1
|
Pascarella A, Limongelli G, De Falco A, Minale EMP, Di Nardo G, Di Marco GM, Zito Marinosci G, Olimpico G, Siani P, De Brasi D. Refractory Chylothorax and Ventricular Hypertrophy Treated with Trametinib in a Patient with Noonan Syndrome: 18-Month Follow-Up. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1342. [PMID: 39594917 PMCID: PMC11593188 DOI: 10.3390/children11111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
RASopathies are a group of genetic syndromes caused by germline mutations in genes involved in the RAS/Mitogen-Activated Protein Kinase signaling pathway, which regulates cellular proliferation, differentiation, and angiogenesis. Despite their involvement at different levels of this pathway, RASopathies share overlapping clinical phenotypes. Noonan syndrome is the most prevalent RASopathy, with an estimated incidence of 1 in 2500 live births, and it is typically inherited in an autosomal dominant manner, with 50% of cases involving gain-of-function mutations in the PTPN11 gene. De novo mutations are common, accounting for 60% of cases. The phenotype of Noonan syndrome includes characteristic facial and physical features, congenital cardiac defects, lymphatic and cerebrovascular anomalies, renal malformations, hematological abnormalities, developmental issues, and an increased risk of cancer. Severe congenital cardiac defects and lymphatic abnormalities significantly impact prognosis, contributing to increased morbidity and mortality. Recent therapeutic advancements have introduced trametinib, an MEK1/2 inhibitor, for treating Noonan syndrome patients with severe cardiac and lymphatic complications. To assess its efficacy, here, we present a case of a newborn with Noonan syndrome who exhibited refractory chylothorax, ventricular hypertrophy, and pulmonary stenosis who was treated with trametinib. The patient demonstrated significant improvement in chylothorax and left ventricular hypertrophy, though pulmonary stenosis persisted. This case further confirms trametinib's potential as a therapeutic option for severe Noonan syndrome complications, emphasizing the need for further clinical trials to optimize treatment protocols and evaluate long-term outcomes.
Collapse
Affiliation(s)
- Antonia Pascarella
- Unit of Chronic and Multifactorial Diseases, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (A.P.); (P.S.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
| | | | | | - Giangiacomo Di Nardo
- Department of Pediatric Cardiology, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (G.D.N.)
| | - Giovanni Maria Di Marco
- Department of Pediatric Cardiology, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (G.D.N.)
| | | | - Giorgia Olimpico
- Department of Translational Medical Science, Section of Pediatrics, University “Federico II”, 80131 Naples, Italy;
| | - Paolo Siani
- Unit of Chronic and Multifactorial Diseases, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (A.P.); (P.S.)
| | - Daniele De Brasi
- Medical Genetics Unit, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy;
| |
Collapse
|
2
|
Zong H, Huang Y, Xiong Y, Gong W, Lin B, Yang C. Severe generalized edema in a premature neonate: A case report and literature review. Clin Case Rep 2024; 12:e9341. [PMID: 39229301 PMCID: PMC11369640 DOI: 10.1002/ccr3.9341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Key Clinical Message With no family history, and an atypical phenotype, the clinical diagnosing of Noonan syndrome (NS) can be very difficult. The present case emphasized that generalized edema in neonates may be the potential first symptom of NS. Abstract Severe generalized edema is a rare pathological condition with high mortality in newborns, in particular the premature infants. It is characterized by the extensive subcutaneous tissue edema and the accumulation of fluid in neonatal body fluid compartments. The etiology and pathogenesis of hydrops in neonates are quite complex. Generally speaking, hydrops can be divided into immune hydrops and non-immune hydrops according to the etiology. It is still challenging in treating severe neonatal edema. In this study, we presented a preterm newborn with severe generalized edema after birth, which was finally diagnosed with Noonan syndrome (NS). The infant clinically manifested as severe generalized edema alone, without the involvement of multiple organ malformation. Generalized edema in neonates was probably the first symptom of NS. Therefore, differential diagnosis of NS is necessary for infants developing generalized edema.
Collapse
Affiliation(s)
- Haifeng Zong
- Neonatal Intensive Care UnitShenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Yingsui Huang
- Neonatal Intensive Care UnitShenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Ying Xiong
- Neonatal Intensive Care UnitShenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Wentao Gong
- Neonatal Intensive Care UnitShenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Bingchun Lin
- Neonatal Intensive Care UnitShenzhen Maternity and Child Healthcare HospitalShenzhenChina
| | - Chuanzhong Yang
- Neonatal Intensive Care UnitShenzhen Maternity and Child Healthcare HospitalShenzhenChina
| |
Collapse
|
3
|
Pires LVL, Da Cás E, de Melo LC, Nakaie CMA, Aiello VD, Yamamoto GL, Honjo RS, Kim CA, Bertola DR. Plastic Bronchitis in Noonan Syndrome: Further Evidence Suggesting a Higher Risk of Lymphatic Abnormalities in Individuals Harboring Variants in PTPN11 Residue p.Phe285. Mol Syndromol 2024:1-6. [DOI: 10.1159/000540570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2025] Open
Abstract
<b><i>Introduction:</i></b> Noonan syndrome (NS) is a Mendelian phenotype, member of the RASopathies, a group of clinically overlapping multisystem disorders caused by germline variants in the RAS-MAPK signaling pathway genes. Among the clinical findings in NS, lymphatic abnormalities (LAs) are diagnosed in approximately 30%, mostly in individuals harboring variants in <i>RIT1</i> and <i>SOS2</i>. This genotype-phenotype correlation is not precise, and recent evidence suggests a higher prevalence of LAs in individuals harboring variants on p.Phe285 residue in <i>PTPN11</i>, the main gene responsible for NS. <b><i>Case Presentation:</i></b> Here, we report a novel case of NS harboring the <i>PTPN11</i>:p.Phe285Ser variant that evolved with chylothorax and presented the rare finding of plastic bronchitis, an uncommon and underdiagnosed pulmonary disease, characterized by production of cohesive and branching casts filling the airways. We also provide a review of other individuals with NS and LA harboring variants on Phe285 residue in <i>PTPN11</i> from our service and from the literature and compared its prevalence with the most commonly affected residue in <i>PTPN11</i>-related NS (p.Asn308), which indicated that variants in the p.Phe285 residue might predispose to LA. <b><i>Conclusion:</i></b> We suggest that, when this variant is identified in an individual, clinicians should be warned of a possible higher prevalence of LA and a prompt evaluation should be performed if any clinical signs are noticed.
Collapse
|
4
|
Gazzin A, Fornari F, Cardaropoli S, Carli D, Tartaglia M, Ferrero GB, Mussa A. Exploring New Drug Repurposing Opportunities for MEK Inhibitors in RASopathies: A Comprehensive Review of Safety, Efficacy, and Future Perspectives of Trametinib and Selumetinib. Life (Basel) 2024; 14:731. [PMID: 38929714 PMCID: PMC11204468 DOI: 10.3390/life14060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.
Collapse
Affiliation(s)
- Andrea Gazzin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Federico Fornari
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Simona Cardaropoli
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | | | - Alessandro Mussa
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
5
|
Koike T, Fukushiro M, Ueno A, Nakashima S, Yamakawa S, Suda S, Hayashida K, Yamasaki O. Recurrent cellulitis and bacteremia in a patient with Noonan syndrome: A case report. J Infect Chemother 2024; 30:548-551. [PMID: 38042300 DOI: 10.1016/j.jiac.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
A 28-year old Japanese man with Noonan syndrome (NS) presented to our emergency department with painful erythema of the trunk and lower extremities since the previous day. He had been diagnosed with protein-losing enteropathy (PLE) with intestinal lymphangiectasia at age 25 years, and undergone lymphaticovenular anastomosis (LVA) twice. Three episodes of cellulitis of both lower extremities had occurred in the past 2 years. Extensive cellulitis with sepsis was diagnosed and piperacillin/tazobactam was started, which was de-escalated to ceftriaxone. He was discharged after 13 days of antibiotic therapy. After discharge, low-dose trimethoprim-sulfamethoxazole (SMZ-TMP) was started as the primary prophylaxis, but three episodes of cellulitis occurred in the next year and were treated with other antibiotics. NS, an autosomal dominant disease known as a RASopathy, is caused by germline mutations in RAS-MAPK pathway genes. Lymphedema resulting from lymphatic abnormalities is a concomitant manifestation in 20 % of patients with NS, and can be a risk factor for cellulitis. Hypoalbuminemia and hypoglobulinemia associated with PLE facilitate infections such as cellulitis. As a treatment for lymphedema in the extremities, LVA has shown objective and subjective improvements in most patients, and some studies have also reported its efficacy for lymphedema in patients with NS. Targeted molecular therapy with mitogen-activated protein kinase enzyme (MEK) inhibitor is used in treatment of cancers with activation of the RAS/MAPK pathway. MEK inhibitors have recently been tried in patients with RASopathies and severe lymphatic disorders, and can lead to rapid resolution of symptoms.
Collapse
Affiliation(s)
- Takayuki Koike
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Michihito Fukushiro
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Ayaka Ueno
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Shigeki Nakashima
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Japan
| | - Sho Yamakawa
- Division of Plastic and Reconstructive Surgery, Shimane University Faculty of Medicine, Izumo, Japan
| | - Shota Suda
- Division of Plastic and Reconstructive Surgery, Shimane University Faculty of Medicine, Izumo, Japan
| | - Kenji Hayashida
- Division of Plastic and Reconstructive Surgery, Shimane University Faculty of Medicine, Izumo, Japan
| | - Osamu Yamasaki
- Department of Dermatology, Shimane University Faculty of Medicine, Izumo, Japan.
| |
Collapse
|
6
|
Dulmovits BM, Taha DK. Neonatal perspective on central lymphatic disorders. Semin Pediatr Surg 2024; 33:151424. [PMID: 38830311 DOI: 10.1016/j.sempedsurg.2024.151424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Lymphatic disorders presenting in the first year of life are difficult to identify and manage given the broad range of underlying etiologies. Neonatal lymphatic disease arising from congenital or acquired conditions results in the abnormal accumulation of lymph fluid in the pleura (chylothorax), peritoneum (chylous ascites) and skin (edema/anasarca). There is also increasing recognition of lymphatic losses through the intestine resulting in protein-losing enteropathy (PLE). While the incidence of lymphatic disorders in neonates is unclear, advances in genetic testing and lymphatic imaging are improving our understanding of the underlying pathophysiology. Despite these advancements, medical management of neonatal lymphatic disorders remains challenging and variable among clinicians.
Collapse
Affiliation(s)
- Brian M Dulmovits
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Dalal K Taha
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Borst AJ, Britt A, Adams DM. Complex lymphatic anomalies: Molecular landscape and medical management. Semin Pediatr Surg 2024; 33:151422. [PMID: 38833763 DOI: 10.1016/j.sempedsurg.2024.151422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The lymphatic system is one of the most essential and complex systems in the human body. Disorders that affect the development or function of the lymphatic system can lead to multi-system complications and life-long morbidity. The past two decades have seen remarkable progress in our knowledge of the basic biology and function of the lymphatic system, the molecular regulators of lymphatic development, and description of disorders associated with disrupted lymphangiogensis. In this chapter we will touch on the clinical features of complex lymphatic anomalies, new molecular knowledge of the drivers of these disorders, and novel developmental therapeutics for lymphatic disease.
Collapse
Affiliation(s)
- Alexandra J Borst
- Division of Hematology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Allison Britt
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denise M Adams
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Handa A, Tsujioka Y, Nishimura G, Nozaki T, Kono T, Jinzaki M, Harms T, Connolly SA, Sato TS, Sato Y. RASopathies for Radiologists. Radiographics 2024; 44:e230153. [PMID: 38602868 DOI: 10.1148/rg.230153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
RASopathies are a heterogeneous group of genetic syndromes caused by germline mutations in a group of genes that encode components or regulators of the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. RASopathies include neurofibromatosis type 1, Legius syndrome, Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome, central conducting lymphatic anomaly, and capillary malformation-arteriovenous malformation syndrome. These disorders are grouped together as RASopathies based on our current understanding of the Ras/MAPK pathway. Abnormal activation of the Ras/MAPK pathway plays a major role in development of RASopathies. The individual disorders of RASopathies are rare, but collectively they are the most common genetic condition (one in 1000 newborns). Activation or dysregulation of the common Ras/MAPK pathway gives rise to overlapping clinical features of RASopathies, involving the cardiovascular, lymphatic, musculoskeletal, cutaneous, and central nervous systems. At the same time, there is much phenotypic variability in this group of disorders. Benign and malignant tumors are associated with certain disorders. Recently, many institutions have established multidisciplinary RASopathy clinics to address unique therapeutic challenges for patients with RASopathies. Medications developed for Ras/MAPK pathway-related cancer treatment may also control the clinical symptoms due to an abnormal Ras/MAPK pathway in RASopathies. Therefore, radiologists need to be aware of the concept of RASopathies to participate in multidisciplinary care. As with the clinical manifestations, imaging features of RASopathies are overlapping and at the same time diverse. As an introduction to the concept of RASopathies, the authors present major representative RASopathies, with emphasis on their imaging similarities and differences. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Atsuhiko Handa
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Yuko Tsujioka
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Gen Nishimura
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Taiki Nozaki
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Tatsuo Kono
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Masahiro Jinzaki
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Taylor Harms
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Susan A Connolly
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Takashi Shawn Sato
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| | - Yutaka Sato
- From the Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA 02115 (A.H., S.A.C.); Department of Radiology, Keio University School of Medicine, Tokyo, Japan (Y.T., T.N., M.J.); Department of Radiology, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan (Y.T., T.K.); Department of Radiology, Musashino-Yowakai Hospital, Tokyo, Japan (G.N.); and Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (T.H., T.S.S., Y.S.)
| |
Collapse
|
9
|
Chen Q, Hong D, Huang Y, Zhang Z, Wang S. Phenotypic and genotypic spectrum of noonan syndrome: A retrospective analysis of 46 consecutive pediatric patients presented at a regional cardiac center in China. Heliyon 2024; 10:e27038. [PMID: 38463782 PMCID: PMC10920370 DOI: 10.1016/j.heliyon.2024.e27038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background Noonan syndrome (NS) is relatively common but poorly recognized. We aimed to describe the phenotypic and genotypic spectrum of NS in a Chinese cohort. Method The study retrospectively investigated consecutive pediatric patients who presented at the Guangdong cardiovascular institute between 2018 and 2020 with confirmed known NS-relevant mutations determined by exome sequencing. Dates of genetic testing, Age, sex, institution of genetic testing, mutated gene (related to NS) and its classification, heterozygosity, and parental origin were identified from the sequencing reports. Facial features, cardiac defect and other clinical characteristics were also assessed. Comparisons of categorical variables between groups were examined by Chi-square test or Fisher's exact test when appropriate. Intraclass correlation coefficient (ICC) was performed to evaluate the reliability of evaluation of facial features between different evaluators. Results The most prevalent mutated genes were PTPN11 (37.0%) and RAF1 (19.6%), and most mutations were pathogenic (67.4%) and de novo (87.0%). Most patients were with NS-relevant facial features (97.4%) and cardiac defects (92.7%), where ventricular hypertrophy, pulmonary valve stenosis, and atrial septal defect were the most prevalent. Patients with mutated RAF1 appeared to be diagnosed at an older age than those with mutated PTPN11, and with higher prevalence of mitral regurgitation, hypertrophic cardiomyopathy, and ventricular hypertrophy, but lower prevalence of pulmonary valve stenosis and pulmonary artery stenosis. Patients presented at an age ≥2 years appeared to be with fewer NS-relevant facial features and cardiac defects than those aged <2 years. Conclusions These findings indicated featured distributions of phenotypic and genotypic spectrum in Chinese pediatric patients, which might be helpful for early NS diagnosis.
Collapse
Affiliation(s)
- Qinchang Chen
- Department of Pediatric Cardiology, Guangdong Provincial People’ s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dian Hong
- Pediatric intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yulu Huang
- Department of Pediatric Cardiology, Guangdong Provincial People’ s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhiwei Zhang
- Department of Pediatric Cardiology, Guangdong Provincial People’ s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shushui Wang
- Department of Pediatric Cardiology, Guangdong Provincial People’ s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Modaghegh MHS, Tanzadehpanah H, Kamyar MM, Manoochehri H, Sheykhhasan M, Forouzanfar F, Mahmoudian RA, Lotfian E, Mahaki H. The role of key biomarkers in lymphatic malformation: An updated review. J Gene Med 2024; 26:e3665. [PMID: 38375969 DOI: 10.1002/jgm.3665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 02/21/2024] Open
Abstract
The lymphatic system, crucial for tissue fluid balance and immune surveillance, can be severely impacted by disorders that hinder its activities. Lymphatic malformations (LMs) are caused by fluid accumulation in tissues owing to defects in lymphatic channel formation, the obstruction of lymphatic vessels or injury to lymphatic tissues. Somatic mutations, varying in symptoms based on lesions' location and size, provide insights into their molecular pathogenesis by identifying LMs' genetic causes. In this review, we collected the most recent findings about the role of genetic and inflammatory biomarkers in LMs that control the formation of these malformations. A thorough evaluation of the literature from 2000 to the present was conducted using the PubMed and Google Scholar databases. Although it is obvious that the vascular endothelial growth factor receptor 3 mutation accounts for a significant proportion of LM patients, several mutations in other genes thought to be linked to LM have also been discovered. Also, inflammatory mediators like interleukin-6, interleukin-8, tumor necrosis factor-alpha and mammalian target of rapamycin are the most commonly associated biomarkers with LM. Understanding the mutations and genes expression responsible for the abnormalities in lymphatic endothelial cells could lead to novel therapeutic strategies based on molecular pathways.
Collapse
Affiliation(s)
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Kamyar
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Manoochehri
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Lotfian
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanie Mahaki
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Chen K, Beeraka NM, Zhang X, Sinelnikov MY, Plotnikova M, Zhao C, Basavaraj V, Zhang J, Lu P. Recent Advances in Therapeutic Modalities Against Breast Cancer-Related Lymphedema: Future Epigenetic Landscape. Lymphat Res Biol 2023; 21:536-548. [PMID: 37267206 PMCID: PMC10753987 DOI: 10.1089/lrb.2022.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023] Open
Abstract
Background: Lymphedema is a significant postsurgical complication observed in the majority of breast cancer patients. These multifactorial etiopathogenesis have a significant role in the development of novel diagnostic/prognostic biomarkers and the development of novel therapies. This review aims to ascertain the epigenetic alterations that lead to breast cancer-related lymphedema (BCRL), multiple pathobiological events, and the underlying genetic predisposing factors, signaling cascades pertinent to the lapses in effective prognosis/diagnosis, and finally to develop a suitable therapeutic regimen. Methods and Results: We have performed a literature search in public databases such as PubMed, Medline, Google Scholar, National Library of Medicine and screened several published reports. Search words such as epigenetics to induce BCRL, prognosis/diagnosis, primary lymphedema, secondary lymphedema, genetic predisposing factors for BRCL, conventional therapies, and surgery were used in these databases. This review described several epigenetic-based predisposing factors and the pathophysiological consequences of BCRL, which affect the overall quality of life, and the interplay of these events could foster the progression of lymphedema in breast cancer survivors. Prognosis/diagnostic and therapy lapses for treating BCRL are highly challenging due to genetic and anatomical variations, alteration in the lymphatic vessel contractions, and variable expression of several factors such as vascular endothelial growth factor (VEGF)-E and vascular endothelial growth factor receptor (VEGFR) in breast cancer survivors. Conclusion: We compared the efficacy of various conventional therapies for treating BCRL as a multidisciplinary approach. Further substantial research is required to decipher underlying signaling epigenetic pathways to develop chromatin-modifying therapies pertinent to the multiple etiopathogenesis to explore the correlation between the disease pathophysiology and novel therapeutic modalities to treat BCRL.
Collapse
Affiliation(s)
- Kuo Chen
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Narasimha M. Beeraka
- Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Anantapuramu, Andhra Pradesh, India
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Xinliang Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Mikhail Y. Sinelnikov
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Maria Plotnikova
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Cuiping Zhao
- The 80th Army Hospital of the Chinese People's Liberation Army, Weifang, China
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India
| | - Jin Zhang
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Pengwei Lu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Ou Y, Yuan JC, Zheng Y, Zhang JM, He T, Liang Z, Zhou YK. Case report: Noonan syndrome with protein-losing enteropathy. Front Genet 2023; 14:1237821. [PMID: 37829277 PMCID: PMC10565653 DOI: 10.3389/fgene.2023.1237821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Background: Noonan syndrome (NS) is characterized by typical facial features, short stature, congenital heart defects and other comorbidities. Lymphedema and chylous pleural effusions are also common in NS, but protein-losing enteropathy (PLE) is rarely reported. Case presentation: We present the case of a 19-year-old Chinese woman presenting with PLE. Small intestine biopsy showed obvious expansion of lymphatic vessels. The gene mutation results of the patient indicated a c.184T>G missense mutation (p.Tyr62Asp) in the PTPN11 gene (NM_002834.3). Conclusion: NS accompanied by PLE is not common, but hypoproteinemia attributable to PLE may be more common in patients with NS than previously thought. It remains uncertain whether mutation of the PTPN11 gene is related to PLE, indicating that further research is needed.
Collapse
Affiliation(s)
- Yang Ou
- Department of Endocrinology and Metabolism, First People’s Hospital of Yunnan Province, The Kunhua Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jun-Chao Yuan
- Department of Endocrinology and Metabolism, First People’s Hospital of Yunnan Province, The Kunhua Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yao Zheng
- Department of Endocrinology and Metabolism, First People’s Hospital of Yunnan Province, The Kunhua Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jin-Man Zhang
- Department of Medical Genetics, First People’s Hospital of Yunnan Province, The Kunhua Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Tian He
- Department of Gastroenterology, First People’s Hospital of Yunnan Province, The Kunhua Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zhi Liang
- Department of Information Center, First People’s Hospital of Yunnan Province, The Kunhua Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yi-Kun Zhou
- Department of Endocrinology and Metabolism, First People’s Hospital of Yunnan Province, The Kunhua Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Hribernik I, Brooks T, Dunlop-Jones A, Bentham JR. Successful treatment of refractory chylothorax with MEK inhibitor trametinib in a child with Noonan syndrome: case report. Eur Heart J Case Rep 2023; 7:ytad190. [PMID: 37123650 PMCID: PMC10133994 DOI: 10.1093/ehjcr/ytad190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/09/2022] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Background Refractory chylous effusions due to lymphatic dysplasia related to Noonan syndrome cause significant morbidity and mortality due to protein and immunoglobulin losses. Very few cases have been published reporting successful treatment of patients with trametinib where all conventional treatments had failed. Case summary We present a girl with Noonan syndrome and hypertrophic cardiomyopathy who presented with life-threatening refractory chylothorax where all conventional treatment options failed. She was successfully treated with mitogen-activated extracellular signal-regulated kinase inhibitor trametinib. Discussion MEK inhibition with trametinib is emerging as a possible salvage treatment option for a subset of patients with Noonan syndrome and severe pulmonary lymphangiectasia. More experience is required to establish optimal treatment regimen and long-term outcomes.
Collapse
Affiliation(s)
- Ines Hribernik
- Yorkshire Heart Centre, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Teresa Brooks
- Yorkshire Heart Centre, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | - Alix Dunlop-Jones
- Yorkshire Heart Centre, Leeds General Infirmary, Great George Street, Leeds LS1 3EX, UK
| | | |
Collapse
|
14
|
Baldo F, Fachin A, Da Re B, Rubinato E, Bobbo M, Barbi E. New insights on Noonan syndrome's clinical phenotype: a single center retrospective study. BMC Pediatr 2022; 22:734. [PMID: 36566191 PMCID: PMC9789552 DOI: 10.1186/s12887-022-03804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Noonan syndrome (NS) is a clinically and genetically heterogeneous disorder. Since its clinical phenotype is often mild and difficult to differentiate from other syndromes, its diagnosis can be challenging and its prevalence in the pediatric population is most certainly underestimated. The difficulty in identifying Noonan syndrome is also increased by the fact that genetic tests are currently not able to detect an underlying mutation in around 10% of the cases. METHODS This is a retrospective, observational study conducted at the Institute for Maternal and Child "Burlo Garofolo" in Trieste, Italy. We recruited all the patients with clinical and/or genetic diagnosis of NS who were evaluated at the Department of Pediatrics between October 2015 and October 2020. Statistical analyses were performed with IBM SPSS Statistics software. The association between discrete variables has been evaluated through chi-squared test, indicating statistically significant p with Pearson test or Fischer test for variables less than 5. RESULTS We recruited a total of 35 patients affected by Noonan syndrome. In 24 patients (75%) we identified an underlying genetic substrate: 17 patients had a mutation on PTPN11 (61%), 2 in SOS1, KRAS and SHOC2 (7% each) and only 1 in RAF1 (4%). 25% of the subjects did not receive a genetic confirm. As for the phenotype of the syndrome, our study identified the presence of some clinical features which were previously unrelated or poorly related to NS. For example, renal and central nervous system abnormalities were found at a higher rate compared to the current literature. On the contrary, some features that are considered very suggestive of NS (such as lymphatic abnormalities and the classical facial features) were not frequently found in our population. CONCLUSIONS In our analysis, we focused on the main phenotypic features of NS, identifying various clinical manifestation that were not associated with this genetic condition before. This could be helpful in raising the knowledge of NS's clinical spectrum, facilitating its diagnosis.
Collapse
Affiliation(s)
- Francesco Baldo
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Alice Fachin
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Beatrice Da Re
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Elisa Rubinato
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Marco Bobbo
- grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| | - Egidio Barbi
- grid.5133.40000 0001 1941 4308Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy ,grid.418712.90000 0004 1760 7415Institute for Maternal and Child Health IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
15
|
Zenker M. Clinical overview on RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:414-424. [PMID: 36428239 DOI: 10.1002/ajmg.c.32015] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
Abstract
RASopathies comprise a group of clinically overlapping developmental disorders caused by genetic variations affecting components or modulators of the RAS-MAPK signaling cascade, which lead to dysregulation of signal flow through this pathway. Noonan syndrome and the less frequent, clinically related disorders, Costello syndrome, cardiofaciocutaneous syndrome, Noonan syndrome with multiple lentigines, and Noonan syndrome-like disorder with loose anagen hair are part of the RASopathy spectrum and share a recognizable pattern of multisystem involvement. This review describes the "Noonan syndrome-like" phenotype as a common phenotypic signature of generalized developmental RAS pathway dysregulation. Distinctive features of the different entities are revisited against the background of the understanding of underlying genetic alterations and genotype correlations, which has evolved rapidly during the past 20 years, thereby leading to suggestions regarding the nosology of RASopathies.
Collapse
Affiliation(s)
- Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
16
|
Kavamura MI, Leoni C, Neri G. Dermatological manifestations, management, and care in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:452-458. [PMID: 36541891 DOI: 10.1002/ajmg.c.32027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/20/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
RASopathies are rare genetic disorders caused by germline pathogenic variants in genes belonging to the RAS/MAPK pathway, which signals cell proliferation, differentiation, survival and death. The dysfunction of such signaling pathway causes syndromes with overlapping clinical manifestations. Skin and adnexal lesions are the cardinal clinical signs of RASopathies, such as cardiofaciocutaneous syndrome, Noonan syndrome with multiple lentigines, formerly known as LEOPARD syndrome, Costello syndrome, neurofibromatosis (NF1), Legius syndrome, Noonan-like syndrome with loose anagen hair (NSLH) and Noonan syndrome. As NF1, one of the most common RASopathies, described in 1882, has its clinical features well delineated, we will focus on the dermatological diagnosis, management and care of non-NF1 RASopathies, which are less known and more recently described. Dermatological manifestations are important clinical diagnostic elements that can aid differential diagnosis among RASopathies. They can affect dermis and epidermis, causing pigmented lesions (melanocytic nevi, café-au-lait spots, and lentigines), hyperkeratosis (keratosis pilaris, ulerythema ophryogenes, and palmoplantar keratosis) or hyperplasia. To date there are rare known links to malignancy, but oftentimes skin lesions require close attention because they can highly affect quality of life.
Collapse
Affiliation(s)
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Neri
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
17
|
Gelb BD, Yohe ME, Wolf C, Andelfinger G. New prospectives on treatment opportunities in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:541-560. [PMID: 36533679 PMCID: PMC10150944 DOI: 10.1002/ajmg.c.32024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
The RASopathies are a group of clinically defined developmental syndromes caused by germline variants of the RAS/mitogen-activated protein (MAPK) cascade. The prototypic RASopathy is Noonan syndrome, which has phenotypic overlap with related disorders such as cardiofaciocutaneous syndrome, Costello syndrome, Noonan syndrome with multiple lentigines, and others. In this state-of-the-art review, we summarize current knowledge on unmet therapeutic needs in these diseases and novel treatment approaches informed by insights from RAS/MAPK-associated cancer therapies, in particular through inhibition of MEK1/2 and mTOR in patients with severe disease manifestations. We explore the possibilities of integrating a larger arsenal of molecules currently under development into future care plans. Lastly, we describe both medical and ethical challenges and opportunities for future clinical trials in the field.
Collapse
Affiliation(s)
- Bruce D. Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Cordula Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Gregor Andelfinger
- CHU Sainte Justine, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
18
|
Solman M, Woutersen DTJ, den Hertog J. Modeling (not so) rare developmental disorders associated with mutations in the protein-tyrosine phosphatase SHP2. Front Cell Dev Biol 2022; 10:1046415. [PMID: 36407105 PMCID: PMC9672471 DOI: 10.3389/fcell.2022.1046415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2) is a highly conserved protein tyrosine phosphatase (PTP), which is encoded by PTPN11 and is indispensable during embryonic development. Mutations in PTPN11 in human patients cause aberrant signaling of SHP2, resulting in multiple rare hereditary diseases, including Noonan Syndrome (NS), Noonan Syndrome with Multiple Lentigines (NSML), Juvenile Myelomonocytic Leukemia (JMML) and Metachondromatosis (MC). Somatic mutations in PTPN11 have been found to cause cancer. Here, we focus on the role of SHP2 variants in rare diseases and advances in the understanding of its pathogenesis using model systems.
Collapse
Affiliation(s)
- Maja Solman
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
- *Correspondence: Jeroen den Hertog,
| |
Collapse
|
19
|
Swarts JW, Kleimeier LER, Leenders EKSM, Rinne T, Klein WM, Draaisma JMT. Lymphatic anomalies during lifetime in patients with Noonan syndrome: Retrospective cohort study. Am J Med Genet A 2022; 188:3242-3261. [PMID: 35979676 PMCID: PMC9804719 DOI: 10.1002/ajmg.a.62955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 01/31/2023]
Abstract
Noonan syndrome (NS) has been associated with an increased risk of lymphatic anomalies, with an estimated prevalence of 20%. The prevalence of lymphatic anomalies seems to differ between pathogenic variants. Therefore, this study aims to describe the clinical presentation, prevalence and genotype-phenotype correlations of lymphatic anomalies during life in patients with NS. This retrospective cohort study included patients (n = 115) who were clinically and genetically diagnosed with NS and visited the Noonan expertise Center of the Radboud University Medical Center between January 2015 and March 2021. Data on lymphatic anomalies during lifetime were obtained from medical records. Lymphatic anomalies most often presented as an increased nuchal translucency, chylothorax and/or lymphedema. Prenatal lymphatic anomalies increased the risk of lymphatic anomalies during infancy (OR 4.9, 95% CI 1.7-14.6). The lifetime prevalence of lymphatic anomalies was 37%. Genotype-phenotype correlations showed an especially high prevalence of lymphatic anomalies during infancy and childhood in patients with a pathogenic SOS2 variant (p = 0.03 and p < 0.01, respectively). This study shows that patients with NS have a high predisposition for developing lymphatic anomalies during life. Especially patients with prenatal lymphatic anomalies have an increased risk of lymphatic anomalies during infancy. Genotype-phenotype correlations were found in pathogenic variants in SOS2.
Collapse
Affiliation(s)
- Jessie W. Swarts
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenNetherlands
| | - Lotte E. R. Kleimeier
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenNetherlands
| | | | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenNetherlands
| | - Willemijn M. Klein
- Department of Medical ImagingRadboud University Medical CenterNijmegenNetherlands
| | - Jos M. T. Draaisma
- Department of Pediatrics, Amalia Children's Hospital, Radboud Institute for Health SciencesRadboud University Medical CenterNijmegenNetherlands
| |
Collapse
|
20
|
Rose AL, Cathey SS. Genetic Causes of Vascular Malformations and Common Signaling Pathways Involved in Their Formation. Dermatol Clin 2022; 40:449-459. [DOI: 10.1016/j.det.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Sugiyama A, Hirashima M. Fetal nuchal edema and developmental anomalies caused by gene mutations in mice. Front Cell Dev Biol 2022; 10:949013. [PMID: 36111337 PMCID: PMC9468611 DOI: 10.3389/fcell.2022.949013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
Fetal nuchal edema, a subcutaneous accumulation of extracellular fluid in the fetal neck, is detected as increased nuchal translucency (NT) by ultrasonography in the first trimester of pregnancy. It has been demonstrated that increased NT is associated with chromosomal anomalies and genetic syndromes accompanied with fetal malformations such as defective lymphatic vascular development, cardiac anomalies, anemia, and a wide range of other fetal anomalies. However, in many clinical cases of increased NT, causative genes, pathogenesis and prognosis have not been elucidated in humans. On the other hand, a large number of gene mutations have been reported to induce fetal nuchal edema in mouse models. Here, we review the relationship between the gene mutants causing fetal nuchal edema with defective lymphatic vascular development, cardiac anomalies, anemia and blood vascular endothelial barrier anomalies in mice. Moreover, we discuss how studies using gene mutant mouse models will be useful in developing diagnostic method and predicting prognosis.
Collapse
|
22
|
Kleimeier LER, van Schaik C, Leenders E, Itkin M, Klein WM, Draaisma JMT. Lymphatic Phenotype of Noonan Syndrome: Innovative Diagnosis and Possible Implications for Therapy. J Clin Med 2022; 11:3128. [PMID: 35683512 PMCID: PMC9181165 DOI: 10.3390/jcm11113128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Dysregulation of the Ras/Mitogen-activated protein kinase (MAPK) signaling pathway is suggested to play a pivotal role in the development of the lymphatic system in patients with Noonan Syndrome (NS). Pathogenic gene variants in the Ras/MAPK pathway can therefore lead to various lymphatic diseases such as lymphedema, chylo-thorax and protein losing enteropathy. Diagnosis and treatment of the lymphatic phenotype in patients with NS remain difficult due to the variability of clinical presentation, severity and, probably, underlying unknown pathophysiologic mechanism. The objective of this article is to give an overview of the clinical presentation of lymphatic disease in relation to central conducting lymphatic anomalies (CCLA) in NS, including new diagnostic and therapeutic options. We visualized the central conducting lymphatic system using heavily T2-weighted MR imaging (T2 imaging) and Dynamic Contrast-enhanced MR Lymphangiography (DCMRL) and compared these results with the lymphatic clinical presentation in seven patients with NS. Our results show that most patients with NS and lymphatic disease have CCLA. Therefore, it is probable that CCLA is present in all patient with NS, presenting merely with lymphedema, or without sensing lymphatic symptoms at all. T2 imaging and DCMRL can be indicated when CCLA is suspected and this can help to adjust therapeutic interventions.
Collapse
Affiliation(s)
- Lotte E. R. Kleimeier
- Department of Pediatrics, Radboudumc Amalia Children’s Hospital, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Caroline van Schaik
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.v.S.); (W.M.K.)
| | - Erika Leenders
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Maxim Itkin
- Department of Radiology, Penn Center for Lymphatic Disorders, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Willemijn M. Klein
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.v.S.); (W.M.K.)
| | - Jos M. T. Draaisma
- Department of Pediatrics, Radboudumc Amalia Children’s Hospital, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| |
Collapse
|