1
|
Benedetta S, Vallini F, Guida M, Tammaro C, Biava M, Poce G. Mycobacterium tuberculosis inhibitors: an updated patent review (2021-present). Expert Opin Ther Pat 2024; 34:1215-1230. [PMID: 39431728 DOI: 10.1080/13543776.2024.2419826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
INTRODUCTION Tuberculosis (TB) remains a major global health issue, causing around 10 million new cases and 1.3 million deaths in 2022. The challenge is compounded by multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB strains, and co-infection with HIV. AREAS COVERED The present review examines significant patent literature on TB chemotherapeutics from September 2021 to the present using the following databases, reaxys, google patent and espacenet. Only patents reporting compounds with a minimum inhibitory concentration (MIC) on whole Mycobacterium tuberculosis cells of ≤5 µM were selected for review. EXPERT OPINION The fight against TB is advancing with the development of promising new compounds due to the challenge of drug-resistant strains. Notable among those reviewed in this paper are the benzothiazinones, showing high efficacy against both drug-sensitive and resistant TB strains. Additionally, Q203 analogues, demonstrate strong antitubercular activity, good microsomal stability, and favorable safety profiles. Finally, LysRS inhibitors also show significant promise in vivo models. These advancements underscore the importance of novel targets and innovative strategies in developing effective, resistance-resistant TB treatments.
Collapse
Affiliation(s)
- Salvucci Benedetta
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Francesco Vallini
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Michela Guida
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Chiara Tammaro
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Song S, Gan D, Wu D, Li T, Zhang S, Lu Y, Jin G. Molecular Indicator for Distinguishing Multi-drug-Resistant Tuberculosis from Drug Sensitivity Tuberculosis and Potential Medications for Treatment. Mol Biotechnol 2024:10.1007/s12033-024-01299-z. [PMID: 39446300 DOI: 10.1007/s12033-024-01299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
The issue of multi-drug-resistant tuberculosis (MDR-TB) presents a substantial challenge to global public health. Regrettably, the diagnosis of drug-resistant tuberculosis (DR-TB) frequently necessitates an extended period or more extensive laboratory resources. The swift identification of MDR-TB poses a particularly challenging endeavor. To identify the biomarkers indicative of multi-drug resistance, we conducted a screening of the GSE147689 dataset for differentially expressed genes (DEGs) and subsequently conducted a gene enrichment analysis. Our analysis identified a total of 117 DEGs, concentrated in pathways related to the immune response. Three machine learning methods, namely random forest, decision tree, and support vector machine recursive feature elimination (SVM-RFE), were implemented to identify the top 10 genes according to their feature importance scores. A4GALT and S1PR1, which were identified as common genes among the three methods, were selected as potential molecular markers for distinguishing between MDR-TB and drug-susceptible tuberculosis (DS-TB). These markers were subsequently validated using the GSE147690 dataset. The findings suggested that A4GALT exhibited area under the curve (AUC) values of 0.8571 and 0.7121 in the training and test datasets, respectively, for distinguishing between MDR-TB and DS-TB. S1PR1 demonstrated AUC values of 0.8163 and 0.5404 in the training and test datasets, respectively. When A4GALT and S1PR1 were combined, the AUC values in the training and test datasets were 0.881 and 0.7551, respectively. The relationship between hub genes and 28 immune cells infiltrating MDR-TB was investigated using single sample gene enrichment analysis (ssGSEA). The findings indicated that MDR-TB samples exhibited a higher proportion of type 1 T helper cells and a lower proportion of activated dendritic cells in contrast to DS-TB samples. A negative correlation was observed between A4GALT and type 1 T helper cells, whereas a positive correlation was found with activated dendritic cells. S1PR1 exhibited a positive correlation with type 1 T helper cells and a negative correlation with activated dendritic cells. Furthermore, our study utilized connectivity map analysis to identify nine potential medications, including verapamil, for treating MDR-TB. In conclusion, our research identified two molecular indicators for the differentiation between MDR-TB and DS-TB and identified a total of nine potential medications for MDR-TB.
Collapse
Affiliation(s)
- Shulin Song
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530023, Guangxi, China
- Department of Radiology, The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi, China
| | - Donghui Gan
- Department of Radiology, The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi, China
| | - Di Wu
- Department of Radiology, The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi, China
| | - Ting Li
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530023, Guangxi, China
| | - Shiqian Zhang
- Department of Radiology, The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi, China
| | - Yibo Lu
- Department of Radiology, The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi, China.
| | - Guanqiao Jin
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, 530023, Guangxi, China.
| |
Collapse
|
3
|
Ganapathiraju MK, Bhatia T, Deshpande S, Wesesky M, Wood J, Nimgaonkar VL. Schizophrenia Interactome-Derived Repurposable Drugs and Randomized Controlled Trials of Two Candidates. Biol Psychiatry 2024; 96:651-658. [PMID: 38950808 DOI: 10.1016/j.biopsych.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 07/03/2024]
Abstract
There is a substantial unmet need for effective and patient-acceptable drugs to treat severe mental illnesses such as schizophrenia (SZ). Computational analysis of genomic, transcriptomic, and pharmacologic data generated in the past 2 decades enables repurposing of drugs or compounds with acceptable safety profiles, namely those that are U.S. Food and Drug Administration approved or have reached late stages in clinical trials. We developed a rational approach to achieve this computationally for SZ by studying drugs that target the proteins in its protein interaction network (interactome). This involved contrasting the transcriptomic modulations observed in the disorder and the drug; our analyses resulted in 12 candidate drugs, 9 of which had additional supportive evidence whereby their target networks were enriched for pathways relevant to SZ etiology or for genes that had an association with diseases pathogenically similar to SZ. To translate these computational results to the clinic, these shortlisted drugs must be tested empirically through randomized controlled trials, in which their previous safety approvals obviate the need for time-consuming phase 1 and 2 studies. We selected 2 among the shortlisted candidates based on likely adherence and side-effect profiles. We are testing them through adjunctive randomized controlled trials for patients with SZ or schizoaffective disorder who experienced incomplete resolution of psychotic features with conventional treatment. The integrated computational analysis for identifying and ranking drugs for clinical trials can be iterated as additional data are obtained. Our approach could be expanded to enable disease subtype-specific drug discovery in the future and should also be exploited for other psychiatric disorders.
Collapse
Affiliation(s)
- Madhavi K Ganapathiraju
- Department of Biomedical Informatics and Intelligent Systems Program, University of Pittsburgh, Pittsburgh, Pennsylvania; Carnegie Mellon University in Qatar, Doha, Qatar.
| | - Triptish Bhatia
- Department of Psychiatry, Centre of Excellence in Mental Health, ABVIMS - Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Smita Deshpande
- Department of Psychiatry, St John's Medical College Hospital, Koramangala, Bengaluru, Karnataka, India
| | - Maribeth Wesesky
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joel Wood
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; Veterans Administration Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Ali W, Agarwal M, Jamal S, Gangwar R, Sharma R, Mubarak MM, Wani ZA, Ahmad Z, Khan A, Sheikh JA, Grover A, Bhaskar A, Dwivedi VP, Grover S. Revitalizing antimicrobial strategies: paromomycin and dicoumarol repurposed as potent inhibitors of M.tb's replication machinery via targeting the vital protein DnaN. Int J Biol Macromol 2024; 278:134652. [PMID: 39173789 DOI: 10.1016/j.ijbiomac.2024.134652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/04/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Despite the WHO's recommended treatment regimen, challenges such as patient non-adherence and the emergence of drug-resistant strains persist with TB claiming 1.5 million lives annually. In this study, we propose a novel approach by targeting the DNA replication-machinery of M.tb through drug-repurposing. The β2-Sliding clamp (DnaN), a key component of this complex, emerges as a potentially vulnerable target due to its distinct structure and lack of human homology. Leveraging TBVS, we screened ∼2600 FDA-approved drugs, identifying five potential DnaN inhibitors, by employing computational studies, including molecular-docking and molecular-dynamics simulations. The shortlisted compounds were subjected to in-vitro and ex-vivo studies, evaluating their anti-mycobacterial potential. Notably, Dicoumarol, Paromomycin, and Posaconazole exhibited anti-TB properties with a MIC value of 6.25, 3.12 and 50 μg/ml respectively, with Dicoumarol and Paromomycin, demonstrating efficacy in reducing live M.tb within macrophages. Biophysical analyses confirmed the strong binding-affinity of DnaNdrug complexes, validating our in-silico predictions. Moreover, RNA-Seq data revealed the upregulation of proteins associated with DNA repair and replication mechanisms upon Paromomycin treatment. This study explores repurposing FDA-approved drugs to target TB via the mycobacterial DNA replication-machinery, showing promising inhibitory effects. It sets the stage for further clinical research, demonstrating the potential of drug repurposing in TB treatment.
Collapse
Affiliation(s)
- Waseem Ali
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Meetu Agarwal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Salma Jamal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | - Rishabh Gangwar
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | - Rahul Sharma
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Mohamad Mosa Mubarak
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India
| | - Zubair Ahmad Wani
- Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India
| | - Zahoor Ahmad
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and PK-PD Division, CSIR-IIIM, Sanatnagar, Srinagar, J&K, India; Council of Scientific & Industrial Research (CSIR), Professor Academy of Scientific & Innovative Research (AcSIR), India.
| | - Areeba Khan
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India
| | | | - Abhinav Grover
- Jawaharlal Nehru University, School of Biotechnology, New Delhi 110067, India.
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | - Sonam Grover
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| |
Collapse
|
5
|
Hanscheid T, Del Portal Luyten CR, Hermans SM, Grobusch MP. Repurposing of anti-malarial drugs for the treatment of tuberculosis: realistic strategy or fanciful dead end? Malar J 2024; 23:132. [PMID: 38702649 PMCID: PMC11067164 DOI: 10.1186/s12936-024-04967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Drug repurposing offers a strategic alternative to the development of novel compounds, leveraging the known safety and pharmacokinetic profiles of medications, such as linezolid and levofloxacin for tuberculosis (TB). Anti-malarial drugs, including quinolones and artemisinins, are already applied to other diseases and infections and could be promising for TB treatment. METHODS This review included studies on the activity of anti-malarial drugs, specifically quinolones and artemisinins, against Mycobacterium tuberculosis complex (MTC), summarizing results from in vitro, in vivo (animal models) studies, and clinical trials. Studies on drugs not primarily developed for TB (doxycycline, sulfonamides) and any novel developed compounds were excluded. Analysis focused on in vitro activity (minimal inhibitory concentrations), synergistic effects, pre-clinical activity, and clinical trials. RESULTS Nineteen studies, including one ongoing Phase 1 clinical trial, were analysed: primarily investigating quinolones like mefloquine and chloroquine, and, to a lesser extent, artemisinins. In vitro findings revealed high MIC values for anti-malarials versus standard TB drugs, suggesting a limited activity. Synergistic effects with anti-TB drugs were modest, with some synergy observed in combinations with isoniazid or pyrazinamide. In vivo animal studies showed limited activity of anti-malarials against MTC, except for one study of the combination of chloroquine with isoniazid. CONCLUSIONS The repurposing of anti-malarials for TB treatment is limited by high MIC values, poor synergy, and minimal in vivo effects. Concerns about potential toxicity at effective dosages and the risk of antimicrobial resistance, especially where TB and malaria overlap, further question their repurposing. These findings suggest that focusing on novel compounds might be both more beneficial and rewarding.
Collapse
Affiliation(s)
- Thomas Hanscheid
- Instituto de Microbiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Claire Ruiz Del Portal Luyten
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| | - Sabine M Hermans
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam Infection and Immunity, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands.
- Institute of Tropical Medicine, German Centre for Infection Research (DZIF), University of Tübingen, Tübingen, Germany.
- Centre de Recherches Médicales en Lambaréné (CERMEL), Lambaréné, Gabon.
- Masanga Medical Research Unit (MMRU), Masanga, Sierra Leone.
- Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
6
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
7
|
Soedarsono S, Mertaniasih NM, Kusmiati T, Permatasari A, Subay S, Adiono SH. Comparison of Individual Regimen Containing Bedaquiline with Delamanid and Bedaquiline without Delamanid on Efficacy and Safety in Multidrug-resistant Tuberculosis Patients: Implementation in Dr. Soetomo General Academic Hospital, Indonesia. Int J Mycobacteriol 2024; 13:140-146. [PMID: 38916383 DOI: 10.4103/ijmy.ijmy_88_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Bedaquiline is one of the core drugs used to treat multidrug-resistant TB (MDR-TB). Delamanid is one of the companion drugs in group C which is used to complete the treatment regimen when drugs in groups A and B can not be used. This study was conducted to analyze the efficacy and safety between individual regimens containing bedaquiline with delamanid and bedaquiline without delamanid. METHODS This was an observational analytic study with a retrospective design in MDR-TB patients treated with individual regimens containing bedaquiline with delamanid (bedaquiline-delamanid group) and bedaquiline without delamanid (bedaquiline group). Efficacy was measured according to the time to Acid Fast Bacilli (AFB) conversion and Mycobacterium tuberculosis culture conversion, while safety was measured specifically on QTc interval prolongation. RESULTS The median (range) time to AFB conversion in bedaquiline-delamanid group was faster than bedaquiline group, although there was no significant difference (1.5 (1-4) months vs. 1 (1-6) months, P=0.429), the median time to culture conversion in bedaquiline-delamanid group also faster than bedaquiline group, although there was no significant difference (1 (1-6) months vs. 2 (1-6) months, P=0.089). The incidence of QTc interval prolongation in bedaquiline-delamanid group was less than bedaquiline group, although there was no significant difference (26.9% vs. 40.3%, P=0.223). CONCLUSIONS Individual regimens containing bedaquiline with delamanid was proven to provide similar efficacy and safety profiles with individual regimens containing bedaquiline without delamanid. Delamanid should be preferred when selecting drugs to complete the treatment regimen when drugs in groups A and B can not be used.
Collapse
Affiliation(s)
- Soedarsono Soedarsono
- Department of Internal Medicine, Faculty of Medicine, Hang Tuah University, Surabaya, Indonesia
- Department of Pulmonology and Respiratory Medicine, Airlangga University, Surabaya, Indonesia
| | - Ni Made Mertaniasih
- Tuberculosis Study Group, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
- Department of Clinical Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| | - Tutik Kusmiati
- Department of Pulmonology and Respiratory Medicine, Airlangga University, Surabaya, Indonesia
| | - Ariani Permatasari
- Department of Pulmonology and Respiratory Medicine, Airlangga University, Surabaya, Indonesia
| | - Susi Subay
- Department of Pulmonology and Respiratory Medicine, Airlangga University, Surabaya, Indonesia
| | - Suko Hari Adiono
- Department of Pulmonology and Respiratory Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
8
|
Ali W, Jamal S, Gangwar R, Ahmed F, Pahuja I, Sharma R, Prakash Dwivedi V, Agarwal M, Grover S. Unravelling the potential of Triflusal as an anti-TB repurposed drug by targeting replication protein DciA. Microbes Infect 2024; 26:105284. [PMID: 38145750 DOI: 10.1016/j.micinf.2023.105284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The increasing prevalence of drug-resistant Tuberculosis (TB) is imposing extreme difficulties in controlling the TB infection rate globally, making treatment critically challenging. To combat the prevailing situation, it is crucial to explore new anti-TB drugs with a novel mechanism of action and high efficacy. The Mycobacterium tuberculosis (M.tb)DciA is an essential protein involved in bacterial replication and regulates its growth. DciA interacts with DNA and provides critical help in binding other replication machinery proteins to the DNA. Moreover, the lack of any structural homology of M.tb DciA with human proteins makes it an appropriate target for drug development. In this study, FDA-approved drugs were virtually screened against M.tb DciA to identify potential inhibitors. Four drugs namely Lanreotide, Risedronate, Triflusal, and Zoledronic acid showed higher molecular docking scores. Further, molecular dynamics simulations analysis of DciA-drugs complexes reported stable interaction, more compactness, and reduced atomic motion. The anti-TB activity of drugs was further evaluated under in vitro and ex vivo conditions where Triflusal was observed to have the best possible activity with the MIC of 25 μg/ml. Our findings present novel DciA inhibitors and anti-TB activity of Triflusal. Further investigations on the use of Triflusal may lead to the discovery of a new anti-TB drug.
Collapse
Affiliation(s)
- Waseem Ali
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Salma Jamal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Rishabh Gangwar
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Faraz Ahmed
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | - Rahul Sharma
- Department of Molecular Medicine Jamia Hamdard, New Delhi 110062, India.
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.
| | - Meetu Agarwal
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| | - Sonam Grover
- Jamia Hamdard, Department of Molecular Medicine, New Delhi 110062, India.
| |
Collapse
|
9
|
Dong S, Shao G, Davies Forsman L, Wang S, Wang S, Cao J, Bao Z, Bruchfeld J, Alffenaar JWC, Liu J, Hu Y, Wu M. Drug Exposure and Susceptibility of Pyrazinamide Correlate with Treatment Response in Pyrazinamide-Susceptible Patients with Multidrug-Resistant Tuberculosis. Pharmaceutics 2024; 16:144. [PMID: 38276514 PMCID: PMC10820138 DOI: 10.3390/pharmaceutics16010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Exploring the influence of pyrazinamide exposure and susceptibility on treatment response is crucial for optimizing the management of multidrug-resistant tuberculosis (MDR-TB). This study aimed to investigate the association between pyrazinamide exposure, susceptibility, and response to MDR-TB treatment, as well as find clinical thresholds for pyrazinamide. A prospective multi-center cohort study of participants with MDR-TB using pyrazinamide was conducted in three TB-designated hospitals in China. Univariate and multivariate analyses were applied to investigate the associations. Classification and Regression Tree (CART) analysis was used to identify clinical thresholds, which were further evaluated by multivariate analysis and receiver operating characteristic (ROC) curves. The study included 143 patients with MDR-TB. The exposure/susceptibility ratio of pyrazinamide was associated with two-month culture conversion (adjusted risk ratio (aRR), 1.1; 95% confidence interval (CI), 1.07-1.20), six-month culture conversion (aRR, 1.1; 95% CI, 1.06-1.16), treatment success (aRR, 1.07; 95% CI, 1.03-1.10), as well as culture conversion time (adjusted hazard ratio (aHR) 1.18; 95% CI,1.14-1.23). The threshold for optimal improvement in sputum culture results at the sixth month of treatment was determined to be a pyrazinamide AUC0-24h/MIC ratio of 7.8. In conclusion, the exposure/susceptibility ratio of pyrazinamide is associated with the treatment response of MDR-TB, which may change in different Group A drug-based regimens.
Collapse
Affiliation(s)
- Shulan Dong
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai 201203, China; (S.D.); (G.S.); (S.W.); (S.W.); (J.C.)
| | - Ge Shao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai 201203, China; (S.D.); (G.S.); (S.W.); (S.W.); (J.C.)
| | - Lina Davies Forsman
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, 171 77 Stockholm, Sweden; (L.D.F.); (J.B.)
- Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Sainan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai 201203, China; (S.D.); (G.S.); (S.W.); (S.W.); (J.C.)
| | - Shanshan Wang
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai 201203, China; (S.D.); (G.S.); (S.W.); (S.W.); (J.C.)
| | - Jiayi Cao
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai 201203, China; (S.D.); (G.S.); (S.W.); (S.W.); (J.C.)
| | - Ziwei Bao
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou 215007, China; (Z.B.); (M.W.)
| | - Judith Bruchfeld
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet Solna, 171 77 Stockholm, Sweden; (L.D.F.); (J.B.)
- Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jan-Willem C. Alffenaar
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Westmead Hospital, Sydney 2145, Australia
- Sydney Infectious Diseases Institute, University of Sydney, Sydney 2006, Australia
| | - Jia Liu
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou 215007, China; (Z.B.); (M.W.)
| | - Yi Hu
- Department of Epidemiology, School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai 201203, China; (S.D.); (G.S.); (S.W.); (S.W.); (J.C.)
| | - Meiying Wu
- Department of Infectious Diseases, The Fifth People’s Hospital of Suzhou, Suzhou 215007, China; (Z.B.); (M.W.)
| |
Collapse
|
10
|
Khadka P, Dummer J, Hill PC, Das SC. The quest to deliver high-dose rifampicin: can the inhaled approach help? Expert Opin Drug Deliv 2024; 21:31-44. [PMID: 38180078 DOI: 10.1080/17425247.2024.2301931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/02/2024] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Tuberculosis (TB) is a global health problem that poses a challenge to global treatment programs. Rifampicin is a potent and highly effective drug for TB treatment; however, higher oral doses than the standard dose (10 mg/kg/day) rifampicin may offer better efficacy in TB treatment. AREAS COVERED High oral dose rifampicin is not implemented in anti-TB regimens yet and requires about a 3-fold increase in dose for increased efficacy. We discuss inhaled delivery of rifampicin as an alternative or adjunct to oral high-dose rifampicin. Clinical results of safety, tolerability, and patient compliance with antibiotic dry powder inhalers are reviewed. EXPERT OPINION Clinical trials suggest that an approximately 3-fold increase in the standard oral dose of rifampicin may be required for better clinical outcomes. On the other hand, animal studies suggest that inhaled rifampicin can deliver a high concentration of the drug to the lungs and achieve approximately double the plasma concentration than that from oral rifampicin. Clinical trials on inhaled antibiotics suggest that dry powder inhalation is a patient-friendly and well-tolerated approach in treating respiratory infections compared to conventional treatments. Rifampicin, a well-known anti-TB drug given orally, is a good candidate for clinical development as a dry powder inhaler.
Collapse
Affiliation(s)
- Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Jack Dummer
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Badami GD, La Manna MP, Di Carlo P, Stanek O, Linhartova I, Caccamo N, Sebo P, Dieli F. Delivery of Mycobacterium tuberculosis epitopes by Bordetella pertussis adenylate cyclase toxoid expands HLA-E-restricted cytotoxic CD8 + T cells. Front Immunol 2023; 14:1289212. [PMID: 38106407 PMCID: PMC10722248 DOI: 10.3389/fimmu.2023.1289212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Tuberculosis (TB) remains the first cause of death from infection caused by a bacterial pathogen. Chemotherapy does not eradicate Mycobacterium tuberculosis (Mtb) from human lungs, and the pathogen causes a latent tuberculosis infection that cannot be prevented by the currently available Bacille Calmette Guerin (BCG) vaccine, which is ineffective in the prevention of pulmonary TB in adults. HLA-E-restricted CD8+ T lymphocytes are essential players in protective immune responses against Mtb. Hence, expanding this population in vivo or ex vivo may be crucial for vaccination or immunotherapy against TB. Methods The enzymatically inactive Bordetella pertussis adenylate cyclase (CyaA) toxoid is an effective tool for delivering peptide epitopes into the cytosol of antigen-presenting cells (APC) for presentation and stimulation of specific CD8+ T-cell responses. In this study, we have investigated the capacity of the CyaA toxoid to deliver Mtb epitopes known to bind HLA-E for the expansion of human CD8+ T cells in vitro. Results Our results show that the CyaA-toxoid containing five HLA-E-restricted Mtb epitopes causes significant expansion of HLA-E-restricted antigen-specific CD8+ T cells, which produce IFN-γ and exert significant cytotoxic activity towards peptide-pulsed macrophages. Discussion HLA-E represents a promising platform for the development of new vaccines; our study indicates that the CyaA construct represents a suitable delivery system of the HLA-E-binding Mtb epitopes for ex vivo and in vitro expansion of HLA-E-restricted CD8+ T cells inducing a predominant Tc1 cytokine profile with a significant increase of IFN-γ production, for prophylactic and immunotherapeutic applications against Mtb.
Collapse
Affiliation(s)
- Giusto D. Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Marco P. La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Paola Di Carlo
- Department of Sciences for Health Promotion and Mother-Child Care “G. D’Alessandro”, University of Palermo, Palermo, Italy
| | - Ondrej Stanek
- Laboratory of Molecular Biology of Bacterial Pathogen, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Irena Linhartova
- Laboratory of Molecular Biology of Bacterial Pathogen, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogen, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
12
|
Dian S, Ganiem AR, Te Brake LH, van Laarhoven A. Current Insights into Diagnosing and Treating Neurotuberculosis in Adults. CNS Drugs 2023; 37:957-972. [PMID: 37978095 DOI: 10.1007/s40263-023-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Neurotuberculosis has the highest morbidity and mortality risk of all forms of extrapulmonary tuberculosis (TB). Early treatment is paramount, but establishing diagnosis are challenging in all three forms of neurotuberculosis: tuberculous meningitis (TBM), spinal TB and tuberculomas. Despite advancements in diagnostic tools and ongoing research aimed at improving TB treatment regimens, the mortality rate for neurotuberculosis remains high. While antituberculosis drugs were discovered in the 1940s, TB treatment regimens were designed for and studied in pulmonary TB and remained largely unchanged for decades. However, new antibiotic regimens and host-directed therapies are now being studied to combat drug resistance and contribute to ending the TB epidemic. Clinical trials are necessary to assess the effectiveness and safety of these treatments, addressing paradoxical responses in neurotuberculosis cases and ultimately improving patient outcomes. Pharmacokinetic-pharmacodynamic analyses can inform evidence-based dose selection and exposure optimization. This review provides an update on the diagnosis and treatment of neurotuberculosis, encompassing both sensitive and resistant antituberculosis drug approaches, drawing on evidence from the literature published over the past decade.
Collapse
Affiliation(s)
- Sofiati Dian
- Department of Neurology, Dr. Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.
- Research Centre for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia.
| | - Ahmad Rizal Ganiem
- Department of Neurology, Dr. Hasan Sadikin Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
- Research Centre for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Lindsey Hm Te Brake
- Radboudumc Centre for Infectious Disease (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Radboudumc Centre for Infectious Disease (RCI), Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Gu Y, Nie W, Huang H, Yu X. Non-tuberculous mycobacterial disease: progress and advances in the development of novel candidate and repurposed drugs. Front Cell Infect Microbiol 2023; 13:1243457. [PMID: 37850054 PMCID: PMC10577331 DOI: 10.3389/fcimb.2023.1243457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/11/2023] [Indexed: 10/19/2023] Open
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens that can infect all body tissues and organs. In particular, the lungs are the most commonly involved organ, with NTM pulmonary diseases causing serious health issues in patients with underlying lung disease. Moreover, NTM infections have been steadily increasing worldwide in recent years. NTM are also naturally resistant to many antibiotics, specifically anti-tuberculosis (anti-TB) drugs. The lack of drugs targeting NTM infections and the increasing drug resistance of NTM have further made treating these mycobacterial diseases extremely difficult. The currently recommended NTM treatments rely on the extended indications of existing drugs, which underlines the difficulties of new antibiotic discovery against NTM. Another challenge is determining which drug combinations are most effective against NTM infection. To a certain extent, anti-NTM drug development depends on using already available antibiotics and compounds. Here, we aimed to review new antibiotics or compounds with good antibacterial activity against NTM, focusing on their mechanisms of action, in vitro and in vivo antibacterial activities.
Collapse
Affiliation(s)
- Yuzhen Gu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Wenjuan Nie
- Tuberculosis Department, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Brehm TT, Köhler N, Schmiedel S, Terhalle E, Martensen J, Kalsdorf B, Kandulla J, Heyckendorf J, Kuhns M, Friesen I, Lange C. [Treatment of tuberculosis: what is new?]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2023:10.1007/s00108-023-01523-z. [PMID: 37316702 DOI: 10.1007/s00108-023-01523-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 06/16/2023]
Abstract
Never before have so many people around the world been simultaneously affected by tuberculosis. Tuberculosis is the leading cause of death from a bacterial infectious disease worldwide. The World Health Organization's ambitious goal from 2014 of achieving global elimination of tuberculosis does not seem realistic, but on current trends, tuberculosis could be eliminated in the European Union by 2040. Since the beginning of 2022, there have been more innovations for the treatment of tuberculosis than in no other comparable time period before. One month of rifapentine and isoniazid is effective in treating latent tuberculosis infection. However, rifapentine is licensed in the USA but not in the EU and must be imported for individual cases. The duration of the standard treatment for tuberculosis can be shortened to four months but this treatment regimen is also based on rifapentine, in addition to isoniazid, pyrazinamide, and moxifloxacin. The approval of rifapentine in Europe is a much-needed step towards shortening the treatment of tuberculosis. With new drugs an even shorter standard treatment of only 2 months is possible. The treatment of multidrug-resistant/rifampicin-resistant tuberculosis (MDR-/RR-TB) has been shortened to six months, the same length as the standard treatment available in Germany. The combination of bedaquiline, pretomanid, linezolid ± moxifloxacin, cured around 90% of affected patients were cured in studies with a treatment duration of six months. With 19 drugs in clinical trials, the treatment of tuberculosis is expected to continue to improve rapidly in the coming years.
Collapse
Affiliation(s)
- Thomas Theo Brehm
- Sektion Infektiologie, I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Deutschland
| | - Niklas Köhler
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Parkallee 35, 23845, Borstel, Deutschland
| | - Stefan Schmiedel
- Sektion Infektiologie, I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Deutschland
| | | | | | - Barbara Kalsdorf
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Parkallee 35, 23845, Borstel, Deutschland
| | | | - Jan Heyckendorf
- Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Christian Albrechts-Universität zu Kiel, Kiel, Deutschland
| | - Martin Kuhns
- Nationales Referenzzentrum für Mykobakterien, Forschungszentrum Borstel, Borstel, Deutschland
| | - Inna Friesen
- Nationales Referenzzentrum für Mykobakterien, Forschungszentrum Borstel, Borstel, Deutschland
| | - Christoph Lange
- Deutsches Zentrum für Infektionsforschung (DZIF), Braunschweig, Deutschland.
- Forschungszentrum Borstel, Leibniz Lungenzentrum, Parkallee 35, 23845, Borstel, Deutschland.
- Respiratory Medicine & International Health, Universität zu Lübeck, Lübeck, Deutschland.
- Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
15
|
Warner DF, Wood R. New tricks for an old dog: opportunities for better tuberculosis control. J Int AIDS Soc 2023; 26:e26081. [PMID: 36951496 PMCID: PMC10035324 DOI: 10.1002/jia2.26081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023] Open
Affiliation(s)
- Digby F. Warner
- Molecular Mycobacteriology Research Unit & DSI/NRF Centre of Excellence for Biomedical TB ResearchDepartment of PathologyFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Wellcome Centre for Infectious Diseases Research in AfricaFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Robin Wood
- Institute of Infectious Disease and Molecular MedicineFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Desmond Tutu Health FoundationFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|