1
|
Dong Y, Fu C, Zhang T, Dong F, Zhu X, Jiang Y, Hu L, Pan L, Li J, Zhang X. Abnormal hippocampal neurogenesis and impaired social recognition memory in two neurodevelopmental models of schizophrenia. FASEB J 2024; 38:e70138. [PMID: 39485229 DOI: 10.1096/fj.202401258rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Schizophrenia is a mental disorder characterized by cognitive impairments, specifically deficits in social recognition memory (SRM). Abnormal hippocampal neurogenesis has been implicated in these deficits. Due to the pathogenetic heterogeneity of schizophrenia, studying the hippocampal neurogenesis and SRM in two models with prenatal and postnatal defects could enhance our understanding of the developmental aspects of the biological susceptibility to schizophrenia. Here, we examined SRM and hippocampal neurogenesis in two developmental models of schizophrenia: gestational exposure to methylazoxymethanol acetate (MAM) and postweaning social isolation (SI). Our findings revealed that gestational MAM exposure induced a decay of social memory while postweaning SI led to impaired social memory formation and decay. In both models, we observed a correlation between impaired SRM and reduced number, and abnormal differentiation and less complex morphology of hippocampal neurons. These results indicate that aberrant hippocampal neurogenesis may contribute to the deficits of SRM in both models, and these abnormalities may be a shared underlying pathogenic factor in developmental models of schizophrenia, regardless of prenatal and postnatal pathogenesis.
Collapse
Affiliation(s)
- Yibei Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Chuxian Fu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Ting Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Feiyuan Dong
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xinyi Zhu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Yingke Jiang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Linbo Hu
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Luhui Pan
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Jiawen Li
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Lu J, Xing X, Qu J, Wu J, Zheng M, Hua X, Xu J. Alterations of contralesional hippocampal subfield volumes and relations to cognitive functions in patients with unilateral stroke. Brain Behav 2024; 14:e3645. [PMID: 39135280 PMCID: PMC11319231 DOI: 10.1002/brb3.3645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/23/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The volumes of the hippocampal subfields are related to poststroke cognitive dysfunctions. However, it remains unclear whether contralesional hippocampal subfield volume contributes to cognitive impairment. This study aimed to investigate the volumetric differences in the contralesional hippocampal subfields between patients with left and right hemisphere strokes (LHS/RHS). Additionally, correlations between contralesional hippocampal subfield volumes and clinical outcomes were explored. METHODS Fourteen LHS (13 males, 52.57 ± 7.10 years), 13 RHS (11 males, 51.23 ± 15.23 years), and 18 healthy controls (11 males, 46.94 ± 12.74 years) were enrolled. Contralesional global and regional hippocampal volumes were obtained with T1-weighted images. Correlations between contralesional hippocampal subfield volumes and clinical outcomes, including the Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE), were analyzed. Bonferroni correction was applied for multiple comparisons. RESULTS Significant reductions were found in contralesional hippocampal as a whole (adjusted p = .011) and its subfield volumes, including the hippocampal tail (adjusted p = .005), cornu ammonis 1 (CA1) (adjusted p = .002), molecular layer (ML) (adjusted p = .004), granule cell and ML of the dentate gyrus (GC-ML-DG) (adjusted p = .015), CA3 (adjusted p = .009), and CA4 (adjusted p = .014) in the RHS group compared to the LHS group. MoCA and MMSE had positive correlations with volumes of contralesional hippocampal tail (p = .015, r = .771; p = .017, r = .763) and fimbria (p = .020, r = .750; p = .019, r = .753) in the LHS group, and CA3 (p = .007, r = .857; p = .009, r = .838) in the RHS group, respectively. CONCLUSION Unilateral stroke caused volumetric differences in different hippocampal subfields contralesionally, which correlated to cognitive impairment. RHS leads to greater volumetric reduction in the whole contralesional hippocampus and specific subfields (hippocampal tail, CA1, ML, GC-ML-DG, CA3, and CA4) compared to LHS. These changes are correlated with cognitive impairments, potentially due to disrupted neural pathways and interhemispheric communication.
Collapse
Affiliation(s)
- Juan‐Juan Lu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiang‐Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jiao Qu
- Department of RadiologyShanghai Songjiang District Central HospitalShanghaiChina
| | - Jia‐Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| |
Collapse
|
3
|
Hirano T, Takahashi S, Fukatsu-Chikumoto A, Yasuda K, Ishida T, Donishi T, Suga K, Doi K, Oishi K, Ohata S, Murata Y, Yamaji Y, Asami-Noyama M, Edakuni N, Kakugawa T, Matsunaga K. Diagnostic Utility of Specific Frailty Questionnaire: The Kihon Checklist for Hippocampal Atrophy in COPD. J Clin Med 2024; 13:3589. [PMID: 38930118 PMCID: PMC11204603 DOI: 10.3390/jcm13123589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: COPD patients who are frail have been reported to develop brain atrophy, but no non-invasive diagnostic tool has been developed to detect this condition. Our study aimed to explore the diagnostic utility of the Kihon Checklist (KCL), a frailty questionnaire, in assessing hippocampal volume loss in patients with COPD. Methods: We recruited 40 COPD patients and 20 healthy individuals using the KCL to assess frailty across seven structural domains. Hippocampal volumes were obtained from T1-weighted MRI images, and ROC analysis was performed to detect hippocampal atrophy. Results: Our results showed that patients with COPD had significantly greater atrophic left hippocampal volumes than healthy subjects (p < 0.05). The univariate correlation coefficient between the left hippocampal volume and KCL (1-20), which pertains to instrumental and social activities of daily living, was the largest (ρ = -0.54, p < 0.0005) among the KCL subdomains. Additionally, both KCL (1-25) and KCL (1-20) demonstrated useful diagnostic potential (93% specificity and 90% sensitivity, respectively) for identifying individuals in the lowest 25% of the left hippocampal volume (AUC = 0.82). Conclusions: Our study suggests that frailty questionnaires focusing on daily vulnerability, such as the KCL, can effectively detect hippocampal atrophy in COPD patients.
Collapse
Affiliation(s)
- Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| | - Shun Takahashi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan;
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 641-0012, Japan (T.I.)
- Clinical Research and Education Center, Asakayama General Hospital, Sakai 590-0018, Japan
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino 583-8555, Japan
| | - Ayumi Fukatsu-Chikumoto
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| | - Kasumi Yasuda
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 641-0012, Japan (T.I.)
| | - Takuya Ishida
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama 641-0012, Japan (T.I.)
| | - Tomohiro Donishi
- Department of System Neurophysiology, Wakayama Medical University, Wakayama 641-0012, Japan;
| | - Kazuyoshi Suga
- Department of Radiology, St. Hill Hospital, Ube 755-0155, Japan;
| | - Keiko Doi
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
- Department of Pulmonology and Gerontology, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan;
| | - Keiji Oishi
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| | - Shuichiro Ohata
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| | - Yoriyuki Murata
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| | - Yoshikazu Yamaji
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| | - Maki Asami-Noyama
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| | - Nobutaka Edakuni
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| | - Tomoyuki Kakugawa
- Department of Pulmonology and Gerontology, Graduate School of Medicine, Yamaguchi University, Ube 755-8505, Japan;
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan; (A.F.-C.); (K.D.); (K.O.); (S.O.); (Y.M.); (Y.Y.); (M.A.-N.); (N.E.); (K.M.)
| |
Collapse
|
4
|
Karagoz AB, Moran EK, Barch DM, Kool W, Reagh ZM. Evidence for shallow cognitive maps in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582214. [PMID: 38464042 PMCID: PMC10925159 DOI: 10.1101/2024.02.26.582214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Individuals with schizophrenia can have marked deficits in goal-directed decision making. Prominent theories differ in whether schizophrenia (SZ) affects the ability to exert cognitive control, or the motivation to exert control. An alternative explanation is that schizophrenia negatively impacts the formation of cognitive maps, the internal representations of the way the world is structured, necessary for the formation of effective action plans. That is, deficits in decision-making could also arise when goal-directed control and motivation are intact, but used to plan over ill-formed maps. Here, we test the hypothesis that individuals with SZ are impaired in the construction of cognitive maps. We combine a behavioral representational similarity analysis technique with a sequential decision-making task. This enables us to examine how relationships between choice options change when individuals with SZ and healthy age-matched controls build a cognitive map of the task structure. Our results indicate that SZ affects how people represent the structure of the task, focusing more on simpler visual features and less on abstract, higher-order, planning-relevant features. At the same time, we find that SZ were able to display similar performance on this task compared to controls, emphasizing the need for a distinction between cognitive map formation and changes in goal-directed control in understanding cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Ata B Karagoz
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | - Erin K Moran
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis
- Department of Psychiatry, Washington University School of Medicine
| | - Wouter Kool
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| | - Zachariah M Reagh
- Department of Psychological & Brain Sciences, Washington University in St. Louis
| |
Collapse
|
5
|
Zheng G, Zhou Y, Zhou J, Liang S, Li X, Xu C, Xie G, Liang J. Abnormalities of the Amygdala in schizophrenia: a real world study. BMC Psychiatry 2023; 23:615. [PMID: 37608255 PMCID: PMC10463851 DOI: 10.1186/s12888-023-05031-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Amygdala plays an important role in schizophrenia (SC), but its mechanisms are still unclear. Therefore, we investigated the relationship between the resting-state magnetic resonance imaging (rsMRI) signals of the amygdala and cognitive functions, providing references for future research in this area. METHODS We collected 40 drug-naïve SC patients and 33 healthy controls (HC) from the Third People's Hospital of Foshan. We used rsMRI and the automatic segmentation tool to extract the structural volume and local neural activity values of the amygdala and conducted Pearson correlation analysis with the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) scores. Finally, we compared the clinical data, as well as the volume and functional changes of the amygdala in SC patients before and after treatment. RESULTS Compared with HC, SC had widespread cognitive impairments, significant abnormalities in left amygdala function, while the reduction in volume of SC was not significant. Further Pearson correlation analysis with Bonferroni correction showed that only Immediate memory (learning) was significantly negatively correlated with fractional amplitude of low-frequency fluctuation (FALFF, r = -0.343, p = 0.001, p' = 0.014 (Bonferroni correction)). When compared and analyzed the data difference of SC before and after treatment, we found that immediate memory and delayed memory of SC showed varying degrees of recovery after treatment (tlearning = -2.641, plearning = 0.011; tstory memory = -3.349, pstory memory = 0.001; tlist recall = -2.071, plist recall = 0.043; tstory recall = -2.424, pstory recall = 0.018). But the brain structure and function did not recover. CONCLUSION There was significant dysfunction in the amygdala in SC, and after conventional treatment, the function of the amygdala did not improve with the improvement of clinical symptoms and cognitive function.
Collapse
Affiliation(s)
- Guangen Zheng
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
- Nanhai Public Health Hospital of Foshan City, Guangdong, People's Republic of China
| | - Yang Zhou
- Nanhai Public Health Hospital of Foshan City, Guangdong, People's Republic of China
| | - Jieming Zhou
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Shuting Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Xiaoling Li
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Caixia Xu
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China
| | - Guojun Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Guangdong, People's Republic of China.
| |
Collapse
|
6
|
Cao P, Chen C, Si Q, Li Y, Ren F, Han C, Zhao J, Wang X, Xu G, Sui Y. Volumes of hippocampal subfields suggest a continuum between schizophrenia, major depressive disorder and bipolar disorder. Front Psychiatry 2023; 14:1191170. [PMID: 37547217 PMCID: PMC10400724 DOI: 10.3389/fpsyt.2023.1191170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective There is considerable debate as to whether the continuum of major psychiatric disorders exists and to what extent the boundaries extend. Converging evidence suggests that alterations in hippocampal volume are a common sign in psychiatric disorders; however, there is still no consensus on the nature and extent of hippocampal atrophy in schizophrenia (SZ), major depressive disorder (MDD) and bipolar disorder (BD). The aim of this study was to verify the continuum of SZ - BD - MDD at the level of hippocampal subfield volume and to compare the volume differences in hippocampal subfields in the continuum. Methods A total of 412 participants (204 SZ, 98 MDD, and 110 BD) underwent 3 T MRI scans, structured clinical interviews, and clinical scales. We segmented the hippocampal subfields with FreeSurfer 7.1.1 and compared subfields volumes across the three diagnostic groups by controlling for age, gender, education, and intracranial volumes. Results The results showed a gradual increase in hippocampal subfield volumes from SZ to MDD to BD. Significant volume differences in the total hippocampus and 13 of 26 hippocampal subfields, including CA1, CA3, CA4, GC-ML-DG, molecular layer and the whole hippocampus, bilaterally, and parasubiculum in the right hemisphere, were observed among diagnostic groups. Medication treatment had the most effect on subfields of MDD compared to SZ and BD. Subfield volumes were negatively correlated with illness duration of MDD. Positive correlations were found between subfield volumes and drug dose in SZ and MDD. There was no significant difference in laterality between diagnostic groups. Conclusion The pattern of hippocampal volume reduction in SZ, MDD and BD suggests that there may be a continuum of the three disorders at the hippocampal level. The hippocampus represents a phenotype that is distinct from traditional diagnostic strategies. Combined with illness duration and drug intervention, it may better reflect shared pathophysiology and mechanisms across psychiatric disorders.
Collapse
Affiliation(s)
- Peiyu Cao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Congxin Chen
- Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Qi Si
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
- Huai’an No. 3 People’s Hospital, Huai’an, China
| | - Yuting Li
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Fangfang Ren
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Chongyang Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Jingjing Zhao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Xiying Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Guoxin Xu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Brain Hospital, Nanjing, China
| |
Collapse
|
7
|
Li J, Zhang X, Yang H, Yang M, Sun H. Lack of correlation between hippocampal substructure atrophy and attention dysfunction in deficit schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:24. [PMID: 37080983 PMCID: PMC10119300 DOI: 10.1038/s41537-023-00354-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/08/2023] [Indexed: 04/22/2023]
Abstract
Hippocampal abnormalities are an established finding in the neuroimaging study of schizophrenia. However, no studies have examined the possibility of regional hippocampal abnormalities specific to deficit schizophrenia (DS) and associations with the unique symptoms of this schizophrenia subtype. This study compared 33 DS and 39 non-deficit schizophrenia (NDS) patients and 38 healthy subjects for hippocampal subfield volumetry. Clinical symptoms were assessed by PANSS, cognition by the neurocognitive battery on the day of the MRI scan. The automatic hippocampal segmentation were preprocesses use FreeSurfer 7.2.0. Unfortunately, the associations between neurocognitive scores and hippocampal subfield volumes in the DS group were not significant after the Bonferroni correction. Our results did not support a causal relationship between hippocampal subregional atrophy and cognitive deficits in DS.
Collapse
Affiliation(s)
- Jin Li
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Xiaobin Zhang
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China
| | - Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, 222003, PR China
| | - Hongyan Sun
- Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, 11 Guangqian Road, Suzhou, 215137, Jiangsu, China.
| |
Collapse
|
8
|
Ikeda N, Yamada S, Yasuda K, Uenishi S, Tamaki A, Ishida T, Tabata M, Tsuji T, Kimoto S, Takahashi S. Structural connectivity between the hippocampus and cortical/subcortical area relates to cognitive impairment in schizophrenia but not in mood disorders. J Neuropsychol 2022. [DOI: 10.1111/jnp.12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/10/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Natsuko Ikeda
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Wakayama Prefectural Mental Health Care Center Wakayama Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Kasumi Yasuda
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Shinya Uenishi
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Hidaka Hospital Gobo Japan
| | - Atsushi Tamaki
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Department of Psychiatry Hidaka Hospital Gobo Japan
| | - Takuya Ishida
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Michiyo Tabata
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Tomikimi Tsuji
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
| | - Shun Takahashi
- Department of Neuropsychiatry Wakayama Medical University Wakayama Japan
- Clinical Research and Education Center Asakayama General Hospital Sakai Japan
- Graduate School of Rehabilitation Science Osaka Metropolitan University Habikino Japan
- Department of Psychiatry Osaka University Graduate School of Medicine Suita Japan
| |
Collapse
|