1
|
Liu S, Li J, Wang W, Zhang Y, Li S, Li T, Jiang J, Zhao F. Prenatal exposure to dibutyl phthalate contributes to erectile dysfunction in offspring male rats by activating the RhoA/ROCK signalling pathway. Toxicology 2024; 508:153925. [PMID: 39151608 DOI: 10.1016/j.tox.2024.153925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Prenatal exposure to dibutyl phthalate (DBP) has been reported to cause erectile dysfunction (ED) in adult offspring rats. However, its underlying mechanisms are not fully understood. Previously, we found that DBP activates the RhoA/ROCK pathway in the male reproductive system. This study investigated how prenatal exposure to DBP activates the RhoA/ROCK signalling pathway, leading to ED in male rat offspring. Pregnant rats were stratified into DBP-exposed and NC groups, with the exposed group receiving 750 milligrams per kilogram per day (mg/kg/day) of DBP through gavage from days 14-18 of gestation. DBP exposure activated the RhoA/ROCK pathway in the penile corpus cavernosum (CC) of descendants, causing smooth muscle cell contraction, fibrosis, and apoptosis, all of which contribute to ED. In vitro experiments confirmed that DBP induces apoptosis and RhoA/ROCK pathway activation in CC smooth muscle cells. Treatment of DBP-exposed offspring with the ROCK inhibitor Y-27632 for 8 weeks significantly improved smooth muscle cell condition, erectile function, and reduced fibrosis. Thus, prenatal DBP exposure induces ED in offspring through RhoA/ROCK pathway activation, and the ROCK inhibitor Y-27632 shows potential as an effective treatment for DBP-induced ED.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianying Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yijun Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shufeng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
2
|
Bojja SL, Kolathur KK, Chaudhari BB, Hari G, Byregowda BH, Meka ST, Selvan ER, Moorkoth S, Kumar N, Austin A, Rao CM. Poweromin X Ten, a polyherbal formulation improves male sexual function: In vivo and network pharmacology study. F1000Res 2024; 13:260. [PMID: 39220381 PMCID: PMC11362716 DOI: 10.12688/f1000research.145889.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Poweromin X Ten (PXT) is a polyherbal formulation, traditionally used to enhance male sexual function. However, the safety and benefits of PXT have not been scientifically evaluated. Therefore, the present study investigated the toxicity and aphrodisiac potential of PXT in male rats and explored its principal mechanisms of action. Methods Male Wistar rats were orally administered PXT (50 or 100 mg/kg) for 28 days, and sexual activity parameters, including latency and frequency of mounting and intromissions, were studied. The reproductive toxicity and spermatogenic potential were also examined. Furthermore, dopamine and serotonin levels in brain regions associated with sexual activity were assessed. Network analysis was used to identify the key bioactive compounds and their core targets involved in their beneficial actions. Results Treatment with PXT improved sexual activity in male rats, as evidenced by reduced mounting and intromission latency and a significant increase in mount frequency. Moreover, PXT exhibited spermatogenic potential and did not induce reproductive toxicity. Notably, treatment with 50 mg/kg PXT elevated dopamine levels in median preoptic area and hypothalamus. Pathway analysis indicated that PXT primarily modulated the PI3K-Akt, calcium, and MAPK signalling pathways to enhance male sexual function. Network analysis identified macelignan, β-estradiol, testosterone, and paniculatine as key bioactive components of PXT, which likely act through core targets, such as androgen receptor (AR), Mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor (EGFR), estrogen receptor 1 (ESR1), and vascular endothelial growth factor (VEGF) to facilitate the improvement of male sexual function. Conclusion Study results suggest that PXT is a safer alternative with aphrodisiac and spermatogenic potential. These effects are partly attributed to the enhanced dopamine levels in the brain. Furthermore, this study provides insights into the specific signalling pathways and bioactive compounds that underlie the improvements in male sexual function associated with PXT.
Collapse
Affiliation(s)
- Sree Lalitha Bojja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kiran Kumar Kolathur
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bhim Bahadur Chaudhari
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Bharath Harohalli Byregowda
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sai Teja Meka
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Esekia Raja Selvan
- Research & Development centre, apex laboratories private limited, B-59, SIPCOT Industrial Park, Irugattukottai, Kanchipuram District, Tamil Nadu, 602117, India
| | - Sudheer Moorkoth
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Nitesh Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Bihar, 844102, India
| | - Anoop Austin
- Research & Development centre, apex laboratories private limited, B-59, SIPCOT Industrial Park, Irugattukottai, Kanchipuram District, Tamil Nadu, 602117, India
| | - C. Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Kaltsas A, Zikopoulos A, Dimitriadis F, Sheshi D, Politis M, Moustakli E, Symeonidis EN, Chrisofos M, Sofikitis N, Zachariou A. Oxidative Stress and Erectile Dysfunction: Pathophysiology, Impacts, and Potential Treatments. Curr Issues Mol Biol 2024; 46:8807-8834. [PMID: 39194738 DOI: 10.3390/cimb46080521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Erectile dysfunction (ED) is a prevalent condition affecting men's sexual health, with oxidative stress (OS) having recently been identified as a significant contributing causative factor. This narrative review aims to elucidate the role of OS in the pathophysiology of ED, focusing on impact, mechanisms, and potential therapeutic interventions. Key findings indicate that OS disrupts endothelial function and nitric oxide (NO) signaling, crucial for erectile function. Various sources of reactive oxygen species (ROS) and their detrimental effects on penile tissue are discussed, including aging, diabetes mellitus, hypertension, hyperlipidemia, smoking, obesity, alcohol consumption, psychological stress, hyperhomocysteinemia, chronic kidney disease, and sickle cell disease. Major sources of ROS, such as NADPH oxidase, xanthine oxidase, uncoupled endothelial NO synthase (eNOS), and mitochondrial electron transport, are identified. NO is scavenged by these ROS, leading to endothelial dysfunction characterized by reduced NO availability, impaired vasodilation, increased vascular tone, and inflammation. This ultimately results in ED due to decreased blood flow to penile tissue and the inability to achieve or maintain an erection. Furthermore, ROS impact the transmission of nitrergic neurotransmitters by causing the death of nitrergic neurons and reducing the signaling of neuronal NO synthase (nNOS), exacerbating ED. Therapeutic approaches targeting OS, including antioxidants and lifestyle modifications, show promise in ameliorating ED symptoms. The review underscores the need for further research to develop effective treatments, emphasizing the interplay between OS and vascular health in ED. Integrating pharmacological and non-pharmacological strategies could enhance clinical outcomes for ED patients, advocating for OS management in ED treatment protocols to improve patient quality of life.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | | | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Danja Sheshi
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Magdalena Politis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelos N Symeonidis
- Department of Urology II, European Interbalkan Medical Center, 55535 Thessaloniki, Greece
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Sofikitis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasios Zachariou
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Cripps SM, Marshall SA, Mattiske DM, Ingham RY, Pask AJ. Estrogenic endocrine disruptor exposure directly impacts erectile function. Commun Biol 2024; 7:403. [PMID: 38565966 PMCID: PMC10987563 DOI: 10.1038/s42003-024-06048-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Erectile dysfunction (ED) is an extremely prevalent condition which significantly impacts quality of life. The rapid increase of ED in recent decades suggests the existence of unidentified environmental risk factors contributing to this condition. Endocrine Disrupting Chemicals (EDCs) are one likely candidate, given that development and function of the erectile tissues are hormonally dependent. We use the estrogenic-EDC diethylstilbestrol (DES) to model how widespread estrogenic-EDC exposure may impact erectile function in humans. Here we show that male mice chronically exposed to DES exhibit abnormal contractility of the erectile tissue, indicative of ED. The treatment did not affect systemic testosterone production yet significantly increased estrogen receptor α (Esr1) expression in the primary erectile tissue, suggesting EDCs directly impact erectile function. In response, we isolated the erectile tissue from mice and briefly incubated them with the estrogenic-EDCs DES or genistein (a phytoestrogen). These acute-direct exposures similarly caused a significant reduction in erectile tissue contractility, again indicative of ED. Overall, these findings demonstrate a direct link between estrogenic EDCs and erectile dysfunction and show that both chronic and acute estrogenic exposures are likely risk factors for this condition.
Collapse
Affiliation(s)
- Samuel M Cripps
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics & Gynaecology, Monash University, Melbourne, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Rachel Y Ingham
- School of BioSciences, The University of Melbourne, Melbourne, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Glover F, Mehta A, Richardson M, Muncey W, Del Giudice F, Belladelli F, Seranio N, Eisenberg ML. Investigating the prevalence of erectile dysfunction among men exposed to organophosphate insecticides. J Endocrinol Invest 2024; 47:389-399. [PMID: 37574529 DOI: 10.1007/s40618-023-02155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
INTRODUCTION Erectile dysfunction (ED) poses a significant disease morbidity and contributor to male infertility, where an estimated 20-40% of men are affected annually. While several risk factors have been identified in the etiology of ED (e.g., aging, heart disease, diabetes, and obesity), the complete pathogenesis remains to be elucidated. Over the last few decades, the contribution of environmental exposures to the pathogenesis of ED has gained some attention, though population studies are limited and results are mixed. Among environmental contaminants, organophosphate (OP) insecticides represent one of the largest chemical classes, and chlorpyrifos is the most commonly used OP in the U.S. OP exposure has been implicated in driving biological processes, including inflammation, reactive oxygen species production, and endocrine and metabolism disruption, which have been demonstrated to adversely affect the hypothalamus and testes and may contribute to ED. Currently, studies evaluating the association between OPs and ED within the U.S. general population are sparse. METHODS Data were leveraged from the National Health and Nutrition Examination Survey (NHANES), which is an annually conducted, population-based cross-sectional study. Urinary levels of 3,5,6-trichloro-2-pyridinol (TCPy), a specific metabolite of the most pervasive OP insecticide chlorpyrifos, were quantified as measures of OP exposure. ED was defined by responses to questionnaire data, where individuals who replied "sometimes able" or "never able" to achieve an erection were classified as ED. Chi-square, analysis of variance (ANOVA), and multivariable, weighted linear and logistic regression analyses were used to compare sociodemographic variables between quartiles of TCPy exposure, identify risk factors for TCPy exposure and ED, and to analyze the relationship between TCPy and ED. RESULTS A total of 671 adult men were included in final analyses, representing 28,949,379 adults after survey weighting. Approximately 37% of our cohort had ED. Smoking, diabetes, aging, Mexican-American self-identification, and physical inactivity were associated with higher ED prevalence. Analysis of TCPy modeled as a continuous variable revealed nonsignificant associations with ED (OR = 1.02 95% CI [0.95, 1.09]). Stratification of total TCPy into quartiles revealed increased odds of ED among adults in the second and fourth quartiles, using the first quartile as the reference (OR = 2.04 95% CI [1.11, 3.72], OR = 1.51 95% CI [0.58, 3.93], OR = 2.62 95% CI [1.18, 5.79], for quartiles 2, 3, and 4, respectively). CONCLUSIONS The results of our study suggest a potential role for chlorpyrifos and other OPs the pathogenesis of ED. Future studies are warranted to validate these findings, determine clinical significance, and to investigate potential mechanisms underlying these associations.
Collapse
Affiliation(s)
- F Glover
- Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - A Mehta
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - M Richardson
- Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - W Muncey
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - F Del Giudice
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - F Belladelli
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - N Seranio
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - M L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Gallegos JL. Erectile Dysfunction: Current Best Practices. Nurs Clin North Am 2023; 58:483-493. [PMID: 37832993 DOI: 10.1016/j.cnur.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Erectile dysfunction is a health condition that many men face in the United States. Nurses are primed to help men break the stigma; assess, manage, and treat the underlying factors; and educate men and their partner(s) regarding their health condition. Together they can work toward ensuring the patient maintains their sexual health and quality of life throughout their lifespan.
Collapse
Affiliation(s)
- Julian L Gallegos
- Purdue University, Johnson Hall, Room 256A, 502 North University Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
7
|
Jabir NR, Firoz CK, Zughaibi TA, Alsaadi MA, Abuzenadah AM, Al-Asmari AI, Alsaieedi A, Ahmed BA, Ramu AK, Tabrez S. A literature perspective on the pharmacological applications of yohimbine. Ann Med 2022; 54:2861-2875. [PMID: 36263866 PMCID: PMC9590431 DOI: 10.1080/07853890.2022.2131330] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: Phytochemicals have garnered much attention because they are useful in managing several human diseases. Yohimbine is one such phytochemical with significant pharmacological potential and could be exploited for research by medicinal chemists. It is an indole alkaloid obtained from various natural/synthetic sources.Aims and Results: The research on yohimbine started early, and its use as a stimulant and aphrodisiac by humans has been reported for a long time. The pharmacological activity of yohimbine is mediated by the combined action of the central and peripheral nervous systems. It selectively blocks the pre and postsynaptic α2-adrenergic receptors and has a moderate affinity for α1 and α2 subtypes. Yohimbine also binds to other behaviourally relevant monoaminergic receptors in the following order: α-2 NE > 5HT-1A>, 5HT-1B > 1-D > D3 > D2 receptors.Conclusion: The current review highlights some significant findings that contribute to developing yohimbine-based drugs. It also highlights the therapeutic potential of yohimbine against selected human diseases. However, further research is recommended on the pharmacokinetics, molecular mechanisms, and drug safety requirements using well-designed randomized clinical trials to produce yohimbine as a pharmaceutical agent for human use.Key MessagesYohimbine is a natural indole alkaloid with significant pharmacological potential.Humans have used it as a stimulant and aphrodisiac from a relatively early time.It blocks the pre- and postsynaptic α2-adrenergic receptors that could be exploited for managing erectile dysfunction, myocardial dysfunction, inflammatory disorders, and cancer.
Collapse
Affiliation(s)
- Nasimudeen R Jabir
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Chelapram K Firoz
- Department of Medical Laboratory Technology, MIMS College of Allied Health Sciences, ASTER MIMS Academy, Malappuram, Kerala University of Health Sciences, Kerala, India
| | - Torki A Zughaibi
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Abdullah Alsaadi
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M Abuzenadah
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Ibrahim Al-Asmari
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Laboratory Department, King Abdul-Aziz Hospital, Ministry of Health, Jeddah, Saudi Arabia
| | - Ahdab Alsaieedi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bakrudeen Ali Ahmed
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Arun Kumar Ramu
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, India
| | - Shams Tabrez
- Toxicology and Forensic Science Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Liu C, Mao W, You Z, Xu B, Chen S, Wu J, Sun C, Chen M. Associations between exposure to different heavy metals and self-reported erectile dysfunction: a population-based study using data from the 2001-2004 National Health and Nutrition Examination Survey. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:73946-73956. [PMID: 35643996 DOI: 10.1007/s11356-022-20910-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are ubiquitous and nonbiodegradable pollutants that are widely distributed in the environment. Heavy metal exposure can damage various biological tissues and cause several diseases. This study aimed to investigate the association between blood and urinary cadmium, lead, and mercury levels and erectile dysfunction (ED) based on data from the 2001-2004 National Health and Nutrition Examination Survey. In total, 3681 participants were included in the analysis. Results showed that participants with ED had high blood cadmium, mercury, creatinine, urinary lead, cadmium levels, low blood lead, serum cotinine, and urinary mercury levels. Multivariate logistic regression analysis showed that only blood cadmium level was an independent risk factor of ED (tertile [T]2 vs T1: odds ratio = 1.495, 95% confidence interval: 1.181-1.892, p = 0.001; T3 vs T1: odds ratio = 2.089, 95% confidence interval: 1.554-2.809, p < 0.001). The dose-response curve showed a positive nonlinear association between blood cadmium and lead levels and ED and a negative nonlinear association between blood and urinary mercury levels and ED after propensity score matching. In conclusion, heavy metal exposure is closely correlated with the development of ED, and a high blood cadmium level is an independent risk factor of ED.
Collapse
Affiliation(s)
- Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Zonghao You
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Chao Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China.
| |
Collapse
|
9
|
Ma W, Zhang P, Yiming A, Amuti S, Ruze A. iTRAQ‐based identification of differentially expressed proteins in ED rat model induced by cold stress combined with environmental oestrogen. Andrologia 2022; 54:e14382. [PMID: 35092079 DOI: 10.1111/and.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Wenjing Ma
- School of Pharmacy Central Laboratory Xinjiang Medical University Urumqi 830017 P.R. China
| | - Panpan Zhang
- Department of Human Anatomy Basic Medical College Xinjiang Medical University Urumqi 830017 P.R. China
| | - Adilijiang Yiming
- Department of Human Anatomy Basic Medical College Xinjiang Medical University Urumqi 830017 P.R. China
| | - Siyiti Amuti
- Department of Human Anatomy Basic Medical College Xinjiang Medical University Urumqi 830017 P.R. China
| | - Abudureyimujiang Ruze
- Department of Human Anatomy Basic Medical College Xinjiang Medical University Urumqi 830017 P.R. China
| |
Collapse
|
10
|
Zhang F, Xiong Y, Qin F, Yuan J. Short Sleep Duration and Erectile Dysfunction: A Review of the Literature. Nat Sci Sleep 2022; 14:1945-1961. [PMID: 36325277 PMCID: PMC9621223 DOI: 10.2147/nss.s375571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
The meaning of sleep has puzzled people for millennia. In modern society, short sleep duration is becoming a global problem. It has been established that short sleep duration can increase the risk of several diseases, such as cardiovascular and metabolic diseases. Currently, a growing body of research has revealed a possible link between sleep disorders and erectile dysfunction (ED). However, the mechanisms linking short sleep duration and ED are largely unknown. Thus, we provide a review of clinical trials and animal studies. In this review, we propose putative pathways connecting short sleep duration and ED, including neuroendocrine pathways and molecular mechanisms, aiming to pave the way for future research. Meanwhile, the assessment and improvement of sleep quality should be recommended in the diagnosis and treatment of ED patients.
Collapse
Affiliation(s)
- Fuxun Zhang
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yang Xiong
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Feng Qin
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jiuhong Yuan
- Andrology Laboratory, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
11
|
Tinco-Jayo JA, Aguilar-Felices EJ, Enciso-Roca EC, Arroyo-Acevedo JL, Herrera-Calderon O. Phytochemical Screening by LC-ESI-MS/MS and Effect of the Ethyl Acetate Fraction from Leaves and Stems of Jatropha macrantha Müll Arg. on Ketamine-Induced Erectile Dysfunction in Rats. Molecules 2021; 27:molecules27010115. [PMID: 35011347 PMCID: PMC8746923 DOI: 10.3390/molecules27010115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Jatropha macrantha Müll Arg. L is also known as “huanarpo macho” and used in the Peruvian traditional medicine as an aphrodisiac and erectile dysfunction (ED). The aim of this study was to determine the phytochemical constituents in leaves and stems ethyl acetate fraction (LEAF and SEAF) of J. macrantha and to compare the antioxidant activity and the ameliorative effect on ketamine-induced erectile dysfunction in rats. The phytochemical constituents were determined by LC-ESI-MS/MS, the total phenolic compounds and total flavonoids (TPC and TF) by Folin-Ciocalteu and aluminum chloride, respectively. The antioxidant activity was determined by DPPH, ABTS, and FRAP assays. Experimental groups were divided as follows: I: negative control; II: positive control (ketamine at 50 mg/ kg/d); III: sildenafil 5 mg/kg; IV, V, VI: LEAF at 25, 50 and 100 mg/kg, respectively, and VII, VIII, IX: SEAF at 25, 50, and 100 mg/kg, respectively. The phytochemical analysis revealed the presence mainly of coumarins, flavonoids, phenolic acids, and terpenes. TPC of LEAF and SEAF were 359 ± 5.21 mg GAE/g and 306 ± 1.93 mg GAE/g, respectively; TF in LEAF and SEAF were 23.7 ± 0.80 mg EQ/g, and 101 ± 1.42 mg EQ/g, respectively. The DPPH, ABTS, FRAP in SEAF were 647 ± 3.27; 668 ± 2.30; and 575 ± 2.86 μmol TE/g, respectively, whilst LEAF showed 796 ± 3.15; 679 ± 0.85; and 806 ± 3.42 μmol TE/g, respectively. Regarding sexual behavior, LEAF showed a better effect in mount frequency, intromission frequency, ejaculation frequency, mount latency, intromission latency, ejaculatory latency, and post ejaculatory latency than SEAF. As conclusion, LEAF of J. macrantha at 50 mg/kg showed a better effect on sexual behavior in male rats with erectile dysfunction than SEAF but not higher than sildenafil.
Collapse
Affiliation(s)
- Johnny Aldo Tinco-Jayo
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (J.A.T.-J.); (E.J.A.-F.); (E.C.E.-R.)
| | - Enrique Javier Aguilar-Felices
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (J.A.T.-J.); (E.J.A.-F.); (E.C.E.-R.)
| | - Edwin Carlos Enciso-Roca
- Department of Human Medicine, Faculty of Health Sciences, Universidad Nacional de San Cristobal de Huamanga, Portal Independencia 57, Ayacucho 05003, Peru; (J.A.T.-J.); (E.J.A.-F.); (E.C.E.-R.)
| | - Jorge Luis Arroyo-Acevedo
- Department of Dynamic Sciences, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru;
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru
- Correspondence: ; Tel.: +51-956-550-510
| |
Collapse
|