1
|
Berry J, Harper MT. Protease-activated receptor antagonists prevent thrombosis when dual antiplatelet therapy is insufficient in an occlusive thrombosis microfluidic model. Res Pract Thromb Haemost 2022; 6:e12703. [PMID: 35434469 PMCID: PMC9001860 DOI: 10.1002/rth2.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Platelet activation and arterial thrombosis on a ruptured atherosclerotic plaque is a major cause of myocardial infarction. Dual antiplatelet therapy (DAPT), the combination of platelet aggregation inhibitors, aspirin and a P2Y12 antagonist, is used to prevent arterial thrombosis. However, many people continue to have arterial thrombosis and myocardial infarction despite DAPT, indicating that additional therapies are required where DAPT is insufficient. Objectives To determine whether antagonists of protease-activated receptors (PARs) can prevent occlusive thrombosis under conditions where DAPT is insufficient. Methods We used human whole blood in a microfluidic model of occlusive thrombosis to compare conditions under which DAPT is effective to those under which DAPT was not. Cangrelor (a P2Y12 antagonist) and aspirin were used to mimic DAPT. We then investigated whether the PAR1 antagonist vorapaxar or the PAR4 antagonist BMS 986120, alone or in combination with DAPT, prevented occlusive thrombosis. Results and Conclusions A ruptured plaque exposes collagen fibers and is often rich in tissue factor, triggering activation of platelets and coagulation. Occlusive thrombi formed on type I collagen in the presence or absence of tissue factor (TF). However, although DAPT prevented occlusive thrombosis in the absence of TF, DAPT had little effect when TF was also present. Under these conditions, PAR antagonism was also ineffective. However, occlusive thrombosis was prevented by combining DAPT with PAR antagonism. These data demonstrate that PAR antagonists may be a useful addition to DAPT in some patients and further demonstrate the utility of in vitro models of occlusive thrombosis.
Collapse
Affiliation(s)
- Jess Berry
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
2
|
Lee RH, Kawano T, Grover SP, Bharathi V, Martinez D, Cowley DO, Mackman N, Bergmeier W, Antoniak S. Genetic deletion of platelet PAR4 results in reduced thrombosis and impaired hemostatic plug stability. J Thromb Haemost 2022; 20:422-433. [PMID: 34689407 PMCID: PMC8792346 DOI: 10.1111/jth.15569] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Protease-activated receptor 4 (PAR4) is expressed by a wide variety of cells, including megakaryocytes/platelets, immune cells, cardiomyocytes, and lung epithelial cells. It is the only functional thrombin receptor on murine platelets. A global deficiency of PAR4 is associated with impaired hemostasis and reduced thrombosis. OBJECTIVE We aimed to generate a mouse line with a megakaryocyte/platelet-specific deletion of PAR4 (PAR4fl/fl ;PF4Cre+ ) and use the mouse line to investigate the role of platelet PAR4 in hemostasis and thrombosis in mice. METHODS Platelets from PAR4fl/fl ;PF4Cre+ were characterized in vitro. Arterial and venous thrombosis was analyzed. Hemostatic plug formation was analyzed using a saphenous vein laser injury model in mice with global or megakaryocyte/platelet-specific deletion of PAR4 or wild-type mice treated with thrombin or glycoprotein VI (GPVI) inhibitors. RESULTS PAR4fl/fl ;PF4Cre+ platelets were unresponsive to thrombin or specific PAR4 stimulation but not to other agonists. PAR4-/- and PAR4fl/fl ;PF4Cre+ mice both exhibited a similar reduction in arterial thrombosis compared to their respective controls. More importantly, we show for the first time that platelet PAR4 is critical for venous thrombosis in mice. In addition, PAR4-/- mice and PAR4fl/fl ;PF4Cre+ mice exhibited a similar impairment in hemostatic plug stability in a saphenous vein laser injury model. Inhibition of thrombin in wild-type mice gave a similar phenotype. Combined PAR4 deficiency on platelets with GPVI inhibition did not impair hemostatic plug formation but further reduced plug stability. CONCLUSION We generated a novel PAR4fl/fl ;PF4Cre+ mouse line. We used this mouse line to show that PAR4 signaling in platelets is critical for arterial and venous thrombosis and hemostatic plug stability.
Collapse
Affiliation(s)
- Robert H. Lee
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Tomohiro Kawano
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven P. Grover
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Vanthana Bharathi
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David Martinez
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dale O. Cowley
- UNC Animal Models Core, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Wolfgang Bergmeier
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Yu X, Li S, Zhu X, Kong Y. Inhibitors of protease activated receptor 4 (PAR4): a review of recent patents (2013-2021). Expert Opin Ther Pat 2022; 32:153-170. [PMID: 35081321 DOI: 10.1080/13543776.2022.2034786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Protease-activated receptor 4 (PAR4), belonging to a subfamily of G-protein-coupled receptors (GPCR), is expressed on the surface of Human platelets, and the activation of it can lead to platelets aggregation. Studies demonstrated that PAR4 inhibition protect mice from arterial/arteriolar thrombosis, pulmonary embolism and cerebral infarct, while do not affect the haemostatic responses integrity. Therefore, PAR4 has been a promising target for the development of anti-thrombotic agents. AREAS COVERED This review covers recent patents and literature on PAR4 and their application published between 2013 and 2021. EXPERT OPINION PAR4 is a promising anti-thrombotic target and PAR4 inhibitors are important biologically active compounds for the treatment of thrombosis. Most the recent patents and literature focus on PAR4 selective inhibitors, and BMS-986120 and BMS-986141, which were developed by BMS, have entered clinical trials. With the deep understanding of the crystal structures and biological functions of PAR4, we believe that many other novel types of molecules targeting PAR4 would enter the clinical studies or the market.
Collapse
Affiliation(s)
- Xiangying Yu
- School of Life & Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shanshan Li
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Xiong Zhu
- Institute of Medicinal & Chemistry, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yi Kong
- School of Life & Technology, China Pharmaceutical University, Nanjing, 210009, PR China
| |
Collapse
|
4
|
Bock M, Bergmann CB, Jung S, Biberthaler P, Heimann L, Hanschen M. Platelets differentially modulate CD4 + Treg activation via GPIIa/IIIb-, fibrinogen-, and PAR4-dependent pathways. Immunol Res 2021; 70:185-196. [PMID: 34932195 PMCID: PMC8917040 DOI: 10.1007/s12026-021-09258-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
CD4+FoxP3+ regulatory T cells (CD4+ Tregs) are known to dampen inflammation following severe trauma. Platelets were shown to augment their posttraumatic activation in burn injury, but the exact mechanisms remain unclear. We hypothesized that platelet activation mechanisms via GPIIb/IIIa, fibrinogen, and PAR4 have an immunological effect and modulate CD4+ Treg activation early after trauma. Therefore, C57Bl/6 N mice were injected with tirofiban (GPIIb/IIIa inhibition), ancrod (fibrinogen splitting enzyme), or tcY-NH2 (selective PAR4 antagonist peptide) before inducing a third-degree burn injury of 25% of the total body surface area. Changes in coagulation, and local and systemic CD4+ Treg activity were assessed via rotational thromboelastometry (ROTEM®) and phospho-flow cytometry 1 h post intervention. The inhibition of GPIIb/IIIa and fibrinogen locally led to a higher basic activity of CD4+ Tregs compared to non-inhibited animals. In contrast, PAR4 disruption on platelets locally led to an increased posttraumatic activation of CD4+ Tregs. Fibrinogen led to complete elimination of coagulation, whereas GPIIb/IIIa or PAR4 inhibition did not. GPIIb/IIIa receptor and fibrinogen inhibition increase CD4+ Tregs activity independently of trauma. Both are crucial for thrombus formation. We suggest platelets trapped in thrombi are unable to interact with CD4+ Tregs but augment their activity when circulating freely. In contrast, PAR4 seems to reduce CD4+ Treg activation following trauma. In summary, GPIIb/IIIa-, PAR4-, and fibrinogen-dependent pathways in platelets modulate CD4+ Treg baseline activity, independently from their hemostatic functionality. PAR4-dependent pathways modulate the posttraumatic interplay of platelets and CD4+ Tregs.
Collapse
Affiliation(s)
- Matthias Bock
- Experimental Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.,Department of Cardiology, School of Medicine, German Heart Centre Munich, Technical University of Munich, Lazarettstr. 36, 80636, Munich, Germany
| | - Christian B Bergmann
- Experimental Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.,Department of Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.,Division of Research, Department of Surgery, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - Sonja Jung
- Experimental Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Peter Biberthaler
- Department of Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Laura Heimann
- Experimental Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Marc Hanschen
- Experimental Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany. .,Department of Trauma Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, Munich, Germany.
| |
Collapse
|
5
|
Selvadurai MV, Moon MJ, Mountford SJ, Ma X, Zheng Z, Jennings IG, Setiabakti NM, Iman RP, Brazilek RJ, Z Abidin NA, Chicanne G, Severin S, Nicholls AJ, Wong CHY, Rinckel JY, Eckly A, Gachet C, Nesbitt WS, Thompson PE, Hamilton JR. Disrupting the platelet internal membrane via PI3KC2α inhibition impairs thrombosis independently of canonical platelet activation. Sci Transl Med 2021; 12:12/553/eaar8430. [PMID: 32718993 DOI: 10.1126/scitranslmed.aar8430] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/12/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022]
Abstract
Arterial thrombosis causes heart attacks and most strokes and is the most common cause of death in the world. Platelets are the cells that form arterial thrombi, and antiplatelet drugs are the mainstay of heart attack and stroke prevention. Yet, current drugs have limited efficacy, preventing fewer than 25% of lethal cardiovascular events without clinically relevant effects on bleeding. The key limitation on the ability of all current drugs to impair thrombosis without causing bleeding is that they block global platelet activation, thereby indiscriminately preventing platelet function in hemostasis and thrombosis. Here, we identify an approach with the potential to overcome this limitation by preventing platelet function independently of canonical platelet activation and in a manner that appears specifically relevant in the setting of thrombosis. Genetic or pharmacological targeting of the class II phosphoinositide 3-kinase (PI3KC2α) dilates the internal membrane reserve of platelets but does not affect activation-dependent platelet function in standard tests. Despite this, inhibition of PI3KC2α is potently antithrombotic in human blood ex vivo and mice in vivo and does not affect hemostasis. Mechanistic studies reveal this antithrombotic effect to be the result of impaired platelet adhesion driven by pronounced hemodynamic shear stress gradients. These findings demonstrate an important role for PI3KC2α in regulating platelet structure and function via a membrane-dependent mechanism and suggest that drugs targeting the platelet internal membrane may be a suitable approach for antithrombotic therapies with an improved therapeutic window.
Collapse
Affiliation(s)
- Maria V Selvadurai
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Mitchell J Moon
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Simon J Mountford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Xiao Ma
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Zhaohua Zheng
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ian G Jennings
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Natasha M Setiabakti
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Faculty of Medicine, Universitas Indonesia, Salemba, Jakarta 10430, Indonesia
| | - Rizani P Iman
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Faculty of Medicine, Universitas Indonesia, Salemba, Jakarta 10430, Indonesia
| | - Rose J Brazilek
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Nurul Aisha Z Abidin
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia
| | - Gaëtan Chicanne
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, 31432 Toulouse CEDEX 4, France
| | - Sonia Severin
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm U1048, Université Toulouse III, 31432 Toulouse CEDEX 4, France
| | - Alyce J Nicholls
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC 3800, Australia
| | - Connie H Y Wong
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC 3800, Australia
| | - Jean-Yves Rinckel
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, F-67000 Strasbourg, France
| | - Warwick S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.,Microplatforms Research Group, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Philip E Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
6
|
Tunströmer K, Faxälv L, Boknäs N, Lindahl TL. Quantification of Platelet Contractile Movements during Thrombus Formation. Thromb Haemost 2018; 118:1600-1611. [PMID: 30112750 PMCID: PMC6298232 DOI: 10.1055/s-0038-1668151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Imaging methods based on time-lapse microscopy are important tools for studying the dynamic events that shape thrombus formation upon vascular injury. However, there is a lack of methods to translate the vast amount of visual data generated in such experiments into quantitative variables describing platelet movements that can be subjected to systematic analysis. In this study, we developed experimental and computational protocols allowing for a detailed mathematical analysis of platelet movements within a developing thrombus. We used a flow chamber-based model of thrombosis wherein a collagen strip was used to initiate platelet adhesion and activation. Combining the use of a platelet staining protocol, designed to enable identification of individual platelets, and image processing, we tracked the movements of a large number of individual platelets during thrombus formation and consolidation. These data were then processed to generate aggregate measures describing the heterogeneous movements of platelets in different areas of the thrombus and at different time points. Applying this model and its potential, to a comparative analysis on a panel of platelet inhibitors, we found that total platelet intra-thrombus movements are only slightly reduced by blocking the interactions between glycoproteins IIb/IIIa and Ib and their ligands or by inhibiting thromboxane synthesis or P2Y12 signalling. In contrast, whereas 30 to 40% of the platelets movements (for the CD42a-labelled platelets) and 20% (for the pro-coagulant platelets), within a thrombus, are contractile, i.e., towards the centre of the thrombus, this contractile component is almost totally abolished in the presence of agents inhibiting these pathways.
Collapse
Affiliation(s)
- Kjersti Tunströmer
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Lars Faxälv
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Niklas Boknäs
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Haematology, Linköping University, Linköping, Sweden
| | - Tomas L Lindahl
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Clinical Chemistry, Linköping University, Linköping, Sweden
| |
Collapse
|
7
|
Swieringa F, Spronk HM, Heemskerk JW, van der Meijden PE. Integrating platelet and coagulation activation in fibrin clot formation. Res Pract Thromb Haemost 2018; 2:450-460. [PMID: 30046749 PMCID: PMC6046596 DOI: 10.1002/rth2.12107] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/31/2018] [Indexed: 12/21/2022] Open
Abstract
Platelets interact with the coagulation system in a multitude of ways, not only during the phases of thrombus formation, but also in specific areas within a formed thrombus. This review discusses current concepts of platelet control of thrombin generation, fibrin formation and structure, and anticoagulation. Indicated are how combined signalling via the platelet receptors for collagen (glycoprotein VI) and thrombin induces the secretion of (anti)coagulation factors, as well as surface exposure of phosphatidylserine, thereby catalysing thrombin generation. This procoagulant platelet response is also facilitated by the adhesive complexes glycoprotein Ib-V-IX and integrin αIIbβ3. In the buildup of a platelet-fibrin thrombus, the extrinsic, tissue factor-driven coagulation pathway is predominant in early stages, while the intrinsic, factor XII pathway seems to promote at later time points. Already early generation of thrombin enforces platelet responses and stimulates intra-thrombus heterogeneity with patches of loosely aggregated, contracted, and phosphatidylserine-exposing platelets. Fibrin actively formed on the surface of activated platelets supports thrombus growth, but also captures thrombin. The fibrin distribution in a thrombus appears to rely on the local procoagulant trigger and the blood flow rate. Clinical studies support the importance of the platelet-coagulation interplay, by showing beneficial effects of combination therapy in the secondary prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Frauke Swieringa
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
- Leibniz Institute for Analytical SciencesISASDortmundGermany
| | - Henri M.H. Spronk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Johan W.M. Heemskerk
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| | - Paola E.J. van der Meijden
- Department of BiochemistryCardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
8
|
Lindahl T, Faxälv L, Claesson K. Counting the platelets: a robust and sensitive quantification method for thrombus formation. Thromb Haemost 2017; 115:1178-90. [DOI: 10.1160/th15-10-0799] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/25/2016] [Indexed: 11/05/2022]
Abstract
SummaryFlow chambers are common tools used for studying thrombus formation in vitro. However, the use of such devices is not standardised and there is a large diversity among the flow chamber systems currently used, and also in the methods used for quantifying the thrombus development. It was the study objective to evaluate a new method for analysis and quantification of platelet thrombus formation that can facilitate comparison of results between research groups. Whole blood was drawn over a collagen patch in commercial Ibid or in-house constructed PDMS flow chambers. Five percent of the platelets were fluorescently labelled and z-stack time-lapse images were captured during thrombus formation. Images were processed in a Python script in which the number of platelets and their respective x-, yand z-positions were obtained. For comparison with existing methods the platelets were also labelled and quantified using fluorescence intensity and thrombus volume estimations by confocal microscopy. The presented method was found less sensitive to microscope and image adjustments and provides more details on thrombus development dynamics than the methods for measuring fluorescence intensity and thrombus volume estimation. The platelet count method produced comparable results with commercial and PDMS flow chambers, and could also obtain information regarding the stability of each detected platelet in the thrombus. In conclusion, quantification of thrombus formation by platelet count is a sensitive and robust method that enables measurement of platelet accumulation and platelet stability in an absolute scale that could be used for comparisons between research groups.
Collapse
|
9
|
French SL, Arthur JF, Lee H, Nesbitt WS, Andrews RK, Gardiner EE, Hamilton JR. Inhibition of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood. J Thromb Haemost 2016; 14:1642-54. [PMID: 26878340 DOI: 10.1111/jth.13293] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/26/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Essentials The platelet thrombin receptor, PAR4, is an emerging anti-thrombotic drug target. We examined the anti-platelet & anti-thrombotic effects of PAR4 inhibition in human blood. PAR4 inhibition impaired platelet procoagulant activity in isolated cells and during thrombosis. Our study shows PAR4 is required for platelet procoagulant function & thrombosis in human blood. SUMMARY Background Thrombin-induced platelet activation is important for arterial thrombosis. Thrombin activates human platelets predominantly via protease-activated receptor (PAR)1 and PAR4. PAR1 has higher affinity for thrombin, and the first PAR1 antagonist, vorapaxar, was recently approved for use as an antiplatelet agent. However, vorapaxar is contraindicated in a significant number of patients, owing to adverse bleeding events. Consequently, there is renewed interest in the role of platelet PAR4 in the setting of thrombus formation. Objectives To determine the specific antiplatelet effects of inhibiting PAR4 function during thrombus formation in human whole blood. Methods and Results We developed a rabbit polyclonal antibody against the thrombin cleavage site of PAR4, and showed it to be a highly specific inhibitor of PAR4-mediated platelet function. This function-blocking anti-PAR4 antibody was used to probe for PAR4-dependent platelet functions in human isolated platelets in the absence and presence of concomitant PAR1 inhibition. The anti-PAR4 antibody alone was sufficient to abolish the sustained elevation of cytosolic calcium level and consequent phosphatidylserine exposure induced by thrombin, but did not significantly inhibit integrin αII b β3 activation, α-granule secretion, or aggregation. In accord with these in vitro experiments on isolated platelets, selective inhibition of PAR4, but not of PAR1, impaired thrombin activity (fluorescence resonance energy transfer-based thrombin sensor) and fibrin formation (anti-fibrin antibody) in an ex vivo whole blood flow thrombosis assay. Conclusions These findings demonstrate that PAR4 is required for platelet procoagulant function during thrombus formation in human blood, and suggest PAR4 inhibition as a potential target for the prevention of arterial thrombosis.
Collapse
Affiliation(s)
- S L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - J F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - H Lee
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - W S Nesbitt
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Microplatforms Research Group, School of Engineering, RMIT University, Melbourne, Australia
| | - R K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - E E Gardiner
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - J R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
10
|
French SL, Hamilton JR. Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol 2016; 173:2952-65. [PMID: 26844674 DOI: 10.1111/bph.13455] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Protease-activated receptors are a family of four GPCRs (PAR1-PAR4) with a number of unique attributes. Nearly two and a half decades after the discovery of the first PAR, an antagonist targeting this receptor has been approved for human use. The first-in-class PAR1 antagonist, vorapaxar, was approved for use in the USA in 2014 for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. These recent developments indicate the clinical potential of manipulating PAR function. While much work has been aimed at uncovering the function of PAR1 and, to a lesser extent, PAR2, comparatively little is known regarding the pharmacology and physiology of PAR3 and PAR4. Recent studies have begun to develop the pharmacological and genetic tools required to study PAR4 function in detail, and there is now emerging evidence for the function of PAR4 in disease settings. In this review, we detail the discovery, structure, pharmacology, physiological significance and therapeutic potential of PAR4. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
11
|
Petitjean C, Setiabakti NM, Mountford JK, Arthur JF, Ellis S, Hamilton JR. Combined deficiency of PI3KC2α and PI3KC2β reveals a nonredundant role for PI3KC2α in regulating mouse platelet structure and thrombus stability. Platelets 2016; 27:402-9. [PMID: 26943229 DOI: 10.3109/09537104.2016.1145202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The physiological functions and cellular signaling of Class II phosphoinositide 3-kinases (PI3Ks) remain largely unknown. Platelets express two Class II PI3Ks: PI3KC2α and PI3KC2β. PI3KC2α deficiency was recently reported to cause disruption of the internal membrane reserve structure of platelets (open canalicular system, OCS) that results in dysregulated platelet adhesion and impaired arterial thrombosis in vivo. Notably, these effects on platelets occurred despite normal agonist-induced 3-phosphorylated phosphoinositide (3-PPI) production and cellular activation in PI3KC2α-deficient platelets. However, the potential compensatory actions of PI3KC2β in platelets have not yet been investigated. Here, we report the first mice deficient in both PI3KC2α and PI3KC2β (no Class II PI3Ks in platelets) and reveal a nonredundant role for PI3KC2α in mouse platelet structure and function. Specifically, we show that the disrupted OCS and impaired thrombus stability observed in PI3KC2α-deficient platelets does not occur in PI3KC2β-deficient platelets and is not exaggerated in platelets taken from mice deficient in both enzymes. Furthermore, detailed examination of 3-PPI production in platelets from this series of mice revealed no changes in either unactivated or activated platelets, including those with a complete lack of Class II PI3Ks. These findings indicate a nonredundant role for PI3KC2α in regulating platelet structure and function, and suggest that Class II PI3Ks do not significantly contribute to the acute agonist-induced production of 3-PPIs in these cells.
Collapse
Affiliation(s)
- Claire Petitjean
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia
| | - Natasha M Setiabakti
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia
| | - Jessica K Mountford
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia.,c School of Animal Biology , The University of Western Australia , Perth , Australia
| | - Jane F Arthur
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia
| | - Sarah Ellis
- b Sir Peter MacCallum Department of Oncology , Peter MacCallum Cancer Centre & The University of Melbourne , Melbourne , Australia
| | - Justin R Hamilton
- a Australian Centre for Blood Diseases , Monash University , Melbourne , VIC , Australia
| |
Collapse
|
12
|
Gorog DA, Jeong YH. Platelet function tests: why they fail to guide personalized antithrombotic medication. J Am Heart Assoc 2015; 4:JAHA.115.002094. [PMID: 26015325 PMCID: PMC4599433 DOI: 10.1161/jaha.115.002094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Diana A Gorog
- Imperial College, London, United Kingdom (D.A.G.) University of Hertfordshire, United Kingdom (D.A.G.)
| | - Young-Hoon Jeong
- Division of Cardiology, Department of Internal Medicine, Gyeongsang National University Hospital and Gyeongsang National University School of Medicine, Jinju, Korea (Y.H.J.)
| |
Collapse
|
13
|
Mountford JK, Petitjean C, Putra HWK, McCafferty JA, Setiabakti NM, Lee H, Tønnesen LL, McFadyen JD, Schoenwaelder SM, Eckly A, Gachet C, Ellis S, Voss AK, Dickins RA, Hamilton JR, Jackson SP. The class II PI 3-kinase, PI3KC2α, links platelet internal membrane structure to shear-dependent adhesive function. Nat Commun 2015; 6:6535. [PMID: 25779105 DOI: 10.1038/ncomms7535] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/05/2015] [Indexed: 12/29/2022] Open
Abstract
PI3KC2α is a broadly expressed lipid kinase with critical functions during embryonic development but poorly defined roles in adult physiology. Here we utilize multiple mouse genetic models to uncover a role for PI3KC2α in regulating the internal membrane reserve structure of megakaryocytes (demarcation membrane system) and platelets (open canalicular system) that results in dysregulated platelet adhesion under haemodynamic shear stress. Structural alterations in the platelet internal membrane lead to enhanced membrane tether formation that is associated with accelerated, yet highly unstable, thrombus formation in vitro and in vivo. Notably, agonist-induced 3-phosphorylated phosphoinositide production and cellular activation are normal in PI3KC2α-deficient platelets. These findings demonstrate an important role for PI3KC2α in regulating shear-dependent platelet adhesion via regulation of membrane structure, rather than acute signalling. These studies provide a link between the open canalicular system and platelet adhesive function that has relevance to the primary haemostatic and prothrombotic function of platelets.
Collapse
Affiliation(s)
- Jessica K Mountford
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Claire Petitjean
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Harun W Kusuma Putra
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Jonathan A McCafferty
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Natasha M Setiabakti
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Hannah Lee
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Lotte L Tønnesen
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - James D McFadyen
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Simone M Schoenwaelder
- 1] Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia [2] The Heart Research Institute and Charles Perkins Centre, The University of Sydney, Newtown 2050, Australia
| | - Anita Eckly
- Unité mixte de recherche S949 Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Etablissement Français du Sang-Alsace 67000, Strasbourg, France
| | - Christian Gachet
- Unité mixte de recherche S949 Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Etablissement Français du Sang-Alsace 67000, Strasbourg, France
| | - Sarah Ellis
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre and The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Anne K Voss
- 1] Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Ross A Dickins
- 1] Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Shaun P Jackson
- 1] Australian Centre for Blood Diseases, Monash University, Level 6, 89 Commercial Road, Melbourne, Victoria 3004, Australia [2] The Heart Research Institute and Charles Perkins Centre, The University of Sydney, Newtown 2050, Australia [3] Department of Molecular and Experimental Medicine, The Scripps Research Institute, San Diego, CA 92037, USA
| |
Collapse
|
14
|
French SL, Arthur JF, Tran HA, Hamilton JR. Approval of the first protease-activated receptor antagonist: Rationale, development, significance, and considerations of a novel anti-platelet agent. Blood Rev 2014; 29:179-89. [PMID: 25467961 DOI: 10.1016/j.blre.2014.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
Twenty-three years after the discovery of the first thrombin receptor, now known as protease-activated receptor 1 (PAR1), the first drug targeting this receptor is available for human use. The PAR1 inhibitor, vorapaxar (Zontivity, MSD), was recently approved by the FDA for use in the USA for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or peripheral artery disease. In this review, we detail the rationale, development, as well as the clinical significance and considerations of vorapaxar, the original PAR antagonist and the latest anti-platelet agent in the pharmaco-armoury against arterial thrombosis.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Huyen A Tran
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia; Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
15
|
Hosokawa K, Ohnishi T, Miura N, Sameshima H, Koide T, Tanaka KA, Maruyama I. Antithrombotic effects of PAR1 and PAR4 antagonists evaluated under flow and static conditions. Thromb Res 2014; 133:66-72. [DOI: 10.1016/j.thromres.2013.10.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/09/2013] [Accepted: 10/28/2013] [Indexed: 01/22/2023]
|
16
|
Cosemans JMEM, Angelillo-Scherrer A, Mattheij NJA, Heemskerk JWM. The effects of arterial flow on platelet activation, thrombus growth, and stabilization. Cardiovasc Res 2013; 99:342-52. [PMID: 23667186 DOI: 10.1093/cvr/cvt110] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Injury of an arterial vessel wall acutely triggers a multifaceted process of thrombus formation, which is dictated by the high-shear flow conditions in the artery. In this overview, we describe how the classical concept of arterial thrombus formation and vascular occlusion, driven by platelet activation and fibrin formation, can be extended and fine-tuned. This has become possible because of recent insight into the mechanisms of: (i) platelet-vessel wall and platelet-platelet communication, (ii) autocrine platelet activation, and (iii) platelet-coagulation interactions, in relation to blood flow dynamics. We list over 40 studies with genetically modified mice showing a role of platelet and plasma proteins in the control of thrombus stability after vascular injury. These include multiple platelet adhesive receptors and other junctional molecules, components of the ADP receptor signalling cascade to integrin activation, proteins controlling platelet shape, and autocrine activation processes, as well as multiple plasma proteins binding to platelets and proteins of the intrinsic coagulation cascade. Regulatory roles herein of the endothelium and other blood cells are recapitulated as well. Patient studies support the contribution of platelet- and coagulation activation in the regulation of thrombus stability. Analysis of the factors determining flow-dependent thrombus stabilization and embolus formation in mice will help to understand the regulation of this process in human arterial disease.
Collapse
Affiliation(s)
- Judith M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht , Maastricht University, PO Box 616, Maastricht 6200 MD, The Netherlands
| | | | | | | |
Collapse
|
17
|
Lee H, Sturgeon SA, Mountford JK, Jackson SP, Hamilton JR. Safety and efficacy of targeting platelet proteinase-activated receptors in combination with existing anti-platelet drugs as antithrombotics in mice. Br J Pharmacol 2012; 166:2188-97. [PMID: 22428607 DOI: 10.1111/j.1476-5381.2012.01944.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Developing novel anti-platelet strategies is fundamental to reducing the impact of thrombotic diseases. Thrombin activates platelets via proteinase-activated receptors (PARs), and PAR antagonists are being evaluated in clinical trials for prevention of arterial thrombosis. However, one such trial was recently suspended due to increased bleeding in patients receiving a PAR₁ antagonist in addition to anti-platelet drugs that most often included both aspirin and clopidogrel. Therefore, it remains unclear how to best manipulate PARs for safe antithrombotic activity. To address this, we have examined potential interactions between existing anti-platelet drugs and strategies that target PARs. EXPERIMENTAL APPROACH We used in vivo mouse models in which interactions between various anti-platelet strategies could be evaluated. We examined the effects on thrombosis and haemostasis in PAR₄ -/- mice (platelets unresponsive to thrombin) treated with therapeutic doses of either aspirin or clopidogrel. KEY RESULTS Using a model in which occlusive thrombosis occurred in PAR₄ -/- mice or wild-type mice treated with aspirin or clopidogrel, PAR₄ -/- mice treated with either anti-platelet agent showed marked protection against thrombosis. This antithrombotic effect occurred without any effect on haemostasis with aspirin, but not clopidogrel. Furthermore, specifically targeting thrombin-induced platelet activation (via PARs) improved the therapeutic window of non-specifically inhibiting thrombin functions (via anticoagulants). CONCLUSIONS AND IMPLICATIONS Our results indicate that PAR antagonists used in combination with aspirin provide a potent yet safe antithrombotic strategy in mice and provide insights into the safety and efficacy of using PAR antagonists for the prevention of acute coronary syndromes in humans.
Collapse
Affiliation(s)
- H Lee
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | | | | | | | | |
Collapse
|
18
|
Lee H, Hamilton JR. The PAR1 antagonist, SCH79797, alters platelet morphology and function independently of PARs. Thromb Haemost 2012; 109:164-7. [PMID: 23093354 DOI: 10.1160/th12-06-0389] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 09/25/2012] [Indexed: 12/11/2022]
|
19
|
Abstract
Cardiovascular diseases, including atherothrombosis, are the leading cause of morbidity and mortality in the United States, Europe, and the developed world. Matrix metalloproteases (MMPs) have recently emerged as important mediators of platelet and endothelial function, and atherothrombotic disease. Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that is classically activated through cleavage of the N-terminal exodomain by the serine protease thrombin. Most recently, 2 MMPs have been discovered to have agonist activity for PAR1. Unexpectedly, MMP-1 and MMP-13 cleave the N-terminal exodomain of PAR1 at noncanonical sites, which result in distinct tethered ligands that activate G-protein signaling pathways. PAR1 exhibits metalloprotease-specific signaling patterns, known as biased agonism, that produce distinct functional outputs by the cell. Here we contrast the mechanisms of canonical (thrombin) and noncanonical (MMP) PAR1 activation, the contribution of MMP-PAR1 signaling to diseases of the vasculature, and the therapeutic potential of inhibiting MMP-PAR1 signaling with MMP inhibitors, including atherothrombotic disease, in-stent restenosis, heart failure, and sepsis.
Collapse
|