1
|
Valenzuela-Leon PC, Campos Chagas A, Martin-Martin I, Williams AE, Berger M, Shrivastava G, Paige AS, Kotsyfakis M, Tirloni L, Calvo E. Guianensin, a Simulium guianense salivary protein, has broad anti-hemostatic and anti-inflammatory properties. Front Immunol 2023; 14:1163367. [PMID: 37469515 PMCID: PMC10353047 DOI: 10.3389/fimmu.2023.1163367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/15/2023] [Indexed: 07/21/2023] Open
Abstract
Background Salivary glands from blood-feeding arthropods secrete several molecules that inhibit mammalian hemostasis and facilitate blood feeding and pathogen transmission. The salivary functions from Simulium guianense, the main vector of Onchocerciasis in South America, remain largely understudied. Here, we have characterized a salivary protease inhibitor (Guianensin) from the blackfly Simulium guianense. Materials and methods A combination of bioinformatic and biophysical analyses, recombinant protein production, in vitro and in vivo experiments were utilized to characterize the molecula mechanism of action of Guianensin. Kinetics of Guianensin interaction with proteases involved in vertebrate inflammation and coagulation were carried out by surface plasmon resonance and isothermal titration calorimetry. Plasma recalcification and coagulometry and tail bleeding assays were performed to understand the role of Guianensin in coagulation. Results Guianensin was identified in the sialotranscriptome of adult S. guianense flies and belongs to the Kunitz domain of protease inhibitors. It targets various serine proteases involved in hemostasis and inflammation. Binding to these enzymes is highly specific to the catalytic site and is not detectable for their zymogens, the catalytic site-blocked human coagulation factor Xa (FXa), or thrombin. Accordingly, Guianensin significantly increased both PT (Prothrombin time) and aPTT (Activated partial thromboplastin time) in human plasma and consequently increased blood clotting time ex vivo. Guianensin also inhibited prothrombinase activity on endothelial cells. We show that Guianensin acts as a potent anti-inflammatory molecule on FXa-induced paw edema formation in mice. Conclusion The information generated by this work highlights the biological functionality of Guianensin as an antithrombotic and anti-inflammatory protein that may play significant roles in blood feeding and pathogen transmission.
Collapse
Affiliation(s)
| | - Andrezza Campos Chagas
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Ines Martin-Martin
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Adeline E. Williams
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Markus Berger
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Gaurav Shrivastava
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Andrew S. Paige
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
3
|
Liu L, Tang H, Feng LL, Cheng TY. Hemalin from Haemaphysalis flava ticks: cloning, expression and antithrombogenicity. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:42-50. [PMID: 32748973 DOI: 10.1111/mve.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/24/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Hemalin, initially described in Haemaphysalis longicornis, is a protein with anticoagulant activity. We retrieved a gene fragment functionally annotated as hemalin from H. flava salivary gland transcriptomic library, but its full-length complementary DNA (cDNA) and antithrombogenicity have not been investigated in the species. Here we cloned the full length of hemalin (Hf-hemalin) by 3'-end rapid-amplification of cDNA ends, and the open reading frame (ORF) of Hf-hemalin was expressed in Escherichia coli. The recombinant protein (rHf-Hemalin) was tested for antithrombogenicity. The full-length of Hf-hemalin was 607 bp with an ORF of423 bp. Protein encoded by Hf-hemalin was predicted to contain 2 Kunitz domains and a signal peptide. The expression of Hf-hemalin in salivary glands, midguts and ovaries was higher in the semi-engorged than the fully engorged. Prokaryotic expression yielded a product of 40 kDa containing a glutathione S-transferase (GST) tag. Incubation of rHf-Hemalin with rat plasma significantly extended prothrombin time and activated partial thromboplastin time compared with normal saline and GST controls. Our data demonstrated that Hemalin from H. flava shared a similar primary structure with that from H. longicornis, and was also anticoagulant. Further investigations are needed to test its feasibility to be an antigen candidate for the development of vaccines against ticks.
Collapse
Affiliation(s)
- L Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - H Tang
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - L-L Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| | - T-Y Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, China
| |
Collapse
|
4
|
Factor XII/XIIa inhibitors: Their discovery, development, and potential indications. Eur J Med Chem 2020; 208:112753. [DOI: 10.1016/j.ejmech.2020.112753] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022]
|
5
|
Martins LA, Kotál J, Bensaoud C, Chmelař J, Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140336. [DOI: 10.1016/j.bbapap.2019.140336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
|
6
|
Mans BJ. Chemical Equilibrium at the Tick-Host Feeding Interface:A Critical Examination of Biological Relevance in Hematophagous Behavior. Front Physiol 2019; 10:530. [PMID: 31118903 PMCID: PMC6504839 DOI: 10.3389/fphys.2019.00530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks secrete hundreds to thousands of proteins into the feeding site, that presumably all play important functions in the modulation of host defense mechanisms. The current review considers the assumption that tick proteins have functional relevance during feeding. The feeding site may be described as a closed system and could be treated as an ideal equilibrium system, thereby allowing modeling of tick-host interactions in an equilibrium state. In this equilibrium state, the concentration of host and tick proteins and their affinities will determine functional relevance at the tick-host interface. Using this approach, many characterized tick proteins may have functional relevant concentrations and affinities at the feeding site. Conversely, the feeding site is not an ideal closed system, but is dynamic and changing, leading to possible overestimation of tick protein concentration at the feeding site and consequently an overestimation of functional relevance. Ticks have evolved different possible strategies to deal with this dynamic environment and overcome the barrier that equilibrium kinetics poses to tick feeding. Even so, cognisance of the limitations that equilibrium binding place on deductions of functional relevance should serve as an important incentive to determine both the concentration and affinity of tick proteins proposed to be functional at the feeding site.
Collapse
Affiliation(s)
- Ben J. Mans
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Department of Life and Consumer Sciences, University of South Africa, Pretoria, South Africa
| |
Collapse
|
7
|
He XM, Liu L, Cheng TY. HSC70 from Haemaphysalis flava (Acari: Ixodidae) exerts anticoagulation activity in vitro. Ticks Tick Borne Dis 2018; 10:170-175. [PMID: 30366643 DOI: 10.1016/j.ttbdis.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/20/2018] [Accepted: 10/15/2018] [Indexed: 01/30/2023]
Abstract
Ticks and tick-borne diseases are major global health threats. During blood feeding, ticks insert their hypostomes into hosts and inject an array of anticoagulant molecules to maintain fluidity of the blood-meal. These anticoagulant molecules may provide insights into understanding the feeding biology of ticks and to develop vaccines against infestations. In Haemaphysalis flava, the heat shock cognate 70 (HSC70), a member of the heat shock protein (HSP) family, is differentially expressed in salivary glands at different levels of engorgement during blood feeding. However, its function in ticks is largely not known. The present study was designed to explore the possible effects of HSC70 on the plasma. The open reading frame (ORF) of HSC70 was expressed in a prokaryotic system, and recombinant HSC70 (rHSC70) was purified and characterized. The anticoagulation activity of rHSC70 was estimated by measuring prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and fibrinogen (FIB) with/without its inhibitor, VER155008. The results demonstrated that rHSC70 from H. flava extended TT (P < 0.001) and FIB clotting times (>300 s), but showed little effect on PT and APTT. Adding an inhibitor reversed anticlotting effects of rHSC70 on TT and FIB. These data indicate that rHSC70 is an anticoagulant agent, and the anticlotting activity likely attributes to the inhibition of thrombin and the transformation of fibrinogen into fibrin.
Collapse
Affiliation(s)
- Xiao-Ming He
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China.
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Collaborative Innovation Center for Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
8
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|
9
|
Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:199. [PMID: 28589099 PMCID: PMC5438962 DOI: 10.3389/fcimb.2017.00199] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.
Collapse
Affiliation(s)
| | - Thierry Foulon
- Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Biogenèse des Signaux Peptidiques, Sorbonne Universités, UPMC Univ. Paris 06Paris, France
| | | |
Collapse
|
10
|
A novel anticoagulant protein with antithrombotic properties from the mosquito Culex pipiens pallens. Int J Biol Macromol 2016; 93:156-166. [DOI: 10.1016/j.ijbiomac.2016.08.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 08/16/2016] [Accepted: 08/20/2016] [Indexed: 11/23/2022]
|
11
|
Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA. Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 2016; 7:509-35. [DOI: 10.1016/j.ttbdis.2016.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/26/2016] [Accepted: 02/02/2016] [Indexed: 01/15/2023]
|
12
|
Kato H, Gomez EA, Fujita M, Ishimaru Y, Uezato H, Mimori T, Iwata H, Hashiguchi Y. Ayadualin, a novel RGD peptide with dual antihemostatic activities from the sand fly Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis. Biochimie 2015; 112:49-56. [DOI: 10.1016/j.biochi.2015.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/16/2015] [Indexed: 01/07/2023]
|
13
|
Alvarenga PH, Xu X, Oliveira F, Chagas AC, Nascimento CR, Francischetti IMB, Juliano MA, Juliano L, Scharfstein J, Valenzuela JG, Ribeiro JMC, Andersen JF. Novel family of insect salivary inhibitors blocks contact pathway activation by binding to polyphosphate, heparin, and dextran sulfate. Arterioscler Thromb Vasc Biol 2013; 33:2759-70. [PMID: 24092749 DOI: 10.1161/atvbaha.113.302482] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Polyphosphate and heparin are anionic polymers released by activated mast cells and platelets that are known to stimulate the contact pathway of coagulation. These polymers promote both the autoactivation of factor XII and the assembly of complexes containing factor XI, prekallikrein, and high-molecular-weight kininogen. We are searching for salivary proteins from blood-feeding insects that counteract the effect of procoagulant and proinflammatory factors in the host, including elements of the contact pathway. APPROACH AND RESULTS Here, we evaluate the ability of the sand fly salivary proteins, PdSP15a and PdSP15b, to inhibit the contact pathway by disrupting binding of its components to anionic polymers. We attempt to demonstrate binding of the proteins to polyphosphate, heparin, and dextran sulfate. We also evaluate the effect of this binding on contact pathway reactions. We also set out to determine the x-ray crystal structure of PdSP15b and examine the determinants of relevant molecular interactions. Both proteins bind polyphosphate, heparin, and dextran sulfate with high affinity. Through this mechanism they inhibit the autoactivation of factor XII and factor XI, the reciprocal activation of factor XII and prekallikrein, the activation of factor XI by thrombin and factor XIIa, the cleavage of high-molecular-weight kininogen in plasma, and plasma extravasation induced by polyphosphate. The crystal structure of PdSP15b contains an amphipathic helix studded with basic side chains that forms the likely interaction surface. CONCLUSIONS The results of these studies indicate that the binding of anionic polymers by salivary proteins is used by blood feeders as an antihemostatic/anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Patricia H Alvarenga
- From the Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD (P.H.A., X.X., F.O., A.C.C., I.M.B.F., J.G.V., J.M.C.R., J.F.A.); Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.H.A.); Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (P.H.A.); Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil (C.R.N., J.S.); and Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil (M.A.J., L.J.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cao J, Shi L, Zhou Y, Gao X, Zhang H, Gong H, Zhou J. Characterization of a new Kunitz-type serine protease inhibitor from the hard tick Rhipicephalus hemaphysaloides. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:104-113. [PMID: 25708749 DOI: 10.1002/arch.21118] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new Kunitz-type serine protease inhibitor, Rhipilin-2, was identified in the tick Rhipicephalus hemaphysaloides. The cDNA sequence of Rhipilin-2 is 693 bp, and it encodes a deduced 195 amino acid protein with a size of 22 kDa. Bioinformatic analysis shows that Rhipilin-2 belongs to the Kunitz-type family of inhibitors, containing one Kunitz domain with homology to the tissue factor pathway inhibitor. Using Real time polymerase chain reaction (Real time-PCR), Rhipilin-2 mRNA transcripts were detected in tick salivary glands and midgut. Blood feeding induced transcript expression. The recombinant protein was expressed in insect Sf9 cells and confirmed by immunofluorescence test and Western blot analysis with an anti-His antibody. The purified recombinant Rhipilin-2 inhibited serine protease trypsin and elastase, but not thrombin. The anticoagulant activity of Rhipilin-2 was shown by delaying normal clotting of rabbit plasma in the activated partial thromboplastin time tests. These results indicate that Rhipilin-2 is a novel Kunitz-type serine protease inhibitor involved in tick blood feeding.
Collapse
Affiliation(s)
- Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Kazimírová M, Štibrániová I. Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 2013; 3:43. [PMID: 23971008 PMCID: PMC3747359 DOI: 10.3389/fcimb.2013.00043] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023] Open
Abstract
Ticks require blood meal to complete development and reproduction. Multifunctional tick salivary glands play a pivotal role in tick feeding and transmission of pathogens. Tick salivary molecules injected into the host modulate host defence responses to the benefit of the feeding ticks. To colonize tick organs, tick-borne microorganisms must overcome several barriers, i.e., tick gut membrane, tick immunity, and moulting. Tick-borne pathogens co-evolved with their vectors and hosts and developed molecular adaptations to avoid adverse effects of tick and host defences. Large gaps exist in the knowledge of survival strategies of tick-borne microorganisms and on the molecular mechanisms of tick-host-pathogen interactions. Prior to transmission to a host, the microorganisms penetrate and multiply in tick salivary glands. As soon as the tick is attached to a host, gene expression and production of salivary molecules is upregulated, primarily to facilitate feeding and avoid tick rejection by the host. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Promotion of pathogen transmission by bioactive molecules in tick saliva was described as saliva-assisted transmission (SAT). SAT candidates comprise compounds with anti-haemostatic, anti-inflammatory and immunomodulatory functions, but the molecular mechanisms by which they mediate pathogen transmission are largely unknown. To date only a few tick salivary molecules associated with specific pathogen transmission have been identified and their functions partially elucidated. Advanced molecular techniques are applied in studying tick-host-pathogen interactions and provide information on expression of vector and pathogen genes during pathogen acquisition, establishment and transmission. Understanding the molecular events on the tick-host-pathogen interface may lead to development of new strategies to control tick-borne diseases.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences Bratislava, Slovakia.
| | | |
Collapse
|
16
|
Chmelar J, Calvo E, Pedra JHF, Francischetti IMB, Kotsyfakis M. Tick salivary secretion as a source of antihemostatics. J Proteomics 2012; 75:3842-54. [PMID: 22564820 DOI: 10.1016/j.jprot.2012.04.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 01/04/2023]
Abstract
Ticks are mostly obligatory blood feeding ectoparasites that have an impact on human and animal health. In addition to direct damage due to feeding, some tick species serve as the vectors for the causative agents of several diseases, such as the spirochetes of the genus Borrelia causing Lyme disease, the virus of tick-borne encephalitis, various Rickettsial pathogens or even protozoan parasites like Babesia spp. Hard ticks are unique among bloodfeeders because of their prolonged feeding period that may last up to two weeks. During such a long period of blood uptake, the host develops a wide range of mechanisms to prevent blood loss. The arthropod ectoparasite, in turn, secretes saliva in the sites of bite that assists blood feeding. Indeed, tick saliva represents a rich source of proteins with potent pharmacologic action that target different mechanisms of coagulation, platelet aggregation and vasoconstriction. Tick adaptation to their vertebrate hosts led to the inclusion of a powerful protein armamentarium in their salivary secretion that has been investigated by high-throughput methods. The resulting knowledge can be exploited for the isolation of novel antihemostatic agents. Here we review the tick salivary antihemostatics and their characterized functions at the molecular and cellular levels.
Collapse
Affiliation(s)
- Jindrich Chmelar
- Division of Vascular Inflammation, Diabetes and Kidney, Department of Medicine and Institute of Physiology, Technical University Dresden, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
17
|
Gao X, Shi L, Zhou Y, Cao J, Zhang H, Zhou J. Characterization of the anticoagulant protein Rhipilin-1 from the Rhipicephalus haemaphysaloides tick. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:339-343. [PMID: 21147114 DOI: 10.1016/j.jinsphys.2010.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/02/2010] [Accepted: 12/04/2010] [Indexed: 05/30/2023]
Abstract
To understand the molecular mechanism of tick blood feeding, an anticoagulant protein, Rhipilin-1, was identified in the tick Rhipicephalus haemaphysaloides. The cDNA sequence of Rhipilin-1 is 620bp, and it encodes a deduced 164 amino acid protein with a size of 18kDa. Bioinformatic analysis shows that Rhipilin-1 belongs to the Kunitz-type family of inhibitors, containing one Kunitz domain with high homology to the tissue factor pathway inhibitor (TFPI). The recombinant protein expressed in Escherichia coli delayed normal clotting of rabbit plasma both in the recalcification time (RT) and the activated partial thromboplastin time (APTT) tests. Using RT-PCR, mRNA transcripts of Rhipilin-1 were detected in fed but not in unfed ticks. Disruption of the Rhipilin-1 gene with RNAi led to a 52.7% decrease in the tick attachment rate 24h after introduction in the rabbit ears and a 21.9% decrease in the average engorged body weight of ticks. These results indicate that Rhipilin-1 is a novel anticoagulant protein involved in tick blood feeding with possible future application as a vaccine candidate. The discovery of Rhipilin-1 is the first report on anticoagulant genes in this species of tick.
Collapse
Affiliation(s)
- Xiao Gao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 518 Ziyue Road, Minhang District, Shanghai, China
| | | | | | | | | | | |
Collapse
|
18
|
Corral-Rodríguez MA, Macedo-Ribeiro S, Barbosa Pereira PJ, Fuentes-Prior P. Tick-derived Kunitz-type inhibitors as antihemostatic factors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:579-595. [PMID: 19631744 DOI: 10.1016/j.ibmb.2009.07.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 05/28/2023]
Abstract
Endogenous Kunitz-type inhibitors target a large number of serine proteinases, including coagulation factors VIIa and Xa, but not thrombin. By contrast, several two-domain Kunitz inhibitors of this major procoagulant proteinase have been isolated from both soft ticks (e.g., ornithodorin from Ornithodoros moubata) and hard ticks (e.g., boophilin from Rhipicephalus (Boophilus) microplus). Surprisingly, these anticoagulants do not follow the canonical mechanism of proteinase inhibition. Instead, their N-terminal residues bind across the thrombin active-site cleft, while C-terminal modules interact with the basic exosite I. The reactive-site loop of boophilin remains fully accessible in its complex with thrombin, and might interact with FXa according to the standard mechanism. A conceptually similar inhibition mechanism is employed by a related inhibitor of the TF-FVIIa complex isolated from Ixodes scapularis, ixolaris. Significant variations to the Kunitz fold are encountered in several of these factors, and are particularly evident in the single-domain FXa inhibitor, O. moubata TAP, and in soft tick-derived platelet antiaggregants (e.g., O. moubata disagregin). Altogether, these antihemostatic factors illustrate the divergence between hard and soft ticks. The unsurpassed versatility of tick-derived Kunitz inhibitors establishes them as valuable tools for biochemical investigations, but also as lead compounds for the development of novel antithrombotics.
Collapse
|
19
|
Decrem Y, Beaufays J, Blasioli V, Lahaye K, Brossard M, Vanhamme L, Godfroid E. A family of putative metalloproteases in the salivary glands of the tick Ixodes ricinus. FEBS J 2008; 275:1485-1499. [PMID: 18279375 DOI: 10.1111/j.1742-4658.2008.06308.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ticks are obligate blood-feeding arachnids. During their long-lasting blood meal, they have to counteract the protective barriers and defense mechanisms of their host. These include tissue integrity, pain, hemostasis, and the inflammatory and immune reactions. Here, we describe a multigene family coding for five putative salivary metalloproteases induced during the blood meal of Ixodes ricinus. The evolutionary divergence inside the family was driven by positive Darwinian selection. This came together with individual variation of expression, functional heterogeneity, and antigenic diversification. Inhibition of the expression of some of these genes by RNA interference prevented completion of the tick blood meal and affected the ability of the tick saliva to interfere with host fibrinolysis. This family of proteins could therefore participate in the inhibition of wound healing after the tick bite, thereby facilitating the completion of the blood meal.
Collapse
Affiliation(s)
- Yves Decrem
- IBMM (Institut de Biologie et Médecine Moléculaires), Université Libre de Bruxelles, Gosselies, Belgium
| | - Jérôme Beaufays
- IBMM (Institut de Biologie et Médecine Moléculaires), Université Libre de Bruxelles, Gosselies, Belgium
| | - Virginie Blasioli
- IBMM (Institut de Biologie et Médecine Moléculaires), Université Libre de Bruxelles, Gosselies, Belgium
| | - Kathia Lahaye
- IBMM (Institut de Biologie et Médecine Moléculaires), Université Libre de Bruxelles, Gosselies, Belgium
| | | | - Luc Vanhamme
- IBMM (Institut de Biologie et Médecine Moléculaires), Université Libre de Bruxelles, Gosselies, Belgium
| | - Edmond Godfroid
- IBMM (Institut de Biologie et Médecine Moléculaires), Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
20
|
Maritz-Olivier C, Stutzer C, Jongejan F, Neitz AWH, Gaspar ARM. Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol 2007; 23:397-407. [PMID: 17656153 DOI: 10.1016/j.pt.2007.07.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 05/22/2007] [Accepted: 07/09/2007] [Indexed: 11/28/2022]
Abstract
For ticks, a significant obstacle in obtaining a blood meal is counteracting the hemostatic system of the host. To this end, ticks have developed a broad array of anti-hemostatics, which is reflected in the presence of structurally related tick proteins with different functions. Disruption of blood flow which blocks successful tick feeding makes anti-hemostatics attractive targets for anti-tick vaccines. Moreover, the limited number of drugs currently available for a range of important cardio-vascular diseases makes ticks a potential source of novel therapeutics. This review aims to summarize the key features of tick anti-hemostatics, their structures, mode of action and possible future application as vaccines and novel therapeutic agents.
Collapse
|
21
|
Isawa H, Orito Y, Jingushi N, Iwanaga S, Morita A, Chinzei Y, Yuda M. Identification and characterization of plasma kallikrein-kinin system inhibitors from salivary glands of the blood-sucking insectTriatoma infestans. FEBS J 2007; 274:4271-86. [PMID: 17645545 DOI: 10.1111/j.1742-4658.2007.05958.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two plasma kallikrein-kinin system inhibitors in the salivary glands of the kissing bug Triatoma infestans, designated triafestin-1 and triafestin-2, have been identified and characterized. Reconstitution experiments showed that triafestin-1 and triafestin-2 inhibit the activation of the kallikrein-kinin system by inhibiting the reciprocal activation of factor XII and prekallikrein, and subsequent release of bradykinin. Binding analyses showed that triafestin-1 and triafestin-2 specifically interact with factor XII and high molecular weight kininogen in a Zn2+-dependent manner, suggesting that they specifically recognize Zn2+-induced conformational changes in factor XII and high molecular weight kininogen. Triafestin-1 and triafestin-2 also inhibit factor XII and high molecular weight kininogen binding to negatively charged surfaces. Furthermore, they interact with both the N-terminus of factor XII and domain D5 of high molecular weight kininogen, which are the binding domains for biological activating surfaces. These results suggest that triafestin-1 and triafestin-2 inhibit activation of the kallikrein-kinin system by interfering with the association of factor XII and high molecular weight kininogen with biological activating surfaces, resulting in the inhibition of bradykinin release in an animal host during insect blood-feeding.
Collapse
Affiliation(s)
- Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Ectoparasites of livestock are of great economic and social importance but their effective control remains difficult. The feasibility of vaccination as a novel control measure was established over a decade ago with the commercial release of a recombinant vaccine against the cattle tick Boophilus microplus. Since then, research has continued on ticks and other ectoparasites. While some ectoparasite species will undoubtedly be refractory to immunological control, for others there has been a steady accumulation of knowledge of partially protective antigens, now accelerating through the application of genomic technologies. Nevertheless, progress towards usable, commercially available vaccines has been limited by a number of factors. The number of highly effective antigens is still very small. Although some classes of antigen have been investigated in more detail than others, we have no systematic knowledge of what distinguishes an effective antigen. Much hope has been placed on the potential of multi-antigen mixtures to deliver the efficacy required of a successful vaccine but with little experimental evidence. The application of current knowledge across parasite and host species needs to be explored but little has been done. In most cases, the path to commercial delivery is uncertain. Although many constraints and challenges remain, the need for vaccines and our capacity to develop them can only increase.
Collapse
Affiliation(s)
- P Willadsen
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 Australia.
| |
Collapse
|