pitzer College, Claremont, CA 91711, USA
| | - Edith Avitia
- WesternU Center for Clinical Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Cesar Ochoa
- WesternU Center for Clinical Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Ray Yutani
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
6
|
Galvan A, Cappellozza E, Pellequer Y, Conti A, Pozza ED, Vigato E, Malatesta M, Calderan L. An Innovative Fluid Dynamic System to Model Inflammation in Human Skin Explants. Int J Mol Sci 2023; 24:ijms24076284. [PMID: 37047256 PMCID: PMC10094544 DOI: 10.3390/ijms24076284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Skin is a major administration route for drugs, and all transdermal formulations must be tested for their capability to overcome the cutaneous barrier. Therefore, developing highly reliable skin models is crucial for preclinical studies. The current in vitro models are unable to replicate the living skin in all its complexity; thus, to date, excised human skin is considered the gold standard for in vitro permeation studies. However, skin explants have a limited life span. In an attempt to overcome this problem, we used an innovative bioreactor that allowed us to achieve good structural and functional preservation in vitro of explanted human skin for up to 72 h. This device was then used to set up an in vitro inflammatory model by applying two distinct agents mimicking either exogenous or endogenous stimuli: i.e., dithranol, inducing the contact dermatitis phenotype, and the substance P, mimicking neurogenic inflammation. Our in vitro system proved to reproduce inflammatory events observed in vivo, such as vasodilation, increased number of macrophages and mast cells, and increased cytokine secretion. This bioreactor-based system may therefore be suitably and reliably used to simulate in vitro human skin inflammation and may be foreseen as a promising tool to test the efficacy of drugs and cosmetics.
Collapse
|
7
|
Sampson C, Wang Q, Otkur W, Zhao H, Lu Y, Liu X, Piao H. The roles of E3 ubiquitin ligases in cancer progression and targeted therapy. Clin Transl Med 2023; 13:e1204. [PMID: 36881608 PMCID: PMC9991012 DOI: 10.1002/ctm2.1204] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.
Collapse
Affiliation(s)
- Chibuzo Sampson
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiuping Wang
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Wuxiyar Otkur
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Haifeng Zhao
- Department of OrthopedicsDalian Second People's HospitalDalianChina
| | - Yun Lu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- Department of StomatologyDalian Medical UniversityDalianChina
| | - Xiaolong Liu
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
| | - Hai‐long Piao
- CAS Key Laboratory of Separation Science for Analytical ChemistryDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
8
|
Sánchez-Sánchez L, García J, Fernández R, Noskova E, Egiguren-Ortiz J, Gulak M, Ochoa E, Laso A, Oiarbide M, Santos JI, Fe Andrés M, González-Coloma A, Adell A, Astigarraga E, Barreda-Gómez G. Characterization of the Antitumor Potential of Extracts of Cannabis sativa Strains with High CBD Content in Human Neuroblastoma. Int J Mol Sci 2023; 24:ijms24043837. [PMID: 36835247 PMCID: PMC9964014 DOI: 10.3390/ijms24043837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment. The cell mortality induced by the extracts in this study appeared to be related to the inhibition of the cytochrome c oxidase activity and to the THC concentration. This effect on cell viability was similar to that observed with the cannabinoid agonist WIN55,212-2. The effect was partially blocked by the selective CB1 antagonist AM281, and the antioxidant α-tocopherol. Moreover, certain membrane lipids were affected by the extracts, which demonstrated the importance of oxidative stress in the potential antitumoral effects of cannabinoids.
Collapse
Affiliation(s)
- Laura Sánchez-Sánchez
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Instituto de Biología y Genética Molecular (IBGM), Unidad de Excelencia, Universidad de Valladolid-CSIC, 47011 Valladolid, Spain
| | - Javier García
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Roberto Fernández
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
| | - Ekaterina Noskova
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), University of Cantabria, 39011 Santander, Spain
| | - June Egiguren-Ortiz
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | | | - Eneko Ochoa
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - Antonio Laso
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - Mikel Oiarbide
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - José Ignacio Santos
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - María Fe Andrés
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Azucena González-Coloma
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), University of Cantabria, 39011 Santander, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
| | - Gabriel Barreda-Gómez
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Correspondence: ; Tel.: +34-94-4316-577; Fax: +34-94-6013-455
| |
Collapse
|
9
|
Li S, Liu G, Gu M, Li Y, Li Y, Ji Z, Li K, Wang Y, Zhai H, Wang Y. A novel therapeutic approach for IPF: Based on the "Autophagy - Apoptosis" balance regulation of Zukamu Granules in alveolar macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115568. [PMID: 35868548 DOI: 10.1016/j.jep.2022.115568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zukamu Granules (ZKMG) is one of the representative Uygur patent drugs widely used in China, which is included in the National Essential Drugs List (2018 edition). As the first choice for common cold treatment in Uygur medicine theory, it has unique anti-inflammatory and antitussive efficacy. AIM OF THE STUDY According to the recent inflammatory hypothesis, the abnormal proliferation, autophagy and apoptosis process of lung cells especially alveolar macrophages (AMs) may play an important role in the progress of idiopathic pulmonary fibrosis (IPF). Therefore, we came up with a novel treatment approach for IPF by regulating the balance of AMs "autophagy - apoptosis", and took ZKMG as the sample drug for our research. MATERIALS AND METHODS Network pharmacology approach was conducted to predict the active components and intersected targets between ZKMG and inflammation. PPI network, GO and KEGG enrichment analysis were screened and analyzed to predict the anti-inflammatory mechanism of ZKMG. Biological experiment adopted from 128 rats, and hematoxylin-eosin staining, flow cytometry and RT-PCR were performed to examine the pathological morphology, HYP contents in lung tissue, AMs counting, AMs apoptosis, AMs phagocytosis rate, mRNA relative quantity determination of 3 key factors associated with AMs "autophagy - apoptosis" and mRNA relative quantity determination of AMs surface receptor signaling pathway. RESULTS The predicted results showed that the mechanism of ZKMG in anti-inflammatory was related to the response and elimination of inflammatory stimuli, the intervention of apoptosis and surface receptor signaling pathways of cells. The verification experiments showed that excessive apoptosis and insufficient autophagy of AMs always existed in the progression of IPF. ZKMG could inhibit AMs proliferation, significantly reduce AMs apoptosis rate, intervene the binding of the Bcl-2 to Beclin 1, inhibit the Caspase 3 activation, stimulate the enhancement of AMs phagocytosis, and inhibit the high expression of TLR4/MyD88/NF-κB surface receptor signaling pathway, which may partly retard the fibrosis process. CONCLUSION By inhibiting proliferation, enhancing phagocytosis, inhibiting the formation of Bcl-2 complex, and inhibiting the high expression of MYD88-dependent TLR4 signaling pathway, ZKMG can regulate the balance of AMs "autophagy - apoptosis" in the alveolitis stage to retard the fibrosis process partly. With a comprehensive strategy of "target prediction - experimental verification", we have demonstrated that inhibiting the apoptosis and promoting autophagy activity of AMs may suggest a new perspective for IPF treatment, which would provide reference for the subsequent development.
Collapse
Affiliation(s)
- Siyu Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Guoxiu Liu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Min Gu
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yixuan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yanan Li
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhihong Ji
- New Cicon Pharmaceutical Co LTD., Urumqi, 830011, China
| | - Keao Li
- New Cicon Pharmaceutical Co LTD., Urumqi, 830011, China
| | - Yanping Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Huaqiang Zhai
- Standardization Research Center of Traditional Chinese Medicine Dispensing, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Institute of Traditional Uygur Medicine, Xinjiang Medical University, Urumqi, 830011, China.
| | - Yongyan Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
10
|
Effect of Poly(methacrylic acid) on the Cytokine Level in an In Vivo Tumor Model. Molecules 2022; 27:molecules27144572. [PMID: 35889444 PMCID: PMC9316288 DOI: 10.3390/molecules27144572] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is a leading cause of mortality globally. Despite remarkable improvements in cancer-treatment approaches, disease recurrence and progression remain major obstacles to therapy. While chemotherapy is still a first-line treatment for a variety of cancers, the focus has shifted to the development and application of new approaches to therapy. Nevertheless, the relationship between immune response, neoplastic diseases and treatment efficiency is not fully understood. Therefore, the aim of the study was to investigate the immunopharmacological effects of methacrylic acid homopolymer in an in vivo tumor model. Materials and methods: Monomeric methacrylic acid was used to synthesize polymers. Methacrylic acid was polymerized in dioxane in the presence of 4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid. To study the molecular weight characteristics of PMAA by GPC, carboxyl groups were preliminarily methylated with diazomethane. An experimental cancer model was obtained by grafting RMK1 breast cancer cells. The serum levels of IL-6, IL-10, IL-17, transforming growth factor β1 (TGF-β1), and tumor necrosis factor α (TNF-α) were measured by ELISA. Results: The effect of PMAA on the serum concentrations of several cytokines was studied upon its single administration to laboratory animals in early neoplastic process. The IL-6, IL-17 and TGF-β1 concentrations were found to change significantly and reach the level observed in intact rats. The IL-10 concentration tended to normalize. Conclusion: The positive results obtained are the basis for further studies on the effect of methacrylic-acid polymers with different molecular-weight characteristics on the neoplastic process.
Collapse
|
11
|
Klapan K, Frangež Ž, Markov N, Yousefi S, Simon D, Simon HU. Evidence for Lysosomal Dysfunction within the Epidermis in Psoriasis and Atopic Dermatitis. J Invest Dermatol 2021; 141:2838-2848.e4. [PMID: 34090855 DOI: 10.1016/j.jid.2021.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis and psoriasis are frequent chronic inflammatory skin diseases. Autophagy plays a substantial role in the homeostasis of an organism. Loss or impairment of autophagy is associated with multiple diseases. To investigate the possibility that autophagy plays a role in atopic dermatitis and psoriasis, we investigated the levels of key ATG proteins in human skin specimens as well as in primary human epidermal keratinocytes exposed to inflammatory stimuli in vitro. Although TNF-α facilitated the induction of autophagy in an initial phase, it reduced the levels and enzymatic activities of lysosomal cathepsins in later time periods, resulting in autophagy inhibition. Therefore, TNF-α appears to play a dual role in the regulation of autophagy. The relevance of these in vitro findings was supported by the observation that the protein levels of cathepsins D and L are decreased in both psoriasis and atopic dermatitis skin specimens. Taken together, this study suggests that TNF-α blocks autophagy in keratinocytes after long-term exposure, a mechanism that may contribute to the chronicity of inflammatory diseases of the skin and, perhaps, of other organs.
Collapse
Affiliation(s)
- Kim Klapan
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Živa Frangež
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany; Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia; Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
12
|
Ajiboye BO, Oyinloye BE, Onikanni SA, Osukoya OA, Lawal OE, Bamisaye FA. Sterculia tragacantha Lindl Aqueous Leaf Extract Ameliorate Cardiomyopathy in Streptozotocin-induced Diabetic Rats via Urotensin II and FABP3 Expressions. J Oleo Sci 2021; 70:1805-1814. [PMID: 34866110 DOI: 10.5650/jos.ess21251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Sterculia tragacantha (ST) Lindl leaf is commonly used locally in the management of diabetes mellitus (DM) and its complications. This study was aimed at assessing the valuable effects of ST leaf on streptozotocin-diabetic cardiomyopathy (DCM). Streptozotocin was administered intraperitoneally to the experimental animals to induce DM, and hence, placed on different doses of ST for 14 days. Thereafter, on the 15th day of the experiment, the animals were euthanized, and a number of cardiomyopathy indices were investigated. The diabetic rats exhibited a momentous increase in hyperlipidemia, lipid peroxidation as well as a significant (p < 0.05) decline in antioxidant enzyme activities. The serum creatine kinase MB (CK-MB), C-reactive protein (CRP), cardiac troponin I, tumour necrosis factor-alpha (TNF-α) and urotensin II expression revealed a significant (p < 0.05) upsurge in diabetic rats. Also, the expression of GLUT4 and fatty acid-binding protein 3 (FABP3) were significantly (p < 0.05) reduced in diabetic rats. However, at the conclusion of the experimental trial ST significantly (p < 0.05) attenuated hyperlipidemia, oxidative stress biomarkers by augmenting the antioxidant enzyme activities and decrease in lipid peroxidation, ameliorated CK-MB, CRP, cardiac troponin I, TNF-α, and urotensin-II levels, and improved GLUT4 and FABP3 expressions. Similarly, the administration of ST prevented histological alterations in the heart of diabetic animals. Therefore, the obtained results suggest that ST could mitigate DCM in streptozotocin-induced diabetic rats.
Collapse
Affiliation(s)
- Basiru Olaitan Ajiboye
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University
| | - Olukemi Adetutu Osukoya
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University
| | - Olaolu Ebenezer Lawal
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti
| | | |
Collapse
|