1
|
Wen M, Lu Y, Xie H, Qin L, Ye L, Zhang K, Wang M, Yang L. Molecular and clinical characterization of two independent Chinese families with protein C deficiency. Ann Hematol 2024:10.1007/s00277-024-06156-2. [PMID: 39724247 DOI: 10.1007/s00277-024-06156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
This study aims to investigate the clinical characterization and molecular pathogenic basis of hereditary protein C (PC) deficiency in two independent Chinese families, and conduct in vitro expression studies on the newly discovered p.Trp444Arg mutation. The PC activity (PC: A) was tested using the chromogenic substrate, and PC antigen (PC: Ag) was detected via enzyme-linked immunosorbent assay (ELISA). To identify the mutation sites, nine exons of the PROC gene were amplified by PCR, and the products were directly sequenced. The conservation and pathogenicity of the mutations, as well as changes in the spatial structure of PC proteins before and after mutations, were analyzed using ClustalX-2.1-win, online bioinformatics software, and PyMOL. The function of the mutant proteins was detected using the thrombin generation assay (TGA). Recombinant PC was ectopically expressed in HEK293T cells, with mRNA levels quantified by RT-qPCR. The recombinant protein was further characterized using Western blotting, ELISA, and immunofluorescence microscopy. Proband A and B, aged 39 and 63 respectively, are both diagnosed with deep vein thrombosis (DVT) in both lower limbs and pulmonary embolism (PE). Two missense mutations, p.Arg440Cys and p.Trp444Arg, were identified in the probands. Bioinformatics and protein modeling analyses revealed that the two mutations probably affected the normal function of PC. The thrombin generation assay revealed impaired thrombin generation capacity in both probands, with proband B showing more severe impairment. In vitro expression experiments demonstrated that p.Trp444Arg do not significantly affect mRNA expression levels of PC protein compared to wild-type, but result in lower PC: Ag content and protein expression in the supernatant and higher levels in the lysate. These two mutations may be the causes of reduced PC in two independent Chinese families. Notably, this is the first reported instance of the p.Trp444Arg mutation.
Collapse
Affiliation(s)
- Mengzhen Wen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China
| | - Yifan Lu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China
| | - Haixiao Xie
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China
| | - Langyi Qin
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China
| | - Longying Ye
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China
| | - Ke Zhang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China
| | - Mingshan Wang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China
| | - Lihong Yang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Shangcai Village, Ouhai District, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Pituk D, Balogh L, Horváth E, Hegyi Z, Baráth B, Bogáti R, Szűcs P, Papp Z, Katona É, Bereczky Z. Localization of Hemostasis Elements in Aspirated Coronary Thrombi at Different Stages of Evolution. Int J Mol Sci 2024; 25:11746. [PMID: 39519297 PMCID: PMC11547099 DOI: 10.3390/ijms252111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The structure of aspirated coronary thrombus in ST-segment elevation myocardial infarction (STEMI) is still being studied. Our aims were to characterize coronary thrombi of different ages, focusing on the appearance of activated protein C (APC/PC) and its relation to the elements of neutrophil extracellular traps (NETs), and the factors closely related to fibrin as factor XIII (FXIII) and α2 plasmin inhibitor (α2-PI). The thrombi of n = 24 male patients with atherosclerotic coronary plaque rupture related to native coronary artery occlusion were selected for histopathology analysis. Thrombus age was distinguished as fresh, lytic, and organized, and then analyzed by immunofluorescent staining and confocal microscopy. FXIII was present at a high level and showed a high degree of co-localization with fibrin in all stages of thrombus evolution. The amount of α2-PI was low in the fresh thrombi, which increased significantly to the lytic phase. It was evenly distributed and consistently associated with fibrin. APC/PC appeared in the fresh thrombus and remained constant during its evolution. The presence of NET marker and CD66b was most dominant in the lytic phase. APC/PC co-localization with the elements of NET formation shows its role in NET degradation. These observations suggest the importance of searching for further targeted therapeutic strategies in STEMI patients.
Collapse
Affiliation(s)
- Dóra Pituk
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (B.B.); (R.B.); (É.K.)
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Balogh
- Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.B.); (Z.P.)
| | - Emőke Horváth
- Department of Pathology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.S.)
| | - Barbara Baráth
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (B.B.); (R.B.); (É.K.)
| | - Réka Bogáti
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (B.B.); (R.B.); (É.K.)
| | - Péter Szűcs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (Z.H.); (P.S.)
| | - Zoltán Papp
- Department of Cardiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (L.B.); (Z.P.)
| | - Éva Katona
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (B.B.); (R.B.); (É.K.)
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Science, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.P.); (B.B.); (R.B.); (É.K.)
| |
Collapse
|
3
|
Slotabec L, Seale B, Wang H, Wen C, Filho F, Rouhi N, Adenawoola MI, Li J. Platelets at the intersection of inflammation and coagulation in the APC-mediated response to myocardial ischemia/reperfusion injury. FASEB J 2024; 38:e23890. [PMID: 39143722 PMCID: PMC11373610 DOI: 10.1096/fj.202401128r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Thromboinflammation is a complex pathology associated with inflammation and coagulation. In cases of cardiovascular disease, in particular ischemia-reperfusion injury, thromboinflammation is a common complication. Increased understanding of thromboinflammation depends on an improved concept of the mechanisms of cells and proteins at the axis of coagulation and inflammation. Among these elements are activated protein C and platelets. This review summarizes the complex interactions of activated protein C and platelets regulating thromboinflammation in cardiovascular disease. By unraveling the pathways of platelets and APC in the inflammatory and coagulation cascades, this review summarizes the role of these vital mediators in the development and perpetuation of heart disease and the thromboinflammation-driven complications of cardiovascular disease. Furthermore, this review emphasizes the significance of the counteracting effects of platelets and APC and their combined role in disease states.
Collapse
Affiliation(s)
- Lily Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| | - Blaise Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael I Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
4
|
Liu Y, Cai M, Chen Y, Wu G, Li S, Chen Z. Validation for the function of protein C in mouse models. PeerJ 2024; 12:e17261. [PMID: 38680896 PMCID: PMC11055512 DOI: 10.7717/peerj.17261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
Objectives Protein C (PC) is an anticoagulant that is encoded by the PROC gene. Validation for the function of PC was carried out in mouse models. Methods In this study, autosomal recessive PC deficiency (PCD) was selected as the target, and the specific mutation site was chromosome 2 2q13-q14, PROC c.1198G>A (p.Gly400Ser) which targets G399S (GGT to AGC) in mouse models. To investigate the role of hereditary PC in mice models, we used CRISPR/Cas9 gene editing technology to create a mouse model with a genetic PCD mutation. Results The two F0 generation positive mice produced using the CRISPR/Cas9 gene editing technique were chimeras, and the mice in F1 and F2 generations were heterozygous. There was no phenotype of spontaneous bleeding or thrombosis in the heterozygous mice, but some of them were blind. Blood routine results showed no significant difference between the heterozygous mice and wild-type mice (P > 0.05). Prothrombin time (PT), activated partial thromboplastin time (APTT), and thrombin time (TT) were prolonged in the heterozygous mice, while the level of fibrinogen content (FIB) decreased, suggesting secondary consumptive coagulation disease. The protein C activity of heterozygous mice was significantly lower than that of wild-type mice (P < 0.001), but there was no significant difference in protein C antigen levels (P > 0.05). H&E staining showed steatosis and hydrodegeneration in the liver of heterozygous mice. Necrosis and exfoliated epithelial cells could be observed in renal tubule lumen, forming cell or granular tubules. Hemosiderin deposition was found in the spleen along with splenic hemorrhage. Immunohistochemistry demonstrated significant fibrin deposition in the liver, spleen, and kidney of heterozygous mice. Conclusion In this study, heterozygotes of the mouse model with a PC mutation were obtained. The function of PC was then validated in a mouse model through genotype, phenotype, and PC function analysis.
Collapse
Affiliation(s)
- Ya Liu
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Maoping Cai
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Chen
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Guocai Wu
- Department of Hematology, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Songyu Li
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Central People’s Hospital of Zhanjiang, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
5
|
Huckriede JB, Beurskens DMH, Wildhagen KCCA, Reutelingsperger CPM, Wichapong K, Nicolaes GAF. Design and characterization of novel activated protein C variants for the proteolysis of cytotoxic extracellular histone H3. J Thromb Haemost 2023; 21:3557-3567. [PMID: 37657561 DOI: 10.1016/j.jtha.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Extracellular histone H3 is implicated in several pathologies including inflammation, cell death, and organ failure. Neutralization of histone H3 is a strategy that was shown beneficial in various diseases, such as rheumatoid arthritis, myocardial infarction, and sepsis. It was shown that activated protein C (APC) can cleave histone H3, which reduces histone cytotoxicity. However, due to the anticoagulant properties of APC, the use of APC is not optimal for the treatment of histone-mediated cytotoxicity, in view of its associated bleeding side effects. OBJECTIVES This study aimed to investigate the detailed molecular interactions between human APC and human histone H3, and subsequently use molecular docking and molecular dynamics simulation methods to identify key interacting residues that mediate the interaction between APC and histone H3 and to generate novel optimized APC variants. METHODS After molecular simulations, the designed APC variants 3D2D-APC (Lys37-39Asp and Lys62-63Asp) and 3D2D2A-APC (Lys37-39Asp, Lys62-63Asp, and Arg74-75Ala) were recombinantly expressed and their abilities to function as anticoagulant, to bind histones, and to cleave histones were tested and correlated with their cytoprotective properties. RESULTS Compared with wild type-APC, both the 3D2D-APC and 3D2D2A-APC variants showed a significantly decreased anticoagulant activity, increased binding to histone H3, and similar ability to proteolyze histone H3. CONCLUSIONS Our data show that it is possible to rationally design APC variants that may be further developed into therapeutic biologicals to treat histone-mediated disease, by proteolytic reduction of histone-associated cytotoxic properties that do not induce an increased bleeding risk.
Collapse
Affiliation(s)
- Joram B Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Daniëlle M H Beurskens
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Karin C C A Wildhagen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Chris P M Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Kanin Wichapong
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
6
|
An engineered activated factor V for the prevention and treatment of acute traumatic coagulopathy and bleeding in mice. Blood Adv 2021; 6:959-969. [PMID: 34861695 PMCID: PMC8945312 DOI: 10.1182/bloodadvances.2021005257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
superFVa arrests severe bleeding and prevents the development of ATC after trauma. superFVa therapy restores functional hemostasis when initiated after onset of ATC caused by traumatic bleeding.
Acute traumatic coagulopathy (ATC) occurs in approximately 30% of patients with trauma and is associated with increased mortality. Excessive generation of activated protein C (APC) and hyperfibrinolysis are believed to be driving forces for ATC. Two mouse models were used to investigate whether an engineered activated FV variant (superFVa) that is resistant to inactivation by APC and contains a stabilizing A2-A3 domain disulfide bond can reduce traumatic bleeding and normalize hemostasis parameters in ATC. First, ATC was induced by the combination of trauma and shock. ATC was characterized by activated partial thromboplastin time (APTT) prolongation and reductions of factor V (FV), factor VIII (FVIII), and fibrinogen but not factor II and factor X. Administration of superFVa normalized the APTT, returned FV and FVIII clotting activity levels to their normal range, and reduced APC and thrombin-antithrombin (TAT) levels, indicating improved hemostasis. Next, a liver laceration model was used where ATC develops as a consequence of severe bleeding. superFVa prophylaxis before liver laceration reduced bleeding and prevented APTT prolongation, depletion of FV and FVIII, and excessive generation of APC. Thus, prophylactic administration of superFVa prevented the development of ATC. superFVa intervention started after the development of ATC stabilized bleeding, reversed prolonged APTT, returned FV and FVIII levels to their normal range, and reduced TAT levels that were increased by ATC. In summary, superFVa prevented ATC and traumatic bleeding when administered prophylactically, and superFVa stabilized bleeding and reversed abnormal hemostasis parameters when administered while ATC was in progress. Thus, superFVa may be an attractive strategy to intercept ATC and mitigate traumatic bleeding.
Collapse
|
7
|
Reda S, Rühl H, Witkowski J, Müller J, Pavlova A, Oldenburg J, Pötzsch B. PC Deficiency Testing: Thrombin-Thrombomodulin as PC Activator and Aptamer-Based Enzyme Capturing Increase Diagnostic Accuracy. Front Cardiovasc Med 2021; 8:755281. [PMID: 34708097 PMCID: PMC8542722 DOI: 10.3389/fcvm.2021.755281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/12/2021] [Indexed: 11/30/2022] Open
Abstract
Protein C (PC) activity tests are routinely performed in a thrombophilia workup to screen for PC deficiency. Currently used tests combine conversion of PC to activated PC (APC) by the snake venom Protac with subsequent APC detection through hydrolysis of a chromogenic peptide substrate or prolongation of a clotting time. In this prospective cohort study, we analyzed how different modes of PC activation and subsequent APC determination influence the diagnostic accuracy of PC activity testing in a cohort of 31 patients with genetically confirmed PC deficiency. In addition to chromogenic and clot-based measurement, an oligonucleotide-based enzyme capture assay utilizing a basic exosite-targeting aptamer was used for APC detection. To study the influence of the PC activation step on diagnostic sensitivity, PC activation through Protac and through the thrombin-thrombomodulin (TM) complex were compared. Twenty-six (84%) and 24 (77%) PC deficient patients were identified as true-positive using the chromogenic and the clot-based PC activity assay, respectively. True-positive results increased to 27 (87%) when the basic exosite-targeting aptamer approach was used for APC measurement. Additional replacement of the PC activator Protac by thrombin-TM gave true-positive results in all patients. These data indicate that the mode of PC activation is crucial in determining the accuracy of PC activity testing and that diagnostic sensitivity can be significantly improved by replacing the PC activator Protac with thrombin-TM. APC detection using a basic exosite-targeting aptamer achieves high sensitivity toward mutations outside the active center while being less subject to interfering factors than clot-based PC activity assays.
Collapse
Affiliation(s)
- Sara Reda
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Heiko Rühl
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Jana Witkowski
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Anna Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Kato Y, Nishida O, Kuriyama N, Nakamura T, Kawaji T, Onouchi T, Hasegawa D, Shimomura Y. Effects of Thrombomodulin in Reducing Lethality and Suppressing Neutrophil Extracellular Trap Formation in the Lungs and Liver in a Lipopolysaccharide-Induced Murine Septic Shock Model. Int J Mol Sci 2021; 22:4933. [PMID: 34066510 PMCID: PMC8124404 DOI: 10.3390/ijms22094933] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Neutrophil extracellular trap (NET) formation, an innate immune system response, is associated with thrombogenesis and vascular endothelial injury. Circulatory disorders due to microvascular thrombogenesis are one of the principal causes of organ damage. NET formation in organs contributes to the exacerbation of sepsis, which is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. We have previously reported that recombinant human soluble thrombomodulin (rTM) reduces lipopolysaccharide (LPS)-induced NET formation in vitro. Here, we aimed to show that thrombomodulin (TM)-mediated suppression of NET formation protects against organ damage in sepsis. Mice were injected intraperitoneally (i.p.) with 10 mg/kg LPS. rTM (6 mg/kg/day) or saline was administered i.p. 1 h after LPS injection. In the LPS-induced murine septic shock model, extracellular histones, which are components of NETs, were observed in the liver and lungs. In addition, the serum cytokine (interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), macrophage chemotactic protein-1 (MCP-1), and interleukin-10 (IL-10)) levels were increased. The administration of rTM in this model prevented NET formation in the organs and suppressed the increase in the levels of all cytokines except IL-1β. Furthermore, the survival rate improved. We provide a novel role of TM in treating inflammation and NETs in organs during sepsis.
Collapse
Affiliation(s)
- Yu Kato
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; (Y.K.); (O.N.); (N.K.); (T.N.); (T.K.); (D.H.)
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; (Y.K.); (O.N.); (N.K.); (T.N.); (T.K.); (D.H.)
| | - Naohide Kuriyama
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; (Y.K.); (O.N.); (N.K.); (T.N.); (T.K.); (D.H.)
| | - Tomoyuki Nakamura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; (Y.K.); (O.N.); (N.K.); (T.N.); (T.K.); (D.H.)
| | - Takahiro Kawaji
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; (Y.K.); (O.N.); (N.K.); (T.N.); (T.K.); (D.H.)
| | - Takanori Onouchi
- Center for Joint Research Facilities Support, Research Promotion and Support Headquarters, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan;
| | - Daisuke Hasegawa
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; (Y.K.); (O.N.); (N.K.); (T.N.); (T.K.); (D.H.)
| | - Yasuyo Shimomura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan; (Y.K.); (O.N.); (N.K.); (T.N.); (T.K.); (D.H.)
| |
Collapse
|
9
|
Platelet protein S limits venous but not arterial thrombosis propensity by controlling coagulation in the thrombus. Blood 2021; 135:1969-1982. [PMID: 32276277 DOI: 10.1182/blood.2019003630] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Anticoagulant protein S (PS) in platelets (PSplt) resembles plasma PS and is released on platelet activation, but its role in thrombosis has not been elucidated. Here we report that inactivation of PSplt expression using the Platelet factor 4 (Pf4)-Cre transgene (Pros1lox/loxPf4-Cre+) in mice promotes thrombus propensity in the vena cava, where shear rates are low, but not in the carotid artery, where shear rates are high. At a low shear rate, PSplt functions as a cofactor for both activated protein C and tissue factor pathway inhibitor, thereby limiting factor X activation and thrombin generation within the growing thrombus and ensuring that highly activated platelets and fibrin remain localized at the injury site. In the presence of high thrombin concentrations, clots from Pros1lox/loxPf4-Cre- mice contract, but not clots from Pros1lox/loxPf4-Cre+ mice, because of highly dense fibrin networks. Thus, PSplt controls platelet activation as well as coagulation in thrombi in large veins, but not in large arteries.
Collapse
|
10
|
Hopp MT, Alhanafi N, Paul George AA, Hamedani NS, Biswas A, Oldenburg J, Pötzsch B, Imhof D. Molecular Insights and Functional Consequences of the Interaction of Heme with Activated Protein C. Antioxid Redox Signal 2021; 34:32-48. [PMID: 32705892 DOI: 10.1089/ars.2019.7992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aims: In hemolysis, which is accompanied by increased levels of labile redox-active heme and is often associated with hemostatic abnormalities, a decreased activity of activated protein C (APC) is routinely detected. APC is a versatile enzyme that exerts its anticoagulant function through inactivation of clotting factors Va and VIIIa. APC has not been demonstrated to be affected by heme as described for other clotting factors and, thus, is a subject of investigation. Results: We report the interaction of heme with APC and its impact on the protein function by employing spectroscopic and physiologically relevant methods. Binding of heme to APC results in inhibition of its amidolytic and anticoagulant activity, increase of the peroxidase-like activity of heme, and protection of human umbilical vein endothelial cells from heme-induced hyperpermeability. To define the sites that are responsible for heme binding, we mapped the surface of APC for potential heme-binding motifs. T285GWGYHSSR293 and W387IHGHIRDK395, both located on the basic exosite, turned out as potential heme-binding sites. Molecular docking employing a homology model of full-length APC indicated Tyr289 and His391 as the Fe(III)-coordinating amino acids. Innovation: The results strongly suggest that hemolysis-derived heme may directly influence the protein C pathway through binding to APC, conceivably explaining the decreased activity of APC under hemolytic conditions. Further, these results extend our understanding of heme as a multifaceted effector molecule within coagulation and may allow for an improved understanding of disease development in hemostasis under hemolytic conditions. Conclusion: Our study identifies APC as a heme-binding protein and provides insights into the functional consequences.
Collapse
Affiliation(s)
- Marie-Thérèse Hopp
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Nour Alhanafi
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Ajay Abisheck Paul George
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Nasim Shahidi Hamedani
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Bernd Pötzsch
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Liu Y, Bastiaan-Net S, Wichers HJ. Current Understanding of the Structure and Function of Fungal Immunomodulatory Proteins. Front Nutr 2020; 7:132. [PMID: 33015115 PMCID: PMC7461872 DOI: 10.3389/fnut.2020.00132] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
Fungal immunomodulatory proteins (FIPs) are a group of proteins found in fungi, which are extensively studied for their immunomodulatory activity. Currently, more than 38 types of FIPs have been described. Based on their conserved structure and protein identity, FIPs can be classified into five subgroups: Fve-type FIPs (Pfam PF09259), Cerato-type FIPs (Pfam PF07249), PCP-like FIPs, TFP-like FIPs, and unclassified FIPs. Among the five subgroups, Fve-type FIPs are the most studied for their hemagglutinating, immunomodulating, and anti-cancer properties. In general, these small proteins consist of 110–125 amino acids, with a molecular weight of ~13 kDa. The other four subgroups are relatively less studied, but also show a noticeable influence on immune cells. In this review, we summarized the protein modifications, 3-dimensional structures and bioactivities of all types of FIPs. Moreover, structure-function relationship of FIPs has been discussed, including relationship between carbohydrate binding module and hemagglutination, correlation of oligomerization and cytokine induction, relevance of glycosylation and lymphocyte activation. This summary and discussion may help gain comprehensive understanding of FIPs' working mechanisms and scope future studies.
Collapse
Affiliation(s)
- Yusi Liu
- Laboratory of Food Enzyme Engineering, Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, China.,Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| | - Shanna Bastiaan-Net
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | - Harry J Wichers
- Wageningen Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Laboratory of Food Chemistry, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
12
|
Yamashita A, Zhang Y, Sanner MF, Griffin JH, Mosnier LO. C-terminal residues of activated protein C light chain contribute to its anticoagulant and cytoprotective activities. J Thromb Haemost 2020; 18:1027-1038. [PMID: 32017367 PMCID: PMC7380734 DOI: 10.1111/jth.14756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Activated protein C (APC) is an important homeostatic blood coagulation protease that conveys anticoagulant and cytoprotective activities. Proteolytic inactivation of factors Va and VIIIa facilitated by cofactor protein S is responsible for APC's anticoagulant effects, whereas cytoprotective effects of APC involve primarily the endothelial protein C receptor (EPCR), protease activated receptor (PAR)1 and PAR3. OBJECTIVE To date, several binding exosites in the protease domain of APC have been identified that contribute to APC's interaction with its substrates but potential contributions of the C-terminus of the light chain have not been studied in detail. METHODS Site-directed Ala-scanning mutagenesis of six positively charged residues within G142-L155 was used to characterize their contributions to APC's anticoagulant and cytoprotective activities. RESULTS AND CONCLUSIONS K151 was involved in protein S dependent-anticoagulant activity of APC with some contribution of K150. 3D structural analysis supported that these two residues were exposed in an extended protein S binding site on one face of APC. Both K150 and K151 were important for PAR1 and PAR3 cleavage by APC, suggesting that this region may also mediate interactions with PARs. Accordingly, APC's cytoprotective activity as determined by endothelial barrier protection was impaired by Ala substitutions of these residues. Thus, both K150 and K151 are involved in APC's anticoagulant and cytoprotective activities. The differential contribution of K150 relative to K151 for protein S-dependent anticoagulant activity and PAR cleavage highlights that binding exosites for protein S binding and for PAR cleavage in the C-terminal region of APC's light chain overlap.
Collapse
Affiliation(s)
- Atsuki Yamashita
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Yuqi Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla
| | - Michel F. Sanner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla
| | - John H. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O. Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
13
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Activated protein C (APC) is a homeostatic coagulation protease with anticoagulant and cytoprotective activities. Focusing on APC's effects in the brain, this review discusses three different scenarios that illustrate how APC functions are intimately affecting the physiology and pathophysiology of the brain. RECENT FINDINGS Cytoprotective APC therapy holds promise for the treatment of ischemic stroke, and a recently completed trial suggested that cytoprotective-selective 3K3A-APC reduced bleeding in ischemic stroke patients. In contrast, APC's anticoagulant activity contributes to brain bleeding as shown by the disproportional upregulation of APC generation in cerebral cavernous malformations lesions in mice. However, too little APC generation also contributes to maladies of the brain, such as in case of cerebral malaria where the binding of infected erythrocytes to the endothelial protein C receptor (EPCR) may interfere with the EPCR-dependent functions of the protein C pathway. Furthermore, discoveries of new activities of APC such as the inhibition of the NLRP3-mediated inflammasome and of new applications of APC therapy such as in Alzheimer's disease and graft-versus-host disease continue to advance our knowledge of this important proteolytic regulatory system. SUMMARY APC's many activities or lack thereof are intimately involved in multiple neuropathologies, providing abundant opportunities for translational research.
Collapse
|
15
|
Activated protein C light chain provides an extended binding surface for its anticoagulant cofactor, protein S. Blood Adv 2017; 1:1423-1426. [PMID: 29296783 DOI: 10.1182/bloodadvances.2017007005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/02/2017] [Indexed: 12/13/2022] Open
Abstract
Protein S anticoagulant cofactor sensitivity and PAR1 cleavage activity were assayed for 9 recombinant APC mutants.Residues L38, K43, I73, F95, and W115 on one face of the APC light chain define an extended surface containing the protein S binding site.
Collapse
|
16
|
Griffin JH, Fernández JA, Lyden PD, Zlokovic BV. Activated protein C promotes neuroprotection: mechanisms and translation to the clinic. Thromb Res 2017; 141 Suppl 2:S62-4. [PMID: 27207428 DOI: 10.1016/s0049-3848(16)30368-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Activated protein C (APC) is a plasma serine protease that is capable of antithrombotic, anti-inflammatory, anti-apoptotic, and cell-signaling activities. Animal injury studies show that recombinant APC and some of its mutants are remarkably therapeutic for a wide range of injuries. In particular, for neurologic injuries, APC reduces damage caused by ischemia/reperfusion in the brain, by acute brain trauma, and by chronic neurodegenerative conditions. For these neuroprotective effects, APC requires endothelial cell protein C receptor. APC activates cell signaling networks with alterations in gene expression profiles by activating protease activated receptors 1 and 3. To minimize APC-induced bleeding risk, APC variants were engineered to lack > 90% anticoagulant activity but retain normal cell signaling. The neuroprotective APC mutant, 3K3A-APC which has Lys191-193 mutated to Ala191-193, is very neuroprotective and it is currently in clinical trials for ischemic stroke.
Collapse
Affiliation(s)
- John H Griffin
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Hematology/Oncology, University of California San Diego, San Diego, CA, USA.
| | - José A Fernández
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Patrick D Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Neurosurgery, University of Southern California, Keck School of Medicine, Los Angeles, CA; Department of Neurosurgery, Zilkha Neurogenetic Institute, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
17
|
Wong VM, Côté O, Bienzle D, Hayes MA, Wood RD. Endothelial protein C receptor-dependent antichemotactic effects of canine protein C. Am J Vet Res 2017; 78:186-194. [PMID: 28140640 DOI: 10.2460/ajvr.78.2.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether canine protein C (CnPC) had antichemotactic effects on canine neutrophils, whether endothelial protein C receptor (EPCR) was expressed on canine neutrophils, and the role of EPCR in neutrophil chemotaxis. SAMPLE Neutrophils isolated from blood samples from healthy dogs (n = 6) and sick dogs with (2) or without (3) an inflammatory leukogram. PROCEDURES Neutrophils were analyzed by reverse transcriptase PCR assay and flow cytometry for detection of EPCR mRNA and protein expression, respectively. Neutrophils were incubated with CnPC zymogen or canine activated protein C (CnAPC), with or without RCR-379 (an anti-human EPCR antibody). Neutrophils were then allowed to migrate through a filter membrane toward a chemokine. Untreated neutrophils served as positive control samples. Migration was quantified by fluorescence measurement, and chemotaxis index (Chx) values (fluorescence of test sample/fluorescence of positive control sample) were computed. RESULTS The cDNA for EPCR was amplified, and EPCR expression was detected on neutrophil surfaces. Obtained Chx values were significantly higher in cells treated with RCR-379 than in cells treated with CnPC or CnAPC alone. The Chx values for neutrophils treated with RCR-379 were not significantly different from 1, whereas those for neutrophils treated without RCR-379 were significantly less than 1. The effects of RCR-379 on neutrophil migration were independent of concentration or activation status of protein C. CONCLUSIONS AND CLINICAL RELEVANCE Canine neutrophils expressed EPCR, and inhibition of neutrophil chemotaxis by CnPC and CnAPC depended on EPCR. Interventions with EPCR signaling may have therapeutic application in dogs.
Collapse
|
18
|
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Sydney Medical School, Royal North Shore Hospital, The University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Engineering, The University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
19
|
Griffin JH, Mosnier LO, Fernández JA, Zlokovic BV. 2016 Scientific Sessions Sol Sherry Distinguished Lecturer in Thrombosis: Thrombotic Stroke: Neuroprotective Therapy by Recombinant-Activated Protein C. Arterioscler Thromb Vasc Biol 2016; 36:2143-2151. [PMID: 27758767 PMCID: PMC5119536 DOI: 10.1161/atvbaha.116.308038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
APC (activated protein C), derived from the plasma protease zymogen, is antithrombotic and anti-inflammatory. In preclinical injury models, recombinant APC provides neuroprotection for multiple injuries, including ischemic stroke. APC acts directly on brain endothelial cells and neurons by initiating cell signaling that requires multiple receptors. Two or more major APC receptors mediate APC's neuroprotective cell signaling. When bound to endothelial cell protein C receptor, APC can cleave protease-activated receptor 1, causing biased cytoprotective signaling that reduces ischemia-induced injury. Pharmacological APC alleviates bleeding induced by tissue-type plasminogen activator in murine ischemic stroke studies. Remarkably, APC's signaling promotes neurogenesis. The signaling-selective recombinant variant of APC, 3K3A-APC, was engineered to lack most of the APC's anticoagulant activity but retain APC's cell signaling actions. Recombinant 3K3A-APC is in ongoing National Institutes of Health (NIH)-funded clinical trials for ischemic stroke.
Collapse
Affiliation(s)
- John H Griffin
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G., L.O.M., J.A.F.); Division of Hematology/Oncology, Department of Medicine, University of California, San Diego (J.H.G.); and Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles (B.V.Z.).
| | - Laurent O Mosnier
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G., L.O.M., J.A.F.); Division of Hematology/Oncology, Department of Medicine, University of California, San Diego (J.H.G.); and Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles (B.V.Z.)
| | - José A Fernández
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G., L.O.M., J.A.F.); Division of Hematology/Oncology, Department of Medicine, University of California, San Diego (J.H.G.); and Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles (B.V.Z.)
| | - Berislav V Zlokovic
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA (J.H.G., L.O.M., J.A.F.); Division of Hematology/Oncology, Department of Medicine, University of California, San Diego (J.H.G.); and Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles (B.V.Z.)
| |
Collapse
|
20
|
Wang Z, Wang T, Chang J, Li H, Wang C, Li Y, Lang X, Jing S, Zhang G, Wang Y. Genetic association of PROC variants with pulmonary embolism in Northern Chinese Han population. SPRINGERPLUS 2016; 5:147. [PMID: 27026844 PMCID: PMC4764599 DOI: 10.1186/s40064-016-1801-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/12/2016] [Indexed: 11/10/2022]
Abstract
To evaluate SNPs (single nucleotide polymorphism) in PROC (protein C gene) associated with pulmonary embolism (PE) susceptibility in North Chinese Han population. A case-control study design was used, and patients with PE and healthy participants were enrolled from the Emerging Department of the several hospitals in Weifang, Shandong, China. SNPs in PROC were genotyped using Mass ARRAY system. The allele frequency of rs199469469 was significantly different between PE patients and the control [OR (95 % CI) = 5.00 (1.66-15.12), P = 0.004], and the difference remained significantly after controlling for age and gender [OR (95 % CI) = 5.34 (1.47-19.39), P = 0.011). The G(del)G in the haplotype includes rs1799809|rs199469469|rs2069928 was of a significantly difference (P = 0.016) among PE patients and the controls, and remained significant (P = 0.015) after adjustment for age and sex. Our study reports that PROC SNPs (rs199469469) might be associated with PE susceptibility, with the G allele of rs199469469 serving as the protective factors for incidence of PE. These findings may contribute to the understanding and primary prevention of PE.
Collapse
Affiliation(s)
- Zengliang Wang
- Department of Thorax, Anqiu People's Hospital, Weifang, 262100 China
| | - Tianhe Wang
- Department of Brain EMG, Anqiu People's Hospital, Weifang, 262100 China
| | - Jianyong Chang
- Department of Neurosurgery, Weifang People's Hospital, Weifang, 261021 China
| | - Hua Li
- Department of Neurology, Anqiu People's Hospital, Weifang, 262100 China
| | - Chengdong Wang
- Key Laboratory of Weifang Brain Hospital, Weifang People's Hospital, Weifang, 261021 China
| | - Yongyong Li
- Department of Surgery, Anqiu Municipal Hospital, Weifang, 262100 China
| | - Xuhe Lang
- Department of Nephrology, Anqiu People's Hospital, Weifang, 262100 China
| | - Shimei Jing
- Department of Neurosurgery, Weifang People's Hospital, Weifang, 261021 China
| | - Guoqing Zhang
- Department of Neurosurgery, People's Hospital of Weifang High Tech Industry Development Zone, Weifang, 261041 China
| | - Yuting Wang
- Department of Neurosurgery, Weifang People's Hospital, Weifang, 261021 China
| |
Collapse
|
21
|
Chahal G, Thorpe M, Hellman L. The Importance of Exosite Interactions for Substrate Cleavage by Human Thrombin. PLoS One 2015; 10:e0129511. [PMID: 26110612 PMCID: PMC4482499 DOI: 10.1371/journal.pone.0129511] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Thrombin is a serine protease of the chymotrypsin family that acts both as a procoagulant and as an anticoagulant by cleaving either factor VIII, factor V and fibrinogen or protein C, respectively. Numerous previous studies have shown that electropositive regions at a distance from the active site, so called exosites, are of major importance for the cleavage by human thrombin. Upstream of all the known major cleavage sites for thrombin in factor VIII, factor V and fibrinogen are clusters of negatively charged amino acids. To study the importance of these sites for the interaction with the exosites and thereby the cleavage by thrombin, we have developed a new type of recombinant substrate. We have compared the cleavage rate of the minimal cleavage site, involving only 8-9 amino acids (typically the P4-P4' positions) surrounding the cleavage site, with the substrates also containing the negatively charged regions upstream of the cleavage sites. The results showed that addition of these regions enhanced the cleavage rate by more than fifty fold. However, the enhancement was highly dependent on the sequence of the actual cleavage site. A minimal site that showed poor activity by itself could be cleaved as efficiently as an optimal cleavage site when presented together with these negatively charged regions. Whereas sites conforming closely to the optimal site were only minimally enhanced by the addition of these regions. The possibility to mimic this interaction for the sites in factor V and factor VIII by recombinant substrates, which do not have the same folding as the full size target, indicates that the enhancement was primarily dependent on a relatively simple electrostatic interaction. However, the situation was very different for fibrinogen and protein C where other factors than only charge is of major importance.
Collapse
Affiliation(s)
- Gurdeep Chahal
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
22
|
Kovács KB, Pataki I, Bárdos H, Fekete A, Pfliegler G, Haramura G, Gindele R, Komáromi I, Balla G, Ádány R, Muszbek L, Bereczky Z. Molecular characterization of p.Asp77Gly and the novel p.Ala163Val and p.Ala163Glu mutations causing protein C deficiency. Thromb Res 2015; 135:718-26. [DOI: 10.1016/j.thromres.2015.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/17/2014] [Accepted: 01/11/2015] [Indexed: 11/29/2022]
|
23
|
Liu H, Wang HF, Tang L, Yang Y, Wang QY, Zeng W, Wu YY, Cheng ZP, Hu B, Guo T, Hu Y. Compound heterozygous protein C deficiency in a family with venous thrombosis: Identification and in vitro study of p.Asp297His and p.Val420Leu mutations. Gene 2015; 563:35-40. [PMID: 25748729 DOI: 10.1016/j.gene.2015.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 02/05/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Hereditary protein C deficiency (PCD) is an autosomal inherited disorder associated with high risk for venous thromboembolism (VTE). This study aimed to explore the functional consequences of two missense mutations, p.Asp297His and p.Val420Ile, responsible for type I/II PCD and recurrent deep vein thrombosis (DVT) in a Chinese family. The plasma protein C activities (PC:A) of the proband and his sister were reduced to 4% and 5% of normal activity. However, protein C antigen (PC:Ag) concentrations were not equally decreased, with levels of 90.5% and 88.7%, respectively. Two missense mutations p.Asp297His and p.Val420Leu were identified in the protein C gene (PROC). The PC:A and PC:Ag levels in heterozygous state for p.Asp297His were 66% and 64.8%, whereas in heterozygous state for p.Val420Leu, these levels were 67% and 145%, respectively. Wild type (WT) and two mutant PROC cDNA expression plasmids were constructed and transfected into HEK 293T cells. Western blot analysis revealed that both p.Asp297His and p.Val420Leu showed a normal intracellular protein level. The extracellular protein level and specific activity of p.Asp297His were equally reduced to 37.7 ± 4.3% and 22.1 ± 2.5%, respectively. Mutant p.Val420Leu showed a relatively higher PC:Ag level and undetectable PC:A. Immunofluorescence staining revealed that WT and p.Val420Leu proteins were largely co-localized with both the protein disulfide isomerase (PDI) and cis-Golgi Marker (GM130), while the PC p.Asp297His mutant protein was mainly co-localized with PDI and much less co-localized with GM130. The thrombosis symptom in this family was associated with the two missense mutations in the PROC gene.
Collapse
Affiliation(s)
- Hui Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Hua-Fang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Liang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China.
| | - Yan Yang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Qing-Yun Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Wei Zeng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Ying-Ying Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Zhi-Peng Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Bei Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Tao Guo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, China.
| |
Collapse
|
24
|
Mosnier LO, Zlokovic BV, Griffin JH. Cytoprotective-selective activated protein C therapy for ischaemic stroke. Thromb Haemost 2014; 112:883-92. [PMID: 25230930 DOI: 10.1160/th14-05-0448] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Abstract
Despite years of research and efforts to translate stroke research to clinical therapy, ischaemic stroke remains a major cause of death, disability, and diminished quality of life. Primary and secondary preventive measures combined with improved quality of care have made significant progress. However, no novel drug for ischaemic stroke therapy has been approved in the past decade. Numerous studies have shown beneficial effects of activated protein C (APC) in rodent stroke models. In addition to its natural anticoagulant functions, APC conveys multiple direct cytoprotective effects on many different cell types that involve multiple receptors including protease activated receptor (PAR) 1, PAR3, and the endothelial protein C receptor (EPCR). Application of molecular engineered APC variants with altered selectivity profiles to rodent stroke models demonstrated that the beneficial effects of APC primarily require its cytoprotective activities but not its anticoagulant activities. Extensive basic, preclinical, and clinical research provided a compelling rationale based on strong evidence for translation of APC therapy that has led to the clinical development of the cytoprotective-selective APC variant, 3K3A-APC, for ischaemic stroke. Recent identification of non-canonical PAR1 and PAR3 activation by APC that give rise to novel tethered-ligands capable of inducing biased cytoprotective signalling as opposed to the canonical signalling provides a mechanistic explanation for how APC-mediated PAR activation can selectively induce cytoprotective signalling pathways. Collectively, these paradigm-shifting discoveries provide detailed insights into the receptor targets and the molecular mechanisms for neuroprotection by cytoprotective-selective 3K3A-APC, which is currently a biologic drug in clinical trials for ischaemic stroke.
Collapse
Affiliation(s)
- Laurent O Mosnier
- Laurent O. Mosnier, PhD, Department of Molecular and Experimental Medicine (MEM-180), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, USA, Tel.: +1 858 784 2227, Fax: +1 858 784 2243, E-mail:
| | | | | |
Collapse
|
25
|
Sperandio O, Wildhagen KC, Schrijver R, Wielders S, Villoutreix BO, Nicolaes GA. Identification of novel small molecule inhibitors of activated protein C. Thromb Res 2014; 133:1105-14. [DOI: 10.1016/j.thromres.2014.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/07/2014] [Accepted: 01/20/2014] [Indexed: 01/26/2023]
|
26
|
Vadivel K, Agah S, Messer AS, Cascio D, Bajaj MS, Krishnaswamy S, Esmon CT, Padmanabhan K, Bajaj SP. Structural and functional studies of γ-carboxyglutamic acid domains of factor VIIa and activated Protein C: role of magnesium at physiological calcium. J Mol Biol 2013; 425:1961-1981. [PMID: 23454357 PMCID: PMC4017951 DOI: 10.1016/j.jmb.2013.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 02/10/2013] [Accepted: 02/14/2013] [Indexed: 11/28/2022]
Abstract
Crystal structures of factor (F) VIIa/soluble tissue factor (TF), obtained under high Mg(2+) (50mM Mg(2+)/5mM Ca(2+)), have three of seven Ca(2+) sites in the γ-carboxyglutamic acid (Gla) domain replaced by Mg(2+) at positions 1, 4, and 7. We now report structures under low Mg(2+) (2.5mM Mg(2+)/5mM Ca(2+)) as well as under high Ca(2+) (5mM Mg(2+)/45 mM Ca(2+)). Under low Mg(2+), four Ca(2+) and three Mg(2+) occupy the same positions as in high-Mg(2+) structures. Conversely, under low Mg(2+), reexamination of the structure of Gla domain of activated Protein C (APC) complexed with soluble endothelial Protein C receptor (sEPCR) has position 4 occupied by Ca(2+) and positions 1 and 7 by Mg(2+). Nonetheless, in direct binding experiments, Mg(2+) replaced three Ca(2+) sites in the unliganded Protein C or APC. Further, the high-Ca(2+) condition was necessary to replace Mg4 in the FVIIa/soluble TF structure. In biological studies, Mg(2+) enhanced phospholipid binding to FVIIa and APC at physiological Ca(2+). Additionally, Mg(2+) potentiated phospholipid-dependent activations of FIX and FX by FVIIa/TF and inactivation of activated factor V by APC. Since APC and FVIIa bind to sEPCR involving similar interactions, we conclude that under the low-Mg(2+) condition, sEPCR binding to APC-Gla (or FVIIa-Gla) replaces Mg4 by Ca4 with an attendant conformational change in the Gla domain ω-loop. Moreover, since phospholipid and sEPCR bind to FVIIa or APC via the ω-loop, we predict that phospholipid binding also induces the functional Ca4 conformation in this loop. Cumulatively, the data illustrate that Mg(2+) and Ca(2+) act in concert to promote coagulation and anticoagulation.
Collapse
Affiliation(s)
- Kanagasabai Vadivel
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Sayeh Agah
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Amanda S Messer
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, CA 90095, USA
| | - Madhu S Bajaj
- Division of Pulmonology and Critical Care, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Sriram Krishnaswamy
- Department of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charles T Esmon
- Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, OK 73104, USA
| | - Kaillathe Padmanabhan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - S Paul Bajaj
- UCLA/Orthopaedic Hospital Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
27
|
Bouwens EAM, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 2013; 11 Suppl 1:242-53. [PMID: 23809128 PMCID: PMC3713536 DOI: 10.1111/jth.12247] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein C pathway provides multiple important functions to maintain a regulated balance between hemostasis and host defense systems in response to vascular and inflammatory injury. The anticoagulant protein C pathway is designed to regulate coagulation, maintain the fluidity of blood within the vasculature, and prevent thrombosis, whereas the cytoprotective protein C pathway prevents vascular damage and stress. The cytoprotective activities of activated protein C (APC) include anti-apoptotic activity, anti-inflammatory activity, beneficial alterations of gene expression profiles, and endothelial barrier stabilization. These cytoprotective activities of APC, which require the endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR1), have been a major research focus. Recent insights, such as non-canonical activation of PAR1 at Arg46 by APC and biased PAR1 signaling, provided better understanding of the molecular mechanisms by which APC elicits cytoprotective signaling through cleavage of PAR1. The discovery and development of anticoagulant-selective and cytoprotective-selective APC mutants provided unique opportunities for preclinical research that has been and may continue to be translated to clinical research. New mechanisms for the regulation of EPCR functionality, such as modulation of EPCR-bound lipids that affect APC's cytoprotective activities, may provide new research directions to improve the efficacy of APC to convey its cytoprotective activities to cells. Moreover, emerging novel functions for EPCR expand the roles of EPCR beyond mediating protein C activation and APC-induced PAR1 cleavage. These discoveries increasingly develop our understanding of the protein C pathway, which will conceivably expand its physiological implications to many areas in the future.
Collapse
Affiliation(s)
- E A M Bouwens
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
28
|
Lu X, Tang L, Xu K, Ma J, Guo T, Mei H, Yang R, Yu J, Wang Q, Yang Y, Jian X, Hu Y. Novel association of a PROC variant with ischemic stroke in a Chinese Han population. Hum Genet 2012; 132:69-77. [PMID: 22976599 DOI: 10.1007/s00439-012-1225-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/30/2012] [Indexed: 12/25/2022]
Abstract
Protein C (PC) is a well-characterized anticoagulant enzyme. However, the association between PC and ischemic stroke (IS) remains controversial. The aim of the present study was to investigate whether any genetic variant in the human protein C gene (PROC) was associated with susceptibility to IS in the Chinese Han population. All exons and the 5'- and 3'-untranslated regions of PROC were initially sequenced to identify informative variants. Potential abnormal variants were analyzed in a population of 788 IS patients and 1,200 healthy controls. The analysis was stratified by stroke etiology, and the results were replicated in 262 IS patients and 288 healthy controls. Finally, functional studies were performed to evaluate the effects of the variant. A three-nucleotide duplication/deletion variant (c.574_576del) was identified and found to be significantly associated with IS (OR 2.56, 95 % CI 1.45-4.52, P = 0.001). Stratification by stroke etiology after adjustment for IS risk factors showed that this association persisted in the lacunar and cardioembolic subtypes (P < 0.001 and P = 0.008, respectively) but not in the atherothrombotic and undetermined subtypes (P = 0.070 and P = 0.998, respectively). The functional studies showed a significant difference in the anticoagulant activity of PC in c.574_576del carriers and non-carriers (P < 0.001). Our results suggested that the novel PROC c.574_576del variant is a possible genetic determinant of an increased risk of IS and diminished anticoagulant activity of PC.
Collapse
Affiliation(s)
- Xuan Lu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
D'Amato R, Spoladore R, Esposito A, Latib A, Busnardo E, Camici P. Myocardial infarction in the young. Int J Cardiol 2012; 159:154-5. [DOI: 10.1016/j.ijcard.2012.04.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 04/28/2012] [Indexed: 10/28/2022]
|
30
|
Protein C anticoagulant and cytoprotective pathways. Int J Hematol 2012; 95:333-45. [PMID: 22477541 DOI: 10.1007/s12185-012-1059-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/09/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
Plasma protein C is a serine protease zymogen that is transformed into the active, trypsin-like protease, activated protein C (APC), which can exert multiple activities. For its anticoagulant action, APC causes inactivation of the procoagulant cofactors, factors Va and VIIIa, by limited proteolysis, and APC's anticoagulant activity is promoted by protein S, various lipids, high-density lipoprotein, and factor V. Hereditary heterozygous deficiency of protein C or protein S is linked to moderately increased risk for venous thrombosis, while a severe or total deficiency of either protein is linked to neonatal purpura fulminans. In recent years, the beneficial direct effects of APC on cells which are mediated by several specific receptors have become the focus of much attention. APC-induced signaling can promote multiple cytoprotective actions which can minimize injuries in various preclinical animal injury models. Remarkably, pharmacologic therapy using APC demonstrates substantial neuroprotective effects in various murine injury models, including ischemic stroke. This review summarizes the molecules that are central to the protein C pathways, the relationship of pathway deficiencies to venous thrombosis risk, and mechanisms for the beneficial effects of APC.
Collapse
|
31
|
Undas A, Potaczek DP, Nishiyama C, Okumura K. Non-severe allergic asthma is associated with elevated plasma protein C and protein S. Thromb Haemost 2012; 107:1000-2. [PMID: 22371115 DOI: 10.1160/th11-12-0833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/04/2012] [Indexed: 11/05/2022]
|
32
|
Montes R, Puy C, Molina E, Hermida J. Is EPCR a multi-ligand receptor? Pros and cons. Thromb Haemost 2012; 107:815-26. [PMID: 22318610 DOI: 10.1160/th11-11-0766] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/05/2012] [Indexed: 02/06/2023]
Abstract
In the last decade, the endothelial cell protein C/activated protein C receptor (EPCR) has received considerable attention. The role initially attributed to EPCR, i.e. the enhancement of protein C (PC) activation by the thrombin-thrombomodulin complex on the surface of the large vessels, although important, did not go beyond the haemostasis scenario. However, the discovery of the cytoprotective, anti-inflammatory and anti-apoptotic features of the activated PC (APC) and the required involvement of EPCR for APC to exert such actions did place the receptor in a privileged position in the crosstalk between coagulation and inflammation. The last five years have shown that PC/APC are not the only molecules able to interact with EPCR. Factor VII/VIIa (FVII/VIIa) and factor Xa (FXa), two other serine proteases that play a central role in haemostasis and are also involved in signalling processes influencing wound healing, tissue remodelling, inflammation or metastasis, have been reported to bind to EPCR. These observations have paved the way for an exploration of unsuspected new roles for the receptor. This review aims to offer a new image of EPCR in the light of its extended panel of ligands. A brief update of what is known about the APC-evoked EPCR-dependent cell signalling mechanisms is provided, but special care has been taken to assemble all the information available about the interaction of EPCR with FVII/VIIa and FXa.
Collapse
Affiliation(s)
- Ramón Montes
- Division of Cardiovascular Sciences, Laboratory of Thrombosis and Haemostasis, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|