1
|
Weiss L, Macleod H, Maguire PB. Platelet-derived extracellular vesicles in cardiovascular disease and treatment - from maintaining homeostasis to targeted drug delivery. Curr Opin Hematol 2024:00062752-990000000-00090. [PMID: 39377239 DOI: 10.1097/moh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PURPOSE OF THE REVIEW Cardiovascular disease (CVD) remains a major global health burden. Rising incidences necessitate improved understanding of the pathophysiological processes underlying disease progression to foster the development of novel therapeutic strategies. Besides their well recognized role in CVD, platelet-derived extracellular vesicles (PEVs) mediate inter-organ cross talk and contribute to various inflammatory diseases. RECENT FINDINGS PEVs are readily accessible diagnostic biomarkers that mirror pathophysiological disease progression but also may confer cardioprotective properties. Monitoring the effects of modulation of PEV signatures through pharmacotherapies has also provided novel insights into treatment efficacy. Furthermore, exploiting their inherent ability to infiltrate thrombi, atherosclerotic plaques and solid tumours, PEVs as well as platelet-membrane coated nanoparticles are emerging as novel effective and targeted treatment options for CVD and cancer. SUMMARY Collectively, in-depth characterization of PEVs in various diseases ultimately enhances their use as diagnostic or prognostic biomarkers and potential therapeutic targets, making them clinically relevant candidates to positively impact patient outcomes.
Collapse
Affiliation(s)
- Luisa Weiss
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O'Brien Centre of Science, University College Dublin, Dublin, Ireland
| | - Hayley Macleod
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
| | - Patricia B Maguire
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O'Brien Centre of Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Bernáth-Nagy D, Kalinyaprak MS, Giannitsis E, Ábrahám P, Leuschner F, Frey N, Krohn JB. Circulating extracellular vesicles as biomarkers in the diagnosis, prognosis and therapy of cardiovascular diseases. Front Cardiovasc Med 2024; 11:1425159. [PMID: 39314768 PMCID: PMC11417624 DOI: 10.3389/fcvm.2024.1425159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Cardiovascular disease (CVD) ranks among the primary contributors to worldwide mortality. Hence, the importance of constant research on new circulating biomarkers for the improvement of early diagnosis and prognostication of different CVDs and the development and refinement of therapeutic measures is critical. Extracellular vesicles (EV) have a great potential as diagnostic and prognostic markers, as they represent their parent cell by enclosing cell-specific molecules, which can differ in quality and quantity based on cell state. Assuming that all cell types of the cardiovascular system are capable of releasing EV into circulation, an emerging body of evidence has investigated the potential role of serum- or plasma-derived EV in CVD. Comprehensive research has unveiled alterations in EV quantity and EV-bound cargo in the form of RNA, proteins and lipids in the context of common CVDs such as coronary artery disease, atrial fibrillation, heart failure or inflammatory heart diseases, highlighting their diagnostic and prognostic relevance. In numerous in vitro and in vivo models, EV also showed promising therapeutic potential. However, translation of EV studies to a preclinical or clinical setting has proven to be challenging. This review is intended to provide an overview of the most relevant studies in the field of serum or plasma-derived EV.
Collapse
Affiliation(s)
- Dominika Bernáth-Nagy
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Melek Sükran Kalinyaprak
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Evangelos Giannitsis
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pál Ábrahám
- Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Florian Leuschner
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jona Benjamin Krohn
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
3
|
Wang X, He B. Insight into endothelial cell-derived extracellular vesicles in cardiovascular disease: Molecular mechanisms and clinical implications. Pharmacol Res 2024; 207:107309. [PMID: 39009292 DOI: 10.1016/j.phrs.2024.107309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
The endothelium is crucial in regulating vascular function. Extracellular vesicles (EVs) serve as membranous structures released by cells to facilitate intercellular communication through the delivery of nucleic acids, lipids, and proteins to recipient cells in an paracrine or endocrine manner. Endothelial cell-derived EVs (EndoEVs) have been identified as both biomarkers and significant contributors to the occurrence and progression of cardiovascular disease (CVD). The impact of EndoEVs on CVD is complex and contingent upon the condition of donor cells, the molecular cargo within EVs, and the characteristics of recipient cells. Consequently, elucidating the underlying molecular mechanisms of EndoEVs is crucial for comprehending their contributions to CVD. Moreover, a thorough understanding of the composition and function of EndoEVs is imperative for their potential clinical utility. This review aims provide an up-to-date overview of EndoEVs in the context of physiology and pathophysiology, as well as to discuss their prospective clinical applications.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, China.
| |
Collapse
|
4
|
Napolitano A, Toffanin S, Bulato C, Campello E, Simioni P, Spiezia L. Cryptogenic ischemic stroke in cardiac transthyretin amyloidosis and sinus rhythm: a case report. Front Cardiovasc Med 2024; 11:1386733. [PMID: 38803660 PMCID: PMC11128557 DOI: 10.3389/fcvm.2024.1386733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Cardiac amyloidosis is a group of diseases characterized by the deposition of amyloid fibers in cardiac tissue. Two forms are mainly reported: light chain (AL) and transthyretin (ATTR) amyloidosis. Among the complications of transthyretin amyloidosis there are thrombotic events and, to a lesser extent, hemorrhagic events. The latter are likely caused by perivascular amyloid deposition resulting in capillary fragility, in addition to INR lability during anticoagulant therapy. The onset of thrombotic events may be caused by the high prevalence of atrial fibrillation (AF), mechanical cardiac dysfunction and atrial myopathy observed in patients with transthyretin amyloidosis. It remains unclear why thromboembolic events occur even in patients with sinus rhythm or adequate anticoagulation, though a hypercoagulable state or underlying inflammation may be involved. We report a case of cryptogenic ischemic stroke in an 86-year-old woman with transthyretin amyloidosis and sinus rhythm. Traditional coagulation tests, whole blood rotational thromboelastometry and impedance aggregometry did not show a hypercoagulable state. The thrombin generation assay did not reveal a prothrombotic state. However, the study of extracellular vesicles highlighted underlying immune-mediated endothelial damage likely responsible for the thrombotic diathesis. It could be hypothesized that inflammation plays a role in the hypercoagulability of patients with transthyretin amyloidosis. Larger prospective studies are needed to validate our hypothesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Luca Spiezia
- General Internal Medicine & Thrombotic and Haemorrhagic Diseases Unit, Department of Medicine, Padova University School of Medicine, Padova, Italy
| |
Collapse
|
5
|
Nemecz M, Stefan DS, Comarița IK, Constantin A, Tanko G, Guja C, Georgescu A. Microvesicle-associated and circulating microRNAs in diabetic dyslipidemia: miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 have biomarker potential. Cardiovasc Diabetol 2023; 22:260. [PMID: 37749569 PMCID: PMC10521428 DOI: 10.1186/s12933-023-01988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Circulating MicroRNAs (miRNAs) carried by microvesicles (MVs) have various physiological and pathological functions by post-transcriptional regulation of gene expression being considered markers for many diseases including diabetes and dyslipidemia. We aimed to identify new common miRNAs both in MVs and plasma that could be predictive biomarkers for diabetic dyslipidemia evolution. METHODS For this purpose, plasma from 63 participants in the study (17 type 2 diabetic patients, 17 patients with type 2 diabetes and dyslipidemia, 14 patients with dyslipidemia alone and 15 clinically healthy persons without diabetes or dyslipidemia) was used for the analysis of circulating cytokines, MVs, miRNAs and MV-associated miRNAs. RESULTS The results uncovered three miRNAs, miR-218, miR-132 and miR-143, whose expression was found to be significantly up-regulated in both circulating MVs and plasma from diabetic patients with dyslipidemia. These miRNAs showed significant correlations with important plasma markers, representative of this pathology. Thus, MV/plasma miR-218 was negatively correlated with the levels of erythrocyte MVs, plasma miR-132 was positively connected with MV miR-132 and negatively with uric acid and erythrocyte plasma levels, and plasma miR-143 was negatively related with creatinine levels and diastolic blood pressure. Also, three miRNAs common to MV and plasma, namely miR-21, miR-122, and miR-155, were identified to be down-regulated and up-regulated, respectively, in diabetic dyslipidemia. In addition, MV miR-21 was positively linked with cholesterol plasma levels and plasma miR-21 with TNFα plasma levels, MV miR-122 was negatively correlated with LDL-c levels and plasma miR-122 with creatinine and diastolic blood pressure and positively with MV miR-126 levels, MV miR-155 was positively associated with cholesterol and total MV levels and negatively with HDL-c levels, whereas plasma miR-155 was positively correlated with Il-1β plasma levels and total MV levels and negatively with MV miR-223 levels. CONCLUSIONS In conclusion, miR-218, miR-132, miR-143, and miR-21, miR-122, miR-155 show potential as biomarkers for diabetic dyslipidemia, but there is a need for more in-depth studies. These findings bring new information regarding the molecular biomarkers specific to diabetic dyslipidemia and could have important implications for the treatment of patients affected by this pathology.
Collapse
Affiliation(s)
- Miruna Nemecz
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| | - Diana Simona Stefan
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Ioana Karla Comarița
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Gabriela Tanko
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania
| | - Cristian Guja
- National Institute of Diabetes, Nutrition and Metabolic Disease 'Prof. Dr. Nicolae Constantin Paulescu', Bucharest, Romania
| | - Adriana Georgescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu' of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
6
|
Vilella-Figuerola A, Cordero A, Mirabet S, Muñoz-García N, Suades R, Padró T, Badimon L. Platelet-Released Extracellular Vesicle Characteristics Differ in Chronic and in Acute Heart Disease. Thromb Haemost 2023; 123:892-903. [PMID: 37075787 DOI: 10.1055/s-0043-57017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs), shed in response to cell activation, stress, or injury, are increased in the blood of patients with cardiovascular disease. EVs are characterized by expressing parental-cell antigens, allowing the determination of their cellular origin. Platelet-derived EVs (pEVs) are the most abundant in blood. Although not universally given, EVs generally express phosphatidylserine (PS) in their membrane. OBJECTIVES To investigate pEVs in chronic and acute conditions, such as chronic heart failure (CHF) and first-onset acute coronary syndrome (ACS), in patients treated as per guidelines. METHODS EVs in CHF patients (n = 119), ACS patients (n = 58), their respective controls (non-CHF [n = 21] and non-ACS [n = 24], respectively), and a reference control group (n = 31) were characterized and quantified by flow cytometry, using monoclonal antibodies against platelet antigens, and annexin V (AV) to determine PS exposure. RESULTS CHF patients had higher EVs-PS- numbers, while ACS had predominantly EVs-PS+. In contrast to ACS, CHF patients had significantly reduced numbers of pEVs carrying PECAM and αIIb-integrin epitopes (CD31+/AV+, CD41a+/AV+, and CD31+/CD41a+/AV+), while no differences were observed in P-selectin-rich pEVs (CD62P+/AV+) compared with controls. Additionally, background etiology of CHF (ischemic vs. nonischemic) or ACS type (ST-elevation myocardial infarction [STEMI] vs. non-STEMI [NSTEMI]) did not affect pEV levels. CONCLUSION PS exposure in EV and pEV-release differ between CHF and ACS patients, with tentatively different functional capacities beyond coagulation to inflammation and cross-talk with other cell types.
Collapse
Affiliation(s)
- Alba Vilella-Figuerola
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Alberto Cordero
- Cardiology Department, Hospital Universitario de San Juan, Alicante, Spain
- Unidad de Investigación en Cardiología, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), València, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Sònia Mirabet
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- Heart Failure Group, Cardiology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Natàlia Muñoz-García
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Rosa Suades
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program-ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
- UAB-Chair Cardiovascular Research, Barcelona, Spain
| |
Collapse
|
7
|
Suades R, Vilella-Figuerola A, Padró T, Mirabet S, Badimon L. Red Blood Cells and Endothelium Derived Circulating Extracellular Vesicles in Health and Chronic Heart Failure: A Focus on Phosphatidylserine Dynamics in Vesiculation. Int J Mol Sci 2023; 24:11824. [PMID: 37511585 PMCID: PMC10380787 DOI: 10.3390/ijms241411824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Circulating extracellular microvesicles (cEVs) are characterised by presenting surface antigens of parental cells. Since their biogenesis involves the translocation of phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane, exposed PS has been considered as a recognition hallmark of cEVs. However, not all cEVs externalise PS. In this study, we have phenotypically and quantitatively characterised cEVs by flow cytometry, paying special attention to the proportions of PS in chronic heart failure patients (cHF; n = 119) and a reference non-HF group (n = 21). PS--cEVs were predominantly found in both groups. Parental markers showed differential pattern depending on the PS exposure. Endothelium-derived and connexin 43-rich cEVs were mainly PS--cEVs and significantly increased in cHF. On the contrary, platelet-derived cEVs were mostly PS+ and were increased in the non-HF group. We observed similar levels of PS+- and PS--cEVs in non-HF subjects when analysing immune cell-derived Evs, but there was a subset-specific difference in cHF patients. Indeed, those cEVs carrying CD45+, CD29+, CD11b+, and CD15+ were mainly PS+-cEVs, while those carrying CD14+, CD3+, and CD56+ were mainly PS--cEVs. In conclusion, endothelial and red blood cells are stressed in cHF patients, as detected by a high shedding of cEVs. Despite PS+-cEVs and PS--cEVs representing two distinct cEV populations, their release and potential function as both biomarkers and shuttles for cell communication seem unrelated to their PS content.
Collapse
Affiliation(s)
- Rosa Suades
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Alba Vilella-Figuerola
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sonia Mirabet
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Cardiology Department, Hospital Santa Creu i Sant Pau, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute of Hospital Santa Creu i Sant Pau, IIB Sant Pau, 08049 Barcelona, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
8
|
Di Costanzo A, Indolfi C, Sorrentino S, Esposito G, Spaccarotella CAM. The Effects of Statins, Ezetimibe, PCSK9-Inhibitors, Inclisiran, and Icosapent Ethyl on Platelet Function. Int J Mol Sci 2023; 24:11739. [PMID: 37511498 PMCID: PMC10380733 DOI: 10.3390/ijms241411739] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
This review aims to examine the complex interaction between dyslipidemia, platelet function, and related drug treatments. In particular, the manuscript provides an overview of the effects of major hypolipidemic drugs on platelet function. Indeed, growing evidence supports the view that statins, ezetimibe, PCSK9 inhibitors, inclisiran, and icosapent ethyl also act as antithrombotics. It is known that platelets play a key role not only in the acute phase of coronary syndromes but also in the early phase of atherosclerotic plaque formation. The goal of cholesterol-lowering therapy is to reduce cardiovascular events. The direct effects of cholesterol-lowering drugs are widely described in the literature. Lowering LDL-c (low-density lipoprotein cholesterol) by 1 mmol/L results in a 22-23% reduction in cardiovascular risk. Numerous studies have examined the direct antithrombotic effects of these drugs on platelets, endothelium, monocytes, and smooth muscle cells, and thus, potentially independent of blood LDL-cholesterol reduction. We reviewed in vitro and in vivo studies evaluating the complex interaction between hypercholesterolemia, hypertriglyceridemia, platelet function, and related drug treatments. First, we discussed the role of statins in modulating platelet activation. Discontinuation of statin therapy was associated with increased cardiovascular events with increased ox-LDL, P-selectin, and platelet aggregation. The effect of PCSK9-I (inhibitors of proprotein convertase subtilisin/kexin type 9, PCSK9 involved in the degradation of LDL receptors in the liver) was associated with a statistically significant reduction in platelet reactivity, calculated in P2Y12 reaction units (PRU), in the first 14 days and no difference at 30 days compared to placebo. Finally, in patients with hypertriglyceridemia, the REDUCE-IT study showed that icosapent ethyl (an ethyl ester of eicosapentaenoic acid that reduces triglyceride synthesis and improves triglyceride clearance) resulted in a 25% reduction in ischemic events and cardiovascular death. However, to date, there is not yet clear clinical evidence that the direct antithrombotic effects of the drugs may have a beneficial impact on outcomes independently from the reduction in LDL-C or triglycerides.
Collapse
Affiliation(s)
- Assunta Di Costanzo
- Division of Cardiology, Cardiovascular Research Center, University Magna Graecia Catanzaro, 88100 Catanzaro, Italy
| | - Ciro Indolfi
- Division of Cardiology, Cardiovascular Research Center, University Magna Graecia Catanzaro, 88100 Catanzaro, Italy
| | - Sabato Sorrentino
- Division of Cardiology, Cardiovascular Research Center, University Magna Graecia Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni Esposito
- Division of Cardiology, Department of Advanced Biomedical Sciences, University of Naples Federico II, 80134 Naples, Italy
| | | |
Collapse
|
9
|
Santoyo JM, Noguera JA, Avilés F, Hernández-Caselles T, de Paco-Matallana C, Delgado JL, Cuevas S, Llinás MT, Hernández I. Pravastatin reduces plasma levels of extracellular vesicles in pregnancies at high risk of term preeclampsia. Front Pharmacol 2023; 14:1166123. [PMID: 37426825 PMCID: PMC10323224 DOI: 10.3389/fphar.2023.1166123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction: Elevated plasma levels of extracellular vesicles have been associated with impaired placentation, angiogenesis imbalance, intravascular inflammation, and endothelial dysfunction in women with preeclampsia, thus suggesting that circulating vesicles may be a good therapeutic target for the treatment of the disease. Recently, statins have been considered a potential treatment for the prevention of preeclampsia because of their pleiotropic effects, including the improvement of endothelial dysfunction and inhibition of inflammatory responses. However, the effects of these drugs on circulating vesicles concentration in women at risk of preeclampsia have not been established. Herein, we aimed to assess the effects of pravastatin on circulating extracellular vesicle generation in women at high risk of term preeclampsia. Methods: In a sample of 68 singleton pregnant women participating in the multicenter, double-blind, placebo-controlled STATIN trial (Nº EducraCT 2016-005206-19 ISRCTN), 35 women received a placebo and 33 women received a 20 mg/day dose of pravastatin for approximately 3 weeks (from 35 to 37 weeks of gestation until delivery). Large extracellular vesicles were characterized and quantified by flow cytometry using annexin V and cell-specific antibodies directed against platelet, endothelial, leukocyte, and syncytiotrophoblast cell surface markers. Results: In women who received the placebo, a significant increase in the plasma levels of large extracellular vesicles from platelets (34%, p < 0.01), leukocytes (33%, p < 0.01), monocytes (60%, p < 0.01), endothelial cells (40%, p < 0.05), and syncytiotrophoblast cells (22%, p < 0.05) were observed. However, treatment with pravastatin significantly reduced the plasma levels of large extracellular vesicles from platelets (42%, p < 0.001), leukocytes (25%, p < 0.001), monocytes (61%, p < 0.001), endothelial cells (69%, p < 0.001), activated endothelial cells (55%, p < 0.001), and syncytiotrophoblast cells (44%, p < 0.001). Discussion: These results indicate that pravastatin reduces the levels of activated cell-derived membrane vesicles from the maternal vasculature, blood, and placental syncytiotrophoblast of women at high risk of term preeclampsia, suggesting that this statin may be beneficial in reducing endothelial dysfunction and pro-inflammatory and pro-coagulatory state characteristics of the disease.
Collapse
Affiliation(s)
- Jean Michell Santoyo
- Department of Physiology, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - José Antonio Noguera
- Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Francisco Avilés
- Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Trinidad Hernández-Caselles
- Department of Biochemistry and Molecular Biology “B” and Immunology, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Catalina de Paco-Matallana
- Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Juan Luis Delgado
- Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Santiago Cuevas
- Molecular Inflammation Group, Institute of Biomedical Research (IMIB-Pascual Parrilla), University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - M. Teresa Llinás
- Department of Physiology, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| | - Isabel Hernández
- Department of Physiology, Institute of Biomedical Research (IMIB-Pascual Parrilla), University of Murcia, Murcia, Spain
| |
Collapse
|
10
|
Ren XY, Li YF, Liu HQ, Lin H, Lin Q, Wu Y, Wan J, Lu JJ, Liu J, Cui XY. Anti-inflammatory Therapy Progress in Major Adverse Cardiac Events after PCI: Chinese and Western Medicine. Chin J Integr Med 2023:10.1007/s11655-023-3638-8. [PMID: 37198377 DOI: 10.1007/s11655-023-3638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
Acute coronary syndrome (ACS) is one of the leading causes of death in cardiovascular disease. Percutaneous coronary intervention (PCI) is an important method for the treatment of coronary heart disease (CHD), and it has greatly reduced the mortality of ACS patients since its application. However, a series of new problems may occur after PCI, such as in-stent restenosis, no-reflow phenomenon, in-stent neoatherosclerosis, late stent thrombosis, myocardial ischemia-reperfusion injury, and malignant ventricular arrhythmias, which result in the occurrence of major adverse cardiac events (MACE) that seriously reduce the postoperative benefit for patients. The inflammatory response is a key mechanism of MACE after PCI. Therefore, examining effective anti-inflammatory therapies after PCI in patients with ACS is a current research focus to reduce the incidence of MACE. The pharmacological mechanism and clinical efficacy of routine Western medicine treatment for the anti-inflammatory treatment of CHD have been verified. Many Chinese medicine (CM) preparations have been widely used in the treatment of CHD. Basic and clinical studies showed that effectiveness of the combination of CM and Western medicine treatments in reducing incidence of MACE after PCI was better than Western medicine treatment alone. The current paper reviewed the potential mechanism of the inflammatory response and occurrence of MACE after PCI in patients with ACS and the research progress of combined Chinese and Western medicine treatments in reducing incidence of MACE. The results provide a theoretical basis for further research and clinical treatment.
Collapse
Affiliation(s)
- Xue-Yu Ren
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ying-Fei Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui-Qing Liu
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hui Lin
- Graduate School of Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Yang Wu
- Department of Cardiology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jie Wan
- Department of Cardiology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jin-Jin Lu
- Department of Cardiology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jing Liu
- Department of Cardiology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dong Fang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
11
|
Mehdawi A, Mohammad BA, Mosleh I, Khader HA, Habash M, Nassar RI, Awwad S, Hasoun L, Abu-Samak MS. Combined Effect of Omega-3 Fatty Acid and Vitamin D 3 on Oxidized LDL-C and Non-HDL-C Levels in People With Vitamin D Deficiency: A Randomized Controlled Trial. J Cardiovasc Pharmacol 2023; 81:251-258. [PMID: 36630694 DOI: 10.1097/fjc.0000000000001398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
ABSTRACT The present randomized clinical trial (RCT) was conducted on Jordanian participants with vitamin D deficiency (VDD) with no other medical conditions, to evaluate the combined effect of 1,25-dihydroxy vitamin D 3 (Vit.D 3 ) and omega-3 fatty acid (n-3FA) supplements (D+) on oxidized low-density lipoprotein (Ox-LDL) and non-high-density lipoprotein cholesterol (non-HDL-C) levels as common predictors of cardiovascular diseases (CVDs). Participants were randomized into 4 groups as follows: a control group (C) that received no supplementations, a Vit.D 3 group that received 50,000 IU of Vit.D 3 every week, an n-3FA group that received 300 mg of omega-3 fatty acid every day, and a D+ group that received a combination of both supplements, with the same dosage administered by the previous groups but with a 4-6-hour time interval between Vit.D 3 and n-3FA administration to avoid any possible interaction. All supplementations were administered orally for 8 weeks. Forty-seven participants were allocated to each group. Twenty-six in the control group, 37 participants in the Vit.D 3 group, 37 participants in the n-3FA group, and 46 participants in the D+ group completed the study to the end. The D+ supplementations significantly increased non-HDL-C (118.99 ± 60.98 to 155.26 ± 43.36 mg/dL, P << 0.05) but decreased Ox-LDL-C levels (69.29 ± 37.69 to 52.81 ± 17.30 pg/mL, P = 0.03). The stepwise regression showed that the serum LDL-C level was the main independent variable involved in the elevation of non-HDL levels (R 2 = 0.837) observed at the end of the trial in the D+ group. The groups that were supplemented with either Vit.D 3 alone or n-3FA alone had an insignificant decrease in the level of Ox-LDL-C. In conclusion, despite the observed hyperlipidemic effect, the combination treatment is recommended by the research team because the decrease in Ox-LDL may offset the hyperlipidemic effect.
Collapse
Affiliation(s)
- Amani Mehdawi
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Beisan A Mohammad
- Department of Pharmaceutical Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Ibrahim Mosleh
- Department of Medical Laboratory Sciences, University of Jordan, Amman, Jordan
| | - Heba A Khader
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University,, Zarqa, Jordan
| | - Maha Habash
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan; and
| | - Razan I Nassar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Shady Awwad
- Department of Pharmaceutical Chemistry & Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Luai Hasoun
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Mahmoud S Abu-Samak
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| |
Collapse
|
12
|
Liani R, Simeone PG, Tripaldi R, D'Ardes D, Creato V, Pepe R, Lessiani G, Bologna G, Cipollone F, Marchisio M, Lanuti P, Santilli F. Kinetics of Circulating Extracellular Vesicles Over the 24-Hour Dosing Interval After Low-Dose Aspirin Administration in Patients at Cardiovascular Risk. Clin Pharmacol Ther 2023; 113:1096-1106. [PMID: 36749026 DOI: 10.1002/cpt.2865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are small vesicles deriving from all cell types during cell activation, involved in transcellular communication, and regarded as predictors of vascular damage and of cardiovascular events. We tested the hypothesis that, in patients on chronic low-dose aspirin treatment for cardiovascular prevention, aspirin may affect the release of EVs within the 24-hour interval. We enrolled 84 patients, mostly at high or very high cardiovascular risk, on chronic low-dose aspirin treatment. The numbers of circulating EVs (cEVs) and annexinV+ cEVs (total, platelet-derived, endothelial-derived, and leucocyte-derived) were assessed immediately before, and after 10 and 24 hours of a witnessed aspirin administration. Platelet cyclooxygenase 1 (COX-1) recovery was characterized by measuring serum thromboxane B2 (sTXB2 ) at the same timepoints. Nine healthy participants were also enrolled. In patients, daily aspirin administration acutely inhibited after 10 hours following aspirin administrations the release of cEVs (total and leukocyte-derived) and annexinV+ cEVs (total, platelet-derived, endothelial-derived, and leukocyte-derived), with a rapid recovery at 24 hours. The inhibition after 10 hours suggests a COX-1-dependent mechanism. Interestingly, the slope of platelet-derived and of annexinV+ platelet-derived cEVs were both directly related to sTXB2 slope and COX-1 messenger RNA, raising the hypothesis that vice versa, cEVs may affect the rate of COX-1 recovery and the subsequent duration of aspirin effect. In healthy participants, no circadian difference was observed, except for leukocyte-derived cEVs. Our findings suggest a previously unappreciated effect of aspirin on the kinetics of a subset of cEVs possibly contributing to the cardioprotective effects of this drug.
Collapse
Affiliation(s)
- Rossella Liani
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Paola Giustina Simeone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Romina Tripaldi
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Damiano D'Ardes
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Valeria Creato
- Internal Medicine, Clinica Medica, SS. Annunziata Hospital, Chieti, Italy
| | - Raffaele Pepe
- Internal Medicine, Clinica Medica, SS. Annunziata Hospital, Chieti, Italy
| | | | - Giuseppina Bologna
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Francesco Cipollone
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Marco Marchisio
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| | - Francesca Santilli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology, University of Chieti, Chieti, Italy
| |
Collapse
|
13
|
Buntsma N, van der Pol E, Nieuwland R, Gąsecka A. Extracellular Vesicles in Coronary Artery Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:81-103. [PMID: 37603274 DOI: 10.1007/978-981-99-1443-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Coronary artery disease (CAD) is the leading cause of death and disability worldwide. Despite recent progress in the diagnosis and treatment of CAD, evidence gaps remain, including pathogenesis, the most efficient diagnostic strategy, prognosis of individual patients, monitoring of therapy, and novel therapeutic strategies. These gaps could all be filled by developing novel, minimally invasive, blood-based biomarkers. Potentially, extracellular vesicles (EVs) could fill such gaps. EVs are lipid membrane particles released from cells into blood and other body fluids. Because the concentration, composition, and functions of EVs change during disease, and because all cell types involved in the development and progression of CAD release EVs, currently available guidelines potentially enable reliable and reproducible measurements of EVs in clinical trials, offering a wide range of opportunities. In this chapter, we provide an overview of the associations reported between EVs and CAD, including (1) the role of EVs in CAD pathogenesis, (2) EVs as biomarkers to diagnose CAD, predict prognosis, and monitor therapy in individual patients, and (3) EVs as new therapeutic targets and/or drug delivery vehicles. In addition, we summarize the challenges encountered in EV isolation and detection, and the lack of standardization, which has hampered real clinical applications of EVs. Since most conclusions are based on animal models and single-center studies, the knowledge and insights into the roles and opportunities of EVs as biomarkers in CAD are still changing, and therefore, the content of this chapter should be seen as a snapshot in time rather than a final and complete compendium of knowledge on EVs in CAD.
Collapse
Affiliation(s)
- Naomi Buntsma
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Vesicle Observation Centre, and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Edwin van der Pol
- Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Vesicle Observation Centre, and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Vesicle Observation Centre, and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Aleksandra Gąsecka
- Vesicle Observation Centre, and Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
14
|
Lugo-Gavidia LM, Burger D, Nolde JM, Carnagarin R, Chan J, Bosio E, Matthews VB, Schlaich MP. Platelet-derived extracellular vesicles correlate with therapy-induced nocturnal blood pressure changes. J Hypertens 2022; 40:2210-2218. [PMID: 35950995 DOI: 10.1097/hjh.0000000000003248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Elevated nocturnal blood pressure (BP) is closely associated with increased risk of cardiovascular (CV) events. Circulating extracellular vesicles (EVs) have been proposed as a potential CV risk biomarker and shown to correlate with BP. The present study aimed to assess whether a reduction in BP is paralleled by respective changes in EVs. METHODS Fifty-five hypertensive patients (age: 57.7 ± 14.1 years) were included in the study. EVs and BP were assessed at baseline and at 12 weeks follow-up. Interventions to lower BP included advice on life-style modification only or life-style advice combined with additional pharmacotherapy. EVs were evaluated by flow cytometry (CD41+/Annexin V+) and BP by unobserved automated office BP and ambulatory BP monitoring. RESULTS Nocturnal systolic BP correlated with EV levels at baseline ( P = 0.01). Multivariable regression models showed that changes in nocturnal systolic BP (adjusted R2 = 0.23; P = 0.01) and diastolic BP (adjusted R2 = 0.18; P = 0.02) were associated with respective changes in EV levels. Furthermore, intervention-induced improvement of systolic dipping was associated with a reduction in EVs in the univariate analysis (adjusted R2 = 0.06; P = 0.03). In contrast, systolic office, 24 h- and daytime-BP did not show significant associations with EVs. Patients whose medication was up-titrated at baseline showed a trend towards lower EV levels at follow-up (absolute change of -1.7 ± 1.3 EV/μl; P = 0.057). CONCLUSIONS Circulating platelet-derived EVs were positively associated with nocturnal BP and therapy-induced changes over a 12-week treatment period. EVs may provide an integrated measure of BP changes achieved with pharmacotherapy.
Collapse
Affiliation(s)
- Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Dylan Burger
- Kidney Research Centre, The Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Janis M Nolde
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Revathy Carnagarin
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Justine Chan
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research
| | - Vance B Matthews
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, Medical School - Royal Perth Hospital Unit, Royal Perth Hospital Medical Research Foundation, The University of Western Australia, Perth, Australia
- Department of Internal Medicine
- Departments of Cardiology and Nephrology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
15
|
Badimon L, Padro T, Arderiu G, Vilahur G, Borrell-Pages M, Suades R. Extracellular vesicles in atherothrombosis: From biomarkers and precision medicine to therapeutic targets. Immunol Rev 2022; 312:6-19. [PMID: 35996799 DOI: 10.1111/imr.13127] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of global mortality. Extracellular vesicles (EVs) are small phospholipid vesicles that convey molecular bioactive cargoes and play essential roles in intercellular communication and, hence, a multifaceted role in health and disease. The present review offers a glimpse into the current state and up-to-date concepts on EV field. It also covers their association with several cardiovascular risk factors and ischemic conditions, being subclinical atherosclerosis of utmost relevance for prevention. Interestingly, we show that EVs hold promise as prognostic and diagnostic as well as predictive markers of ASCVD in the precision medicine era. We then report on the role of EVs in atherothrombosis, disentangling the mechanisms involved in the initiation, progression, and complication of atherosclerosis and showing their direct effect in the context of arterial thrombosis. Finally, their potential use for therapeutic intervention is highlighted.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair, UAB, Barcelona, Spain
| | - Teresa Padro
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Arderiu
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Suades
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain.,CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Nik Ibrahim NNI, Abdul Rahman R, Azlan M, Abd Aziz A, Ghulam Rasool AH. Endothelial Microparticles as Potential Biomarkers in the Assessment of Endothelial Dysfunction in Hypercholesterolemia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060824. [PMID: 35744087 PMCID: PMC9229814 DOI: 10.3390/medicina58060824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/27/2022]
Abstract
Background and Objectives: Endothelial microparticles (EMP) particularly CD31+/42−/AV+, CD144+/AV+ and CD62e+/AV+ have been reported as having increased in cardiovascular-related diseases, making them potential biomarkers for endothelial dysfunction. This study aimed to compare these EMPs in patients with hypercholesterolemia and healthy controls and to correlate their levels with endothelium-dependent vasodilation (EDV) assessed via pulse wave analysis (PWA); an established method of assessing endothelial function. Materials and Methods: EMPs from 88 subjects (44 hypercholesterolemia patients and 44 controls) were quantified from whole blood using flow cytometry analysis. Endothelial function was determined using PWA combined with pharmacological challenge. Results: CD31+/42−/AV+ (3.45 ± 4.74 count/µL vs. 1.33 ± 4.40 count/µL; p = 0.03), CD144+/AV+ (7.37 ± 12.66 count/µL vs. 1.42 ± 1.71 count/µL; p = 0.003) and CD62e+/AV+ (57.16 ± 56.22 count/µL vs. 20.78 ± 11.04 count/µL; p < 0.001) were significantly elevated in the hypercholesterolemic group compared with the controls, respectively. There was a significant inverse moderate correlation between all circulating EMPs and EDV: CD31+/42−/AV+ (r = −0.36, p = 0.001), CD144+/AV+ (r = −0.37, p = 0.001) and CD62e+/AV+ (r = −0.35, p = 0.002). Conclusions: All EMPs were raised in the patients with hypercholesterolemia, and these values correlated with the established method of assessing endothelial function.
Collapse
Affiliation(s)
- Nik Nor Izah Nik Ibrahim
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Correspondence: ; Tel.: +60-9767-6141
| | - Razlina Abdul Rahman
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Department of Family Medicine, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia
| | - Maryam Azlan
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Aniza Abd Aziz
- Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Terengganu, Malaysia;
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
- Hospital USM, Health Campus, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
17
|
Extracellular Vesicles as Drivers of Immunoinflammation in Atherothrombosis. Cells 2022; 11:cells11111845. [PMID: 35681540 PMCID: PMC9180657 DOI: 10.3390/cells11111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality all over the world. Extracellular vesicles (EVs), small lipid-bilayer membrane vesicles released by most cellular types, exert pivotal and multifaceted roles in physiology and disease. Emerging evidence emphasizes the importance of EVs in intercellular communication processes with key effects on cell survival, endothelial homeostasis, inflammation, neoangiogenesis, and thrombosis. This review focuses on EVs as effective signaling molecules able to both derail vascular homeostasis and induce vascular dysfunction, inflammation, plaque progression, and thrombus formation as well as drive anti-inflammation, vascular repair, and atheroprotection. We provide a comprehensive and updated summary of the role of EVs in the development or regression of atherosclerotic lesions, highlighting the link between thrombosis and inflammation. Importantly, we also critically describe their potential clinical use as disease biomarkers or therapeutic agents in atherothrombosis.
Collapse
|
18
|
Chaudhary PK, Kim S, Kim S. An Insight into Recent Advances on Platelet Function in Health and Disease. Int J Mol Sci 2022; 23:ijms23116022. [PMID: 35682700 PMCID: PMC9181192 DOI: 10.3390/ijms23116022] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Platelets play a variety of roles in vascular biology and are best recognized as primary hemostasis and thrombosis mediators. Platelets have a large number of receptors and secretory molecules that are required for platelet functionality. Upon activation, platelets release multiple substances that have the ability to influence both physiological and pathophysiological processes including inflammation, tissue regeneration and repair, cancer progression, and spreading. The involvement of platelets in the progression and seriousness of a variety of disorders other than thrombosis is still being discovered, especially in the areas of inflammation and the immunological response. This review represents an integrated summary of recent advances on the function of platelets in pathophysiology that connects hemostasis, inflammation, and immunological response in health and disease and suggests that antiplatelet treatment might be used for more than only thrombosis.
Collapse
|
19
|
Ramberg C, Hindberg K, Biedermann JS, Cannegieter SC, van der Meer FJ, Snir O, Leebeek FWG, Kruip MJHA, Hansen JB, Lijfering WM. Rosuvastatin treatment decreases plasma procoagulant phospholipid activity after a VTE: A randomized controlled trial. J Thromb Haemost 2022; 20:877-887. [PMID: 34953155 DOI: 10.1111/jth.15626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Venous thromboembolism (VTE) is a frequent cardiovascular disease with severe complications, including recurrence and death. There is a great need for alternative prophylactic treatment options as anticoagulation is accompanied by increased bleeding risk. Statins are reported to reduce the risk of incident and recurrent VTE, but the mechanisms are elusive. Procoagulant phospholipids (PPL), and phosphatidylserine in particular, are crucial for efficient coagulation activation, but no studies have investigated the effect of statin treatment on plasma PPL activity. OBJECTIVES To investigate the impact of rosuvastatin treatment on plasma PPL activity and levels of extracellular vesicles (EVs). PATIENTS/METHODS Patients with a history of VTE (≥18 years) allowed to stop anticoagulant treatment were randomized to either 20 mg/day of rosuvastatin treatment or no treatment for 28 days in the Statins Reduce Thrombophilia (NCT01613794) trial. Plasma samples were collected at baseline and study end. PPL activity was measured in samples from 245 participants using a factor Xa-dependent clotting assay and EV levels by flow cytometry. RESULTS Rosuvastatin treatment yielded an overall 22% (95% confidence interval [CI] -38.2 to -5.8) reduction in PPL activity, and 37% (95% CI -62.9 to -11.2) reduction in PPL activity in participants with a history of pulmonary embolism. The effect of rosuvastatin on plasma PPL activity was not explained by changes in total cholesterol nor change in levels of total- or platelet-derived EVs. CONCLUSIONS Rosuvastatin treatment caused a substantial decrease in plasma PPL activity, suggesting that a PPL-dependent attenuation of coagulation activation may contribute to a reduced VTE risk following statin treatment.
Collapse
Affiliation(s)
- Cathrine Ramberg
- Department of Clinical Medicine, Thrombosis Research Center (TREC), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Kristian Hindberg
- Department of Clinical Medicine, Thrombosis Research Center (TREC), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Joseph S Biedermann
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
- Star-shl Anticoagulation Clinic, Rotterdam, The Netherlands
| | - Suzanne C Cannegieter
- Department of Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Felix J van der Meer
- Department of Thrombosis and Haemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Omri Snir
- Department of Clinical Medicine, Thrombosis Research Center (TREC), UiT-The Arctic University of Norway, Tromsø, Norway
| | - Frank W G Leebeek
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marieke J H A Kruip
- Department of Hematology, Erasmus MC, Erasmus University Medical Center, Rotterdam, the Netherlands
- Star-shl Anticoagulation Clinic, Rotterdam, The Netherlands
| | - John-Bjarne Hansen
- Department of Clinical Medicine, Thrombosis Research Center (TREC), UiT-The Arctic University of Norway, Tromsø, Norway
- Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Willem M Lijfering
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
20
|
Suades R, Padró T, Vilahur G, Badimon L. Platelet-released extracellular vesicles: the effects of thrombin activation. Cell Mol Life Sci 2022; 79:190. [PMID: 35288766 PMCID: PMC8920058 DOI: 10.1007/s00018-022-04222-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022]
Abstract
Platelets exert fundamental roles in thrombosis, inflammation, and angiogenesis, contributing to different pathologies from cardiovascular diseases to cancer. We previously reported that platelets release extracellular vesicles (pEVs) which contribute to thrombus formation. However, pEV composition remains poorly defined. Indeed, pEV quality and type, rather than quantity, may be relevant in intravascular cross-talk with either circulating or vascular cells. We aimed to define the phenotypic characteristics of pEVs released spontaneously and those induced by thrombin activation to better understand their role in disease dissemination. pEVs obtained from washed platelets from healthy donor blood were characterized by flow cytometry. pEVs from thrombin-activated platelets (T-pEVs) showed higher levels of P-selectin and active form of glycoprotein IIb/IIIa than baseline non-activated platelets (B-pEVs). Following mass spectrometry-based differential proteomic analysis, significant changes in the abundance of proteins secreted in T-pEVs compared to B-pEVs were found. These differential proteins were involved in coagulation, adhesion, cytoskeleton, signal transduction, metabolism, and vesicle-mediated transport. Interestingly, release of proteins relevant for cell adhesion, intrinsic pathway coagulation, and platelet activation signalling was significantly modified by thrombin stimulation. A novel pEV-associated protein (protocadherin-α4) was found to be significantly reduced in T-pEVs showing a shift towards increased expression in the membranes of activated platelets. In summary, platelet activation induced by thrombin triggers the shedding of pEVs with a complex proteomic pattern rich in procoagulant and proadhesive proteins. Crosstalk with other vascular and blood cells in a paracrine regulatory mode could extend the prothrombotic signalling as well as promote proteostasic changes in other cellular types.
Collapse
Affiliation(s)
- Rosa Suades
- Cardiovascular Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB Sant Pau, c/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB Sant Pau, c/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB Sant Pau, c/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB Sant Pau, c/Sant Antoni Mª Claret 167, 08025, Barcelona, Spain.
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain.
- Cardiovascular Research Chair, UAB, Barcelona, Spain.
| |
Collapse
|
21
|
Kang IS, Kwon K. Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease. BMB Rep 2022. [PMID: 34903320 PMCID: PMC8810547 DOI: 10.5483/bmbrep.2022.55.1.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.
Collapse
Affiliation(s)
- In Sook Kang
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Kihwan Kwon
- Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul 07804, Korea
| |
Collapse
|
22
|
Dow R, Ridger V. Neutrophil microvesicles and their role in disease. Int J Biochem Cell Biol 2021; 141:106097. [PMID: 34655813 DOI: 10.1016/j.biocel.2021.106097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
Microvesicles are formed through shedding from the plasma membrane, a process shared by almost all human cells. Microvesicles are highly abundant and have been detected in blood, urine, cerebrospinal fluid, and saliva. They contain a library of cargo derived from their parental cell during formation, including proteases, micro-RNAs and lipids and delivery of this parental cell-derived cargo to other cells can alter target cell function and drive disease. Cell specific molecules on the surface of microvesicles, obtained during microvesicle formation, allows their parental cell to be identified and populations of microvesicles to be investigated for roles in the pathogenesis of various diseases. For instance, recent work by our group has identified a role for neutrophil microvesicles in atherosclerosis. Microvesicle profiles could in future be associated with certain diseases and act as a biomarker to allow for earlier diagnosis. This short review will discuss some of the processes central to all microvesicles before focusing on neutrophil microvesicles, their potential role in cardiovascular disease and the mechanisms that may underpin this.
Collapse
Affiliation(s)
- Reece Dow
- Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
| |
Collapse
|
23
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
24
|
Luquero A, Vilahur G, Crespo J, Badimon L, Borrell‐Pages M. Microvesicles carrying LRP5 induce macrophage polarization to an anti-inflammatory phenotype. J Cell Mol Med 2021; 25:7935-7947. [PMID: 34288375 PMCID: PMC8358886 DOI: 10.1111/jcmm.16723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022] Open
Abstract
Microvesicles (MV) contribute to cell-to-cell communication through their transported proteins and nucleic acids. MV, released into the extracellular space, exert paracrine regulation by modulating cellular responses after interaction with near and far target cells. MV are released at high concentrations by activated inflammatory cells. Different subtypes of human macrophages have been characterized based on surface epitopes being CD16+ macrophages associated with anti-inflammatory phenotypes. We have previously shown that low-density lipoprotein receptor-related protein 5 (LRP5), a member of the LDLR family that participates in lipid homeostasis, is expressed in macrophage CD16+ with repair and survival functions. The goal of our study was to characterize the cargo and tentative function of macrophage-derived MV, whether LRP5 is delivered into MV and whether these MV are able to induce inflammatory cell differentiation to a specific CD16- or CD16+ phenotype. We show, for the first time, that lipid-loaded macrophages release MV containing LRP5. LDL loading induces increased expression of macrophage pro-inflammatory markers and increased release of MV containing pro-inflammatory markers. Conditioning of fresh macrophages with MV released by Lrp5-silenced macrophages induced the transcription of inflammatory genes and reduced the transcription of anti-inflammatory genes. Thus, MV containing LRP5 induce anti-inflammatory phenotypes in macrophages.
Collapse
Affiliation(s)
- Aureli Luquero
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
| | - Gemma Vilahur
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
- CIBER‐CVInstituto de Salud Carlos IIIMadridSpain
| | - Javier Crespo
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
| | - Lina Badimon
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
- CIBER‐CVInstituto de Salud Carlos IIIMadridSpain
- Cardiovascular Research ChairUABBarcelonaSpain
| | - Maria Borrell‐Pages
- Cardiovascular Program ICCCIR‐Hospital de la Santa Creu i Sant PauIIB‐Sant PauBarcelonaSpain
- CIBER‐CVInstituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
25
|
Lugo-Gavidia LM, Burger D, Matthews VB, Nolde JM, Galindo Kiuchi M, Carnagarin R, Kannenkeril D, Chan J, Joyson A, Herat LY, Azzam O, Schlaich MP. Role of Microparticles in Cardiovascular Disease: Implications for Endothelial Dysfunction, Thrombosis, and Inflammation. HYPERTENSION (DALLAS, TEX. : 1979) 2021; 77:1825-1844. [PMID: 33979187 DOI: 10.1161/hypertensionaha.121.16975] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Leslie Marisol Lugo-Gavidia
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Dylan Burger
- Kidney Research Centre, The Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa (D.B.)
| | - Vance B Matthews
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Janis M Nolde
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Márcio Galindo Kiuchi
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Revathy Carnagarin
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Dennis Kannenkeril
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.).,Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany (D.K.)
| | - Justine Chan
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Anu Joyson
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Lakshini Y Herat
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.)
| | - Omar Azzam
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.).,Department of Internal Medicine (O.A.), Royal Perth Hospital, Western Australia
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, Medical Research Foundation, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia (L.M.L.-G., V.B.M., J.M.N., M.G.K., R.C., D.K., J.C., A.J., L.Y.H., O.A., M.P.S.).,Departments of Cardiology and Nephrology (M.P.S.), Royal Perth Hospital, Western Australia.,Neurovascular Hypertension and Kidney Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (M.P.S.)
| |
Collapse
|
26
|
A study of endothelial and platelet microvesicles across different hypertension phenotypes. J Hum Hypertens 2021; 36:561-569. [PMID: 33837293 DOI: 10.1038/s41371-021-00531-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Rather than being mere biomarkers reflecting generalized vascular injury, endothelial- (EMVs) and platelet-derived (PMVs) microvesicles have emerged as potent regulators of intercellular communication with significant biologic effects in vascular homeostasis and several pathophysiological responses including inflammation and thrombosis. So far, studies in hypertension are scarce, whereas no studies exist in masked hypertension (MH). We measured EMVs and PMVs in untreated, newly diagnosed hypertensives (HTs) and MHs compared to normotensive controls (NTs), and associated them with various cardiovascular risk factors. Sustained hypertension (SHT) and MH were defined according to standard blood pressure (BP) criteria. All HTs were free of cardiovascular disease and medications. Microvesicles' quantitation and detection were performed by flow cytometry by using cell-specific antibodies and corresponding isotypes (anti-CD105 and anti-CD144 for EMVs, anti-CD42a for PMVs, and Annexin V-fluorescein isothiocyanate for all microvesicles). In this study, we included 59 HTs (44 SHTs and 15 MHs) and 27 NTs. HTs had significantly elevated EMVs (p = 0.004), but not PMVs compared to NTs. MHs had significantly elevated EMVs compared to NTs (p = 0.012) but not compared to SHTs. Furthermore, EMVs significantly correlated with ambulatory (r = 0.214-0.284), central BP (r = 0.247-0.262), and total vascular resistance (r = 0.327-0.361). EMVs are increased not only in SHTs but also in MHs, a hypertension phenotype with a cardiovascular risk close to SHT. EMVs have emerged as active contributors to thromboinflammation and vascular damage and may explain, in part, the adverse cardiovascular profile of SHTs and MHs.
Collapse
|
27
|
Circulating Extracellular Vesicles As Biomarkers and Drug Delivery Vehicles in Cardiovascular Diseases. Biomolecules 2021; 11:biom11030388. [PMID: 33808038 PMCID: PMC8001426 DOI: 10.3390/biom11030388] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are composed of a lipid bilayer containing transmembrane and soluble proteins. Subtypes of EVs include ectosomes (microparticles/microvesicles), exosomes, and apoptotic bodies that can be released by various tissues into biological fluids. EV cargo can modulate physiological and pathological processes in recipient cells through near- and long-distance intercellular communication. Recent studies have shown that origin, amount, and internal cargos (nucleic acids, proteins, and lipids) of EVs are variable under different pathological conditions, including cardiovascular diseases (CVD). The early detection and management of CVD reduce premature morbidity and mortality. Circulating EVs have attracted great interest as a potential biomarker for diagnostics and follow-up of CVD. This review highlights the role of circulating EVs as biomarkers for diagnosis, prognosis, and therapeutic follow-up of CVD, and also for drug delivery. Despite the great potential of EVs as a tool to study the pathophysiology of CVD, further studies are needed to increase the spectrum of EV-associated applications.
Collapse
|
28
|
Effect of Statins on Platelet Activation and Function: From Molecular Pathways to Clinical Effects. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6661847. [PMID: 33564680 PMCID: PMC7850835 DOI: 10.1155/2021/6661847] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Purpose Statins are a class of drugs widely used in clinical practice for their lipid-lowering and pleiotropic effects. In recent years, a correlation between statins and platelet function has been unveiled in the literature that might introduce new therapeutic indications for this class of drugs. This review is aimed at summarizing the mechanisms underlying statin-platelet interaction in the cardiologic scenario and building the basis for future in-depth studies. Methods We conducted a literature search through PubMed, Embase, EBSCO, Cochrane Database of Systematic Reviews, and Web of Science from their inception to June 2020. Results Many pathways could explain the interaction between statins and platelets, but the specific effect depends on the specific compound. Some could be mediated by enzymes that allow the entry of drugs into the cell (OATP2B1) and others by enzymes that mediate their activation (PLA2, MAPK, TAX2, PPARs, AKT, and COX-1), recruitment and adhesion (LOX-1, CD36, and CD40L), or apoptosis (BCL2). Statins also appear to have a synergistic effect with aspirin and low molecular weight heparins. Surprisingly, they seem to have an antagonistic effect with clopidogrel. Conclusion There are many pathways potentially responsible for the interactions between statins and platelets. Their effect appears to be closely related, and each single effect can be barely measured. Also, the same compound might have complex downstream signaling with potentially opposite effects, i.e., beneficial or deleterious. The multiple clinical implications that can be derived as a result of this interaction, however, represent an excellent reason to develop future in-depth studies.
Collapse
|
29
|
Gąsecka A, Rogula S, Szarpak Ł, Filipiak KJ. LDL-Cholesterol and Platelets: Insights into Their Interactions in Atherosclerosis. Life (Basel) 2021; 11:39. [PMID: 33440673 PMCID: PMC7826814 DOI: 10.3390/life11010039] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis and its complications, including acute coronary syndromes, are the major cause of death worldwide. The two most important pathophysiological mechanisms underlying atherosclerosis include increased platelet activation and increased low-density lipoproteins (LDL) concentration. In contrast to LDL, oxidized (ox)-LDL have direct pro-thrombotic properties by functional interactions with platelets, leading to platelet activation and favoring thrombus formation. In this review, we summarize the currently available evidence on the interactions between LDL-cholesterol and platelets, which are based on (i) the presence of ox-LDL-binding sites on platelets, (ii) generation of ox-LDL by platelets and (iii) the role of activated platelets and ox-LDL in atherosclerosis. In addition, we elaborate on the clinical implications of these interactions, including development of the new therapeutic possibilities. The ability to understand and modulate mechanisms governing interactions between LDL-cholesterol and platelets may offer new treatment strategies for atherosclerosis prevention.
Collapse
Affiliation(s)
- Aleksandra Gąsecka
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| | - Sylwester Rogula
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| | - Łukasz Szarpak
- Bialystok Oncology Center, 15-027, Bialystok, Poland;
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
| | - Krzysztof J. Filipiak
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| |
Collapse
|
30
|
Osman A, Benameur T, Korashy HM, Zeidan A, Agouni A. Interplay between Endoplasmic Reticulum Stress and Large Extracellular Vesicles (Microparticles) in Endothelial Cell Dysfunction. Biomedicines 2020; 8:E409. [PMID: 33053883 PMCID: PMC7599704 DOI: 10.3390/biomedicines8100409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/26/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022] Open
Abstract
Upon increased demand for protein synthesis, accumulation of misfolded and/or unfolded proteins within the endoplasmic reticulum (ER), a pro-survival response is activated termed unfolded protein response (UPR), aiming at restoring the proper function of the ER. Prolonged activation of the UPR leads, however, to ER stress, a cellular state that contributes to the pathogenesis of various chronic diseases including obesity and diabetes. ER stress response by itself can result in endothelial dysfunction, a hallmark of cardiovascular disease, through various cellular mechanisms including apoptosis, insulin resistance, inflammation and oxidative stress. Extracellular vesicles (EVs), particularly large EVs (lEVs) commonly referred to as microparticles (MPs), are membrane vesicles. They are considered as a fingerprint of their originating cells, carrying a variety of molecular components of their parent cells. lEVs are emerging as major contributors to endothelial cell dysfunction in various metabolic disease conditions. However, the mechanisms underpinning the role of lEVs in endothelial dysfunction are not fully elucidated. Recently, ER stress emerged as a bridging molecular link between lEVs and endothelial cell dysfunction. Therefore, in the current review, we summarized the roles of lEVs and ER stress in endothelial dysfunction and discussed the molecular crosstalk and relationship between ER stress and lEVs in endothelial dysfunction.
Collapse
Affiliation(s)
- Aisha Osman
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, Doha 2713, Qatar; (A.O.); (H.M.K.)
| | - Tarek Benameur
- Department of Biomedical Sciences, College of Medicine, King Faisal University, P.O. Box 400, Al Ahsa 31982, Saudi Arabia;
| | - Hesham M. Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, Doha 2713, Qatar; (A.O.); (H.M.K.)
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU health, Qatar University, Doha 2713, Qatar;
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU health, Qatar University, Doha 2713, Qatar; (A.O.); (H.M.K.)
| |
Collapse
|
31
|
Plasín-Rodríguez MA, Patricio P, Monteagudo J, García-Criado A, Cervera R, Reverter JC, Espinosa G, Tàssies D. Procoagulant microparticles are associated with arterial disease in patients with systemic lupus erythematosus. J Thromb Thrombolysis 2020; 52:30-41. [PMID: 33011897 DOI: 10.1007/s11239-020-02295-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 12/11/2022]
Abstract
Microparticles (MPs) have been associated with inflammatory and thrombotic disease. High levels of MPs have been identified in patients with systemic lupus erythematosus (SLE) and associated with cardiovascular disease. We analyzed the procoagulant activity of MPs and its correlation with arteriosclerosis and arterial thrombosis in SLE patients. Eighty-seven patients with SLE were included: 22 (25.3%) with associated antiphospholipid syndrome (APS), 32 (36.8%) without antiphospholipid antibodies (aPL) and 33 (37.9%) with aPL but without APS. Subclinical arteriosclerosis, defined as the presence and number of plaques, was evaluated by ultrasonography of carotid arteries. Thrombotic events were confirmed by objective methods. The procoagulant activity of MPs was determined by a functional assay with annexin V. Subclinical arteriosclerosis was found in 19 (21.8%) patients. Thirteen episodes of arterial thrombosis and eight of venous thrombosis were recorded. The procoagulant activity of MPs was greater in patients with arterial thrombosis (17.28 ± 8.29 nM vs 12.96 ± 7.90 nM, p < 0.05). In patients without arterial thrombosis, greater procoagulant activity of MPs was identified in patients with multiple (≥ 2) carotid plaques (17.26 ± 10.63 nM vs 12.78 ± 7.15 nM, p = 0.04). In the multivariate analysis, the procoagulant activity of MPs was independently associated with multiple (≥ 2) carotid plaques and arterial thrombosis [OR = 1.094 (95%CI 1.010-1.185), p = 0.027 and OR = 1.101 (95%CI 1.025-1.182), p = 0.008; respectively]. In conclusion, the procoagulant activity of MPs is associated with arteriosclerosis burden and arterial thrombosis in patients with SLE.
Collapse
Affiliation(s)
| | - Patricia Patricio
- Department of Autoimmune Diseases, Hospital Clinic, Barcelona, Spain
| | - Joan Monteagudo
- Department of Hemostasis and Hemotherapy, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain
| | - Angeles García-Criado
- Department of Radiology, Centre de Diagnòstic per la Imatge, Hospital Clinic, Barcelona, Spain
| | - Ricard Cervera
- Department of Autoimmune Diseases, Hospital Clinic, Barcelona, Spain
| | - Joan Carles Reverter
- Department of Hemostasis and Hemotherapy, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain
| | - Gerard Espinosa
- Department of Autoimmune Diseases, Hospital Clinic, Barcelona, Spain
| | - Dolors Tàssies
- Department of Hemostasis and Hemotherapy, Hospital Clinic, Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
32
|
Vasilieva E, Gianella S, Freeman ML. Novel Strategies to Combat CMV-Related Cardiovascular Disease. Pathog Immun 2020; 5:240-274. [PMID: 33089035 PMCID: PMC7556413 DOI: 10.20411/pai.v5i1.382] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cytomegalovirus (CMV), a ubiquitous human pathogen that is never cleared from the host, has long been thought to be relatively innocuous in immunocompetent adults, but causes severe complications including blindness, end-organ disease, and death in newborns and in immuno-compromised individuals, such as organ transplant recipients and those suffering from AIDS. Yet even in persons with intact immunity, CMV infection is associated with profound stimulation of immune and inflammatory pathways. Carriers of CMV infection also have an elevated risk of developing cardiovascular complications. In this review, we define the proposed mechanisms of how CMV contributes to cardiovascular disease (CVD), describe current approaches to target CMV, and discuss how these strategies may or may not alleviate cardiovascular complications in those with CMV infection. In addition, we discuss the special situation of CMV coinfection in people with HIV infection receiving antiretroviral therapy, and describe how these 2 viral infections may interact to potentiate CVD in this especially vulnerable population.
Collapse
Affiliation(s)
- Elena Vasilieva
- Laboratory of Atherothrombosis, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine; Department of Medicine; Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
33
|
Noulsri E. Effects of Cell-Derived Microparticles on Immune Cells and Potential Implications in Clinical Medicine. Lab Med 2020; 52:122-135. [PMID: 32816040 DOI: 10.1093/labmed/lmaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the past few years, interest has increased in cell-derived microparticles (MPs), which are defined by their size of from 0.1 to 1 μm, and can be derived from various cell types, including endothelial cells, leukocytes, red blood cells (RBCs), and platelets. These MPs carry negatively charged phosphatidylserine (PS) on their surfaces and proteins packaged from numerous cellular components. MPs that have been shed by the body can play important roles in the pathophysiology of diseases and can affect various biological systems. Among these systems, the immune components have been shown to be modulated by MPs. Therefore, understanding the roles of MPs in the immune system is crucial to developing alternative therapeutic treatments for diseases. This review describes the effects of MPs on various immune cells and provides plausible potential applications of the immune-modulating properties of MPs in clinical medicine.
Collapse
Affiliation(s)
- Egarit Noulsri
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
34
|
Arauna D, Chiva-Blanch G, Padró T, Fuentes E, Palomo I, Badimon L. Frail older adults show a distinct plasma microvesicle profile suggesting a prothrombotic and proinflammatory phenotype. J Cell Physiol 2020; 236:2099-2108. [PMID: 32749745 DOI: 10.1002/jcp.29996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
In a global context of advanced aging, geriatric diseases such as frailty syndrome face challenges in the search for biomarkers and preventive strategies. Frailty has been associated with atherothrombotic pathologies. Circulating microvesicles (cMVs), phospholipid-rich vesicles with a size of 0.1-1.0 μm, have been shown to participate in atherothrombosis onset and progression. We have hypothesized that cMVs from platelets, and vascular and immune cells, are increased in frail older adults. To verify this, a prevalent-case control study was designed with 28 frail older and 27 nonfrail older adults older than 64 years. Frailty was defined by Fried's phenotype. Total cMVs, annexin V positive (AV+)-cMVs, and annexin V negative (AV- )-cMVs derived from blood and vascular cells were measured by flow cytometry. In the analysis of total cMVs, the frail group presented higher levels of CD14+ /CD142+ (p = .042), CD41a+ /CD142+ (p = .041), and CD56+ (p = .025), CD14+ cMVs (p = .043), and CD16+ /CD14+ (p = .019) cMVs levels. Within the phosphatidylserine-exposing cMVs (AV+ ), the frail group showed higher CD14+ /AV+ (p = .044), CD9+ /AV+ (p = .031), P2RY12+ /AV+ (p = .028), and CD235a+ /AV+ (p = .043) cMVs concentrations. Finally, within AV- cMVs, the frail group showed higher CD142+ /CD41a+ /AV- cMVs concentrations originated from platelets (p = .027), CD56+ /AV- originated from natural killer cells (p = .022), and CD34+ /AV- cMVs from hematopoietic stem cells (p = .037). In summary, frail older adults present higher concentrations of platelet-, leukocyte-, and hematopoietic cell-derived cMVs compared to robust age-matched older adults. These cMVs may be involved in the deregulation of the immune system, endothelial damage, and increased risk of thrombosis associated with frailty.
Collapse
Affiliation(s)
- Diego Arauna
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Thrombosis Research Center, Medical Technology, Universidad de Talca, Talca, Chile
| | - Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau; IIB-Sant Pau, Barcelona, Spain.,Department of Endocrinology and Nutrition, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Teresa Padró
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau; IIB-Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Thrombosis Research Center, Medical Technology, Universidad de Talca, Talca, Chile
| | - Iván Palomo
- Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Thrombosis Research Center, Medical Technology, Universidad de Talca, Talca, Chile
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau; IIB-Sant Pau, Barcelona, Spain.,CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
35
|
Chen Y, Zhong H, Zhao Y, Luo X, Gao W. Role of platelet biomarkers in inflammatory response. Biomark Res 2020; 8:28. [PMID: 32774856 PMCID: PMC7397646 DOI: 10.1186/s40364-020-00207-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond hemostasis, thrombosis and wound healing, it is becoming increasingly clear that platelets play an integral role in inflammatory response and immune regulation. Platelets recognize pathogenic microorganisms and secrete various immunoregulatory cytokines and chemokines, thus facilitating a variety of immune effects and regulatory functions. In this review, we discuss recent advances in signaling of platelet activation-related biomarkers in inflammatory settings and application prospects to apply for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Haoxuan Zhong
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Yikai Zhao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| |
Collapse
|
36
|
Marchini JF, Manica A, Crestani P, Dutzmann J, Folco EJ, Weber H, Libby P, Croce K. Oxidized Low-Density Lipoprotein Induces Macrophage Production of Prothrombotic Microparticles. J Am Heart Assoc 2020; 9:e015878. [PMID: 32750308 PMCID: PMC7792235 DOI: 10.1161/jaha.120.015878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Activated vascular cells produce submicron prothrombotic and proinflammatory microparticle vesicles. Atherosclerotic plaques contain high levels of microparticles. Plasma microparticle levels increase during acute coronary syndromes and the thrombotic consequences of plaque rupture likely involve macrophage-derived microparticles (MΦMPs). The activation pathways that promote MΦMP production remain poorly defined. This study tested the hypothesis that signals implicated in atherogenesis also stimulate MΦMP production. Methods and Results We stimulated human primary MΦs with proinflammatory cytokines and atherogenic lipids, and measured MΦMP production by flow cytometry. Oxidized low-density lipoprotein (oxLDL; 25 µg/mL) induced MΦMP production in a concentration-dependent manner (293% increase; P<0.001), and these oxLDL MΦMP stimulatory effects were mediated by CD36. OxLDL stimulation increased MΦMP tissue factor content by 78% (P<0.05), and oxLDL-induced MΦMP production correlated with activation of caspase 3/7 signaling pathways. Salvionolic acid B, a CD36 inhibitor and a CD36 inhibitor antibody reduced oxLDL-induced MΦMP by 67% and 60%, respectively. Caspase 3/7 inhibition reduced MΦMP release by 52% (P<0.01) and caspase 3/7 activation increased MΦMP production by 208% (P<0.01). Mevastatin pretreatment (10 µM) decreased oxLDL-induced caspase 3/7 activation and attenuated oxLDL-stimulated MΦMP production and tissue factor content by 60% (P<0.01) and 43% (P<0.05), respectively. Conclusions OxLDL induces the production of prothrombotic microparticles in macrophages. This process depends on caspases 3 and 7 and CD36 and is inhibited by mevastatin pretreatment. These findings link atherogenic signaling pathways, inflammation, and plaque thrombogenicity and identify a novel potential mechanism for antithrombotic effects of statins independent of LDL lowering.
Collapse
Affiliation(s)
- Julio F Marchini
- Cardiovascular Division Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston MA.,Departamento de Clínica Médica Instituto Central do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo SP Brazil
| | - Andre Manica
- Cardiovascular Division Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston MA.,Instituto de Cardiologia/Fundação Universitária de Cardiologia Porto Alegre RS Brazil
| | - Paulo Crestani
- Cardiovascular Division Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston MA
| | - Jochen Dutzmann
- Cardiovascular Division Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston MA
| | - Eduardo J Folco
- Cardiovascular Division Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston MA
| | - Heinz Weber
- Cardiovascular Division Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston MA
| | - Peter Libby
- Cardiovascular Division Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston MA
| | - Kevin Croce
- Cardiovascular Division Department of Medicine Brigham and Women's HospitalHarvard Medical School Boston MA
| |
Collapse
|
37
|
Effect of Physical Exercise on the Release of Microparticles with Angiogenic Potential. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular communication has a fundamental role in both human physiological and pathological states and various mechanisms are involved in the crosstalk between organs. Among these, microparticles (MPs) have an important involvement. MPs are a subtype of extracellular vesicles produced by a variety of cells following activation or apoptosis. They are normally present in physiological conditions, but their concentration varies in pathological states such as cardiovascular disease, diabetes mellitus, or cancer. Acute and chronic physical exercise are able to modify MPs amounts as well. Among various actions, exercise-responsive MPs affect angiogenesis, the process through which new blood vessels grow from pre-existing vessels. Usually, the neo vascular growth has functional role; but an aberrant neovascularization accompanies several oncogenic, ischemic, or inflammatory diseases. In addition, angiogenesis is one of the key adaptations to physical exercise and training. In the present review, we report evidence regarding the effect of various typologies of exercise on circulating MPs that are able to affect angiogenesis.
Collapse
|
38
|
Chiva-Blanch G, Sala-Vila A, Crespo J, Ros E, Estruch R, Badimon L. The Mediterranean diet decreases prothrombotic microvesicle release in asymptomatic individuals at high cardiovascular risk. Clin Nutr 2020; 39:3377-3384. [PMID: 32147198 DOI: 10.1016/j.clnu.2020.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND & AIMS Circulating microvesicles (cMV) are small phospholipid-rich vesicles that contribute to the atherothrombotic process, and are biomarkers of cardiovascular disease (CVD) burden and progression. Diet is a cornerstone for CVD prevention, but dietary effects on cMV shedding are poorly characterized. We aimed at assessing the long term effects of a Mediterranean diet compared to a low-fat diet (LFD) on MV shedding by cells of the blood and vascular compartments in patients at high cardiovascular risk treated as per guidelines. METHODS A total of 155 participants from the PREDIMED trial free of cardiovascular events after a mean follow-up of 5 years (n = 53 from the Mediterranean diet supplemented with extra-virgin olive oil -EVOO-; n = 49 from the Mediterranean diet supplemented with mixed nuts -Nuts-; and n = 53 from the LFD) were included in the study. At baseline and after one-year intervention, cMV were quantified and characterized by flow cytometry to identify their activated parental cell origin and prothrombotic potential by Annexin V (AV) binding. RESULTS After one year of dietary intervention, platelet-derived PAC-1+/AV+ and CD62P+/AV+ cMV concentrations were lower in the Nuts group compared with the LFD and EVOO interventions (P = 0.036 and 0.003, respectively). In addition, prothrombotic cMV carrying tissue factor (CD142+/AV+) and CD11a+/AV+ cMV derived from activated cells, were significantly lower in both Mediterranean diet (EVOO and Nuts) interventions compared to one year of LFD (P < 0.0001 and 0.028, respectively). SMAα+/AV- cMV were lower in the LFD compared to the Nuts group after one year of intervention (P = 0.038). CONCLUSIONS cMV are markers of cell activation and vascular injury that appear to be sensitive to dietary changes. Following a Mediterranean diet rich in EVOO or nuts is associated with lower cell activation towards a pro-atherothrombotic phenotype, suggesting a delay in the development of CV complications.
Collapse
Affiliation(s)
- Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Aleix Sala-Vila
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Lipid Clinic, Endocrinology and Nutrition Service, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Javier Crespo
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain
| | - Emilio Ros
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Lipid Clinic, Endocrinology and Nutrition Service, Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Internal Medicine, IDIBAPS, Hospital Clinic, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau - IIB Sant Pau, Barcelona, Spain; CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| |
Collapse
|
39
|
Gomez I, Ward B, Souilhol C, Recarti C, Ariaans M, Johnston J, Burnett A, Mahmoud M, Luong LA, West L, Long M, Parry S, Woods R, Hulston C, Benedikter B, Niespolo C, Bazaz R, Francis S, Kiss-Toth E, van Zandvoort M, Schober A, Hellewell P, Evans PC, Ridger V. Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nat Commun 2020; 11:214. [PMID: 31924781 PMCID: PMC6954269 DOI: 10.1038/s41467-019-14043-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may influence arterial pathophysiology. Here we report that levels of circulating neutrophil microvesicles are enhanced by exposure to a high fat diet, a known risk factor for atherosclerosis. Neutrophil microvesicles accumulate at disease-prone regions of arteries exposed to disturbed flow patterns, and promote vascular inflammation and atherosclerosis in a murine model. Using cultured endothelial cells exposed to disturbed flow, we demonstrate that neutrophil microvesicles promote inflammatory gene expression by delivering miR-155, enhancing NF-κB activation. Similarly, neutrophil microvesicles increase miR-155 and enhance NF-κB at disease-prone sites of disturbed flow in vivo. Enhancement of atherosclerotic plaque formation and increase in macrophage content by neutrophil microvesicles is dependent on miR-155. We conclude that neutrophils contribute to vascular inflammation and atherogenesis through delivery of microvesicles carrying miR-155 to disease-prone regions.
Collapse
Affiliation(s)
- Ingrid Gomez
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ben Ward
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
| | - Chiara Recarti
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Department of Molecular Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Mark Ariaans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jessica Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amanda Burnett
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Marwa Mahmoud
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Cardiovascular Mechanobiology and Nanomedicine, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Le Anh Luong
- William Harvey Research Institute, Queen Mary University, London, UK
| | - Laura West
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Merete Long
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sion Parry
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Rachel Woods
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Carl Hulston
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Birke Benedikter
- Department of Medical Microbiology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Chiara Niespolo
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Rohit Bazaz
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Sheila Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Marc van Zandvoort
- Department of Molecular Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Andreas Schober
- Experimental Vascular Medicine, Ludwig-Maximilian University of Munich, Munich, Germany
| | - Paul Hellewell
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- College of Health and Life Sciences, Brunel University, London, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK
- Bateson Institute, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
40
|
Chiva-Blanch G, Badimon L. Cross-Talk between Lipoproteins and Inflammation: The Role of Microvesicles. J Clin Med 2019; 8:E2059. [PMID: 31771128 PMCID: PMC6947387 DOI: 10.3390/jcm8122059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Atherothrombosis is the principal underlying cause of cardiovascular disease (CVD). Microvesicles (MV) are small blebs originated by an outward budding at the cell plasma membranes, which are released in normal conditions. However, MV release is increased in pathophysiologic conditions such as CVD. Low density lipoprotein (LDL) and MV contribute to atherothrombosis onset and progression by promoting inflammation and leukocyte recruitment to injured endothelium, as well as by increasing thrombosis and plaque vulnerability. Moreover, (oxidized)LDL induces MV release and vice-versa, perpetuating endothelium injury leading to CVD progression. Therefore, MV and lipoproteins exhibit common features, which should be considered in the interpretation of their respective roles in the pathophysiology of CVD. Understanding the pathways implicated in this process will aid in developing novel therapeutic approaches against atherothrombosis.
Collapse
Affiliation(s)
- Gemma Chiva-Blanch
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau—IIB Sant Pau, Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain;
| | - Lina Badimon
- Cardiovascular Program ICCC, Institut de Recerca Hospital Santa Creu i Sant Pau—IIB Sant Pau, Sant Antoni Maria Claret, 167, 08025 Barcelona, Spain;
- CIBER Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
41
|
Peng M, Liu X, Xu G. Extracellular Vesicles as Messengers in Atherosclerosis. J Cardiovasc Transl Res 2019; 13:121-130. [PMID: 31664614 DOI: 10.1007/s12265-019-09923-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 01/31/2023]
Abstract
Atherosclerosis is a major cause of cardiovascular diseases. Most cells involved in atherosclerosis can shed extracellular vesicles (EVs). Both atherogenic factors, such as hypoxia and oxidative stress, and atheroprotective factors, such as laminar blood flow, can influence the production of EV shedding. EVs can carry protein, DNA, mRNA, and noncoding RNA and act as mediators or messengers for cell-to-cell communications. EVs have been proven to promote or inhibit atherogenesis under particular circumstances. Therefore, EVs might be targeted for preventing or treating atherosclerotic diseases. The level of circulating EVs has been associated with the presence, progressiveness, or severity of atherosclerosis. Therefore, EVs may be utilized as indexes for diagnosing and grading atherosclerosis. Here, we reviewed the progress concerning the involvements of EVs in atherogenesis and atheroprotection. We also discussed the potential applications of EVs in managing atherosclerotic diseases.
Collapse
Affiliation(s)
- Mengna Peng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
42
|
Suades R, Padró T, Crespo J, Sionis A, Alonso R, Mata P, Badimon L. Liquid Biopsy of Extracellular Microvesicles Predicts Future Major Ischemic Events in Genetically Characterized Familial Hypercholesterolemia Patients. Arterioscler Thromb Vasc Biol 2019; 39:1172-1181. [DOI: 10.1161/atvbaha.119.312420] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective—
Circulating microvesicles (cMVs) exert regulatory roles in atherothrombosis. Patients with familial hypercholesterolemia (FH) that are at high risk for premature cardiovascular events (CVEs) have previously shown high levels of cMVs related to disease severity. However, much remains unknown about their value as markers of CVE. We sought to investigate the prognostic cMV signature for future major CVE presentation in patients with FH.
Approach and Results—
Liquid biopsies from genetically characterized patients with FH from the SAFEHEART (Spanish Familial Hypercholesterolemia Cohort Study)-cohort without clinical manifestation of disease at entry that were going to suffer a CVE within a mean period of 3.3±2.6 years postsampling (CVE, N=92) and from age/cardiovascular risk factor/treatment-matched patients with FH that did not suffer an event within the same time-period (non-CVE, N=48) were investigated. cMVs were phenotyped by flow cytometry to identify activated parental cells. Patients with CVE had higher number of overall procoagulant annexin V
+
-cMVs than non-CVE (
P
<0.05). Pan-leukocyte-derived and neutrophil-derived cMVs, as well as activated platelet-derived cMVs, were significantly higher in patients with CVE. Baseline number of cMVs derived from lymphocytes, neutrophils, and activated platelets were positively associated with mortality at follow-up (
P
<0.05). Patient-risk calculated by classical cardiovascular risk-factor scores did not correlate with cMVs. Inclusion of the cMV signature into the SAFEHEART risk model for patients with FH for the prediction of ischemic events increased the area under the curve from 0.603±0.050 to 0.768±0.042 (
P
<0.005).
Conclusions—
Patients with FH who are going to suffer a CVE within a mean period of 3.3 years, despite being treated according to guidelines, have ongoing innate immune cell and platelet activation. The proposed cMV signature is a prognostic marker for accelerated atherosclerosis and clinical event presentation in patients with FH.
Collapse
Affiliation(s)
- Rosa Suades
- From the Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain (R.S., T.P., J.C., L.B.)
- Cardiology Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden (R.S.)
| | - Teresa Padró
- From the Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain (R.S., T.P., J.C., L.B.)
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain (T.P., J.C., A.S., L.B.)
| | - Javier Crespo
- From the Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain (R.S., T.P., J.C., L.B.)
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain (T.P., J.C., A.S., L.B.)
| | - Alessandro Sionis
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain (T.P., J.C., A.S., L.B.)
- Acute and Intensive Cardiac Care Unit, Cardiology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain (A.S.)
| | - Rodrigo Alonso
- Fundación Hipercolesterolemia Familiar, Madrid, Spain (R.A., P.M.)
- Department of Nutrition, Clínica Las Condes Santiago, Chile (R.A.)
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain (R.A., P.M.)
| | - Lina Badimon
- From the Cardiovascular-Program ICCC, Research Institute Hospital Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain (R.S., T.P., J.C., L.B.)
- CIBERCV Instituto de Salud Carlos III, Madrid, Spain (T.P., J.C., A.S., L.B.)
- Cardiovascular Research Chair, UAB, Barcelona, Spain (L.B.)
| |
Collapse
|
43
|
Sluijter JPG, Davidson SM, Boulanger CM, Buzás EI, de Kleijn DPV, Engel FB, Giricz Z, Hausenloy DJ, Kishore R, Lecour S, Leor J, Madonna R, Perrino C, Prunier F, Sahoo S, Schiffelers RM, Schulz R, Van Laake LW, Ytrehus K, Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res 2019; 114:19-34. [PMID: 29106545 PMCID: PMC5852624 DOI: 10.1093/cvr/cvx211] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/01/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs)—particularly exosomes and microvesicles (MVs)—are attracting considerable interest in the cardiovascular field as the wide range of their functions is recognized. These capabilities include transporting regulatory molecules including different RNA species, lipids, and proteins through the extracellular space including blood and delivering these cargos to recipient cells to modify cellular activity. EVs powerfully stimulate angiogenesis, and can protect the heart against myocardial infarction. They also appear to mediate some of the paracrine effects of cells, and have therefore been proposed as a potential alternative to cell-based regenerative therapies. Moreover, EVs of different sources may be useful biomarkers of cardiovascular disease identities. However, the methods used for the detection and isolation of EVs have several limitations and vary widely between studies, leading to uncertainties regarding the exact population of EVs studied and how to interpret the data. The number of publications in the exosome and MV field has been increasing exponentially in recent years and, therefore, in this ESC Working Group Position Paper, the overall objective is to provide a set of recommendations for the analysis and translational application of EVs focussing on the diagnosis and therapy of the ischaemic heart. This should help to ensure that the data from emerging studies are robust and repeatable, and optimize the pathway towards the diagnostic and therapeutic use of EVs in clinical studies for patient benefit.
Collapse
Affiliation(s)
- Joost Petrus Gerardus Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, 3508GA Utrecht, The Netherlands
| | | | | | - Edit Iren Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,MTA-SE Immunoproteogenomics Research Group, Budapest, Hungary
| | - Dominique Paschalis Victor de Kleijn
- Department of Vascular Surgery, UMC Utrecht, Utrecht University, Utrecht, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| | - Felix Benedikt Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore 169857.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore 119228.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st floor, 149 Tottenham Court Road, London W1T 7DN, UK.,Department of Cardiology, Barts Heart Centre, St Bartholomew's Hospital, W Smithfield, London EC1A 7BE, UK
| | - Raj Kishore
- Department of Pharmacology, Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and Lionel Opie Preclinical Imaging Core Facility, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan Leor
- Neufeld Cardiac Research Institute, Sackler Faculty of Medicine, Tel-Aviv University, Tel Hashomer, Israel; Tamman Cardiovascular Research Institute, Heart Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Rosalinda Madonna
- Center of Aging Science and Regenerative Medicine, CESI-Met and Institute of Cardiology, "G. D'Annunzio" University, Chieti-Pescara, Chieti, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, TX, USA.,Texas Heart Institute, Houston, TX, USA
| | - Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Fabrice Prunier
- Institut Mitovasc, CHU d'Angers, Université d'Angers, Angers, France
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ray Michel Schiffelers
- Laboratory Clinical Chemistry and Hematology Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Aulweg 129, 35392, Giessen, Germany
| | - Linda Wilhelmina Van Laake
- Division Heart and Lungs, and Hubrecht Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsti Ytrehus
- Cardiovascular Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest 1089, Hungary and.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
44
|
Chiva-Blanch G, Padró T, Alonso R, Crespo J, Perez de Isla L, Mata P, Badimon L. Liquid Biopsy of Extracellular Microvesicles Maps Coronary Calcification and Atherosclerotic Plaque in Asymptomatic Patients With Familial Hypercholesterolemia. Arterioscler Thromb Vasc Biol 2019; 39:945-955. [DOI: 10.1161/atvbaha.118.312414] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Heterozygous familial hypercholesterolemia (FH) is the most common genetic disorder associated with premature atherosclerotic cardiovascular disease. Circulating microvesicles (cMV) are released when cells are activated. We investigated whether cMV could provide information on coronary calcification and atherosclerosis in FH patients.
Approach and Results—
Eighty-two patients (mean of 44±9 years old) with molecular diagnosis of heterozygous FH and asymptomatic cardiovascular disease were investigated. Atherosclerotic plaque characterization was performed by computed tomography angiography, and Agatston coronary calcium score and plaque composition sum were calculated. cMV were quantified by flow cytometry using AV (annexin V) and cell surface-specific antibodies. Of the 82 FH patients, 48 presented atherosclerotic plaque. Patients with atherosclerosis were men and older in a higher percentage than patients without atherosclerotic plaque. FH patients with atherosclerotic plaque showed higher levels of total AV
+
cMV, cMV AV
+
from platelet origin, from granulocytes and neutrophils, and cMV AV
+/−
from endothelial cells than FH-patients without atherosclerotic plaque. Plaque composition sum correlated with platelet- and endothelial-derived cMV, and Agatston coronary calcium score correlated with granulocyte-, platelet-, and endothelial-derived cMV. Receiver operating characteristic curve analyses indicated that the cluster of platelet-, granulocyte-, neutrophil, and endothelial-derived cMV considered together, added significant predictive value to the specific SAFEHEART (Spanish Familial Hypercholesterolaemia Cohort Study) risk equation for plaque presence (area under the curve=0.866, 95% CI, 0.775–0.958;
P
<0.0001,
P
=0.030 for the increment of the area under the curve).
Conclusions—
Endothelial-, granulocyte-, neutrophil- and platelet-derived cMV discriminate and map coronary atherosclerotic plaque and calcification in asymptomatic patients with FH. Liquid biopsy of cMV may be a surrogate biomarker of coronary atherosclerotic plaque burden in FH patients.
Collapse
Affiliation(s)
- Gemma Chiva-Blanch
- From the Cardiovascular Science Institute – ICCC; IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain (G.C.-B., T.P., J.C., L.B.)
| | - Teresa Padró
- From the Cardiovascular Science Institute – ICCC; IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain (G.C.-B., T.P., J.C., L.B.)
- CiberCV, Institute Carlos III, Madrid, Spain (T.P., L.B.)
| | - Rodrigo Alonso
- Nutrition Department, Clínica las Condes, Santiago de Chile, Chile (R.A.)
- Fundación Hipercolesterolemia Familiar, Madrid, Spain (R.A., L.P.d.I., P.M.)
| | - Javier Crespo
- From the Cardiovascular Science Institute – ICCC; IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain (G.C.-B., T.P., J.C., L.B.)
| | - Leopoldo Perez de Isla
- Fundación Hipercolesterolemia Familiar, Madrid, Spain (R.A., L.P.d.I., P.M.)
- Cardiology Department, Hospital Clínico San Carlos, IDISSC, Universidad Complutense, Madrid, Spain (L.P.d.I.)
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain (R.A., L.P.d.I., P.M.)
| | - Lina Badimon
- From the Cardiovascular Science Institute – ICCC; IIB-Sant Pau, Hospital de Sant Pau, Barcelona, Spain (G.C.-B., T.P., J.C., L.B.)
- CiberCV, Institute Carlos III, Madrid, Spain (T.P., L.B.)
| |
Collapse
|
45
|
El-Gamal H, Parray AS, Mir FA, Shuaib A, Agouni A. Circulating microparticles as biomarkers of stroke: A focus on the value of endothelial- and platelet-derived microparticles. J Cell Physiol 2019; 234:16739-16754. [PMID: 30912147 DOI: 10.1002/jcp.28499] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/20/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
Stroke is one of the leading causes of mortality and disability worldwide. Numerous pathophysiological mechanisms involving blood vessels, coagulation and inflammation contribute to the vascular occlusion. Perturbations in these pathways can be detected by numerous methods including changes in endoplasmic membrane remodeling and rearrangement leading to the shedding of microparticles (MPs) from various cellular origins in the blood. MPs are small membrane-derived vesicles that are shed from nearly all cells in the body in resting state or upon stimulation. MPs act as biological messengers to transfer information to adjacent and distant cells thus regulating various biological processes. MPs may be important biomarkers and tools for the identification of the risk and diagnosis of cerebrovascular diseases. Endothelial activation and dysfunction and altered thrombotic responses are two of the main features predisposing to stroke. Endothelial MPs (EMPs) have been recognized as both biomarkers and effectors of endothelial cell activation and injury while platelet-derived MPs (PMPs) carry a strong procoagulant potential and are activated in thrombotic states. Therefore, we reviewed here the role of EMPs and PMPs as biomarkers of stroke. Most studies reported high circulating levels of EMPs and PMPs in addition to other cell origins in stroke patients and have been linked to stroke severity, the size of infarction, and prognosis. The identification and quantification of EMPs and PMPs may thus be useful for the diagnosis and management of stroke.
Collapse
Affiliation(s)
- Heba El-Gamal
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Aijaz S Parray
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fayaz A Mir
- Interim Translational Research Institute (iTRI), Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ashfaq Shuaib
- The Stroke Program, The Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, Canada
| | - Abdelali Agouni
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
46
|
Lebedeva AM, Shpektor AV, Vasilieva EY, Margolis LB. Cytomegalovirus Infection in Cardiovascular Diseases. BIOCHEMISTRY (MOSCOW) 2019; 83:1437-1447. [PMID: 30878019 DOI: 10.1134/s0006297918120027] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atherosclerosis underlies the development of many cardiovascular diseases that continue to hold a leading place among the causes of death in developed countries. The role of activated immune cells in atherosclerosis progression has been convincingly demonstrated, but the mechanism of their action remains poorly investigated. Since atherosclerosis is associated with chronic inflammatory response, involvement of viral and bacterial infections in atherogenesis has been examined. A special place among the infectious agents is held by human herpesviruses as the most common persistent viruses in human population coupled to chronic inflammation during atherosclerosis. We found that activation of cytomegalovirus (CMV, human herpesvirus 5) infection is associated with the emergence of acute coronary syndrome, which is in a good agreement with the data on productive CMV infection published elsewhere. In this review, we discuss the data obtained by us and other researchers regarding the role of cytomegalovirus infection and related potential mechanisms resulting in the expansion of atherosclerotic plaques during ischemic heart disease and stroke, including virus transfer to immune and endothelial cells via extracellular vesicles. In particular, the data presented in the review demonstrate that virus spreading in the vascular wall triggers immune system activation in atherosclerotic plaques and causes endothelial dysfunction. Moreover, productive CMV infection in patients with acute myocardial infarction correlates with the extent of endothelial dysfunction. The mechanisms described by us and other researchers may explain the role of CMV infection in atherosclerosis and development of ischemic heart disease.
Collapse
Affiliation(s)
- A M Lebedeva
- Department of Cardiology and Laboratory of Atherothrombosis, A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, 127473, Russia.
| | - A V Shpektor
- Department of Cardiology and Laboratory of Atherothrombosis, A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, 127473, Russia
| | - E Yu Vasilieva
- Department of Cardiology and Laboratory of Atherothrombosis, A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, 127473, Russia
| | - L B Margolis
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Paone S, Baxter AA, Hulett MD, Poon IKH. Endothelial cell apoptosis and the role of endothelial cell-derived extracellular vesicles in the progression of atherosclerosis. Cell Mol Life Sci 2019; 76:1093-1106. [PMID: 30569278 PMCID: PMC11105274 DOI: 10.1007/s00018-018-2983-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/15/2018] [Accepted: 11/26/2018] [Indexed: 12/15/2022]
Abstract
To maintain physiological homeostasis, cell turnover occurs every day in the body via a form of programmed cell death called apoptosis. During apoptosis, cells undergo distinct morphological changes culminating in the disassembly of the dying cell into smaller fragments known as apoptotic bodies (ApoBDs). Dysregulation of apoptosis is associated with diseases including infection, cancer and atherosclerosis. Although the development of atherosclerosis is largely attributed to the accumulation of lipids and inflammatory debris in vessel walls, it is also associated with apoptosis of macrophages, smooth muscle cells (SMCs) and endothelial cells. During cellular activation and apoptosis, endothelial cells can release several types of membrane-bound extracellular vesicles (EVs) including exosomes, microvesicles (MVs)/microparticles and ApoBDs. Emerging evidence in the field suggests that these endothelial cell-derived EVs (EndoEVs) can contribute to intercellular communication during the development of atherosclerosis via the transfer of cellular contents such as protein and microRNA, which may prevent or promote disease progression depending on the context. This review provides an up-to-date overview of the known causes and consequences of endothelial cell death during atherosclerosis along with highlighting current methodological approaches to studying EndoEVs and the potential roles of EndoEVs in atherosclerosis development.
Collapse
Affiliation(s)
- Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
48
|
Tuñón J, Badimón L, Bochaton-Piallat ML, Cariou B, Daemen MJ, Egido J, Evans PC, Hoefer IE, Ketelhuth DFJ, Lutgens E, Matter CM, Monaco C, Steffens S, Stroes E, Vindis C, Weber C, Bäck M. Identifying the anti-inflammatory response to lipid lowering therapy: a position paper from the working group on atherosclerosis and vascular biology of the European Society of Cardiology. Cardiovasc Res 2019; 115:10-19. [PMID: 30534957 PMCID: PMC6302260 DOI: 10.1093/cvr/cvy293] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dysregulated lipid metabolism induces an inflammatory and immune response leading to atherosclerosis. Conversely, inflammation may alter lipid metabolism. Recent treatment strategies in secondary prevention of atherosclerosis support beneficial effects of both anti-inflammatory and lipid-lowering therapies beyond current targets. There is a controversy about the possibility that anti-inflammatory effects of lipid-lowering therapy may be either independent or not of a decrease in low-density lipoprotein cholesterol. In this Position Paper, we critically interpret and integrate the results obtained in both experimental and clinical studies on anti-inflammatory actions of lipid-lowering therapy and the mechanisms involved. We highlight that: (i) besides decreasing cholesterol through different mechanisms, most lipid-lowering therapies share anti-inflammatory and immunomodulatory properties, and the anti-inflammatory response to lipid-lowering may be relevant to predict the effect of treatment, (ii) using surrogates for both lipid metabolism and inflammation as biomarkers or vascular inflammation imaging in future studies may contribute to a better understanding of the relative importance of different mechanisms of action, and (iii) comparative studies of further lipid lowering, anti-inflammation and a combination of both are crucial to identify effects that are specific or shared for each treatment strategy.
Collapse
Affiliation(s)
- José Tuñón
- Department of Cardiology, Fundación Jiménez Díaz, Autónoma University and CiberCV, Avenida Reyes Católicos 2, Madrid, Spain
| | - Lina Badimón
- Cardiovascular Sciences Institute (ICCC) and CiberCV, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Bertrand Cariou
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| | - Mat J Daemen
- Academic Medical Center, Amsterdam, The Netherlands
| | - Jesus Egido
- Fundación Jiménez Díaz, Autónoma University and CIBERDEM, Madrid, Spain
| | | | - Imo E Hoefer
- University Medical Centre Utrecht, Utrecht, Netherlands
| | | | - Esther Lutgens
- Academic Medical Center, Amsterdam, The Netherlands
- University of Amsterdam, Amsterdam, The Netherlands
- Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian M Matter
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Sabine Steffens
- Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Cécile Vindis
- INSERM UMR-1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - Christian Weber
- Ludwig-Maximilians-University, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Magnus Bäck
- Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Sanden M, Botha J, Nielsen MRS, Nielsen MH, Schmidt EB, Handberg A. BLTR1 and CD36 Expressing Microvesicles in Atherosclerotic Patients and Healthy Individuals. Front Cardiovasc Med 2018; 5:156. [PMID: 30425991 PMCID: PMC6218418 DOI: 10.3389/fcvm.2018.00156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/12/2018] [Indexed: 12/25/2022] Open
Abstract
Aims: Monocytes/macrophages play a crucial role in the development, progression, and complication of atherosclerosis. In particular, foam cell formation driven by CD36 mediated internalization of oxLDL leads to activation of monocytes and subsequent release of microvesicles (MVs) derived from monocytes (MMVs). Further, pro-inflammatory leukotriene B4 (LTB4) derived from arachidonic acid promotes atherosclerosis through the high-affinity receptor BLTR1. Thus, we aimed to investigate the correlation between different MMV phenotypes (CD14+ MVs) on the one hand, and arachidonic acid and eicosapentaenoic acid contents in different compartments including atherosclerotic plaques, plasma, and granulocytes on the other. Methods and Results: Samples from patients with femoral atherosclerosis and healthy controls were analyzed on an Apogee A60 Micro-PLUS flow cytometer. Platelet-poor plasma was labeled with lactadherin-FITC, anti-CD14-APC, anti-CD36-PE, and anti-BLTR1-AF700. Eicosapentaenoic acid and arachidonic acid content in different compartments in patients were analyzed using gas chromatography. Compared to controls, patients had lower levels of BLTR1+ MVs (p = 0.007), CD14+BLTR1+ MVs (p = 0.007), and CD14+BLTR1+CD36+ MVs (p = 0.001). Further, in patients CD14+ MVs and CD14+CD36+ MVs correlated inversely with arachidonic acid in granulocytes (r = −0.302, p = 0.039 and r = −0.322, p = 0.028, respectively). Moreover, CD14+CD36+ MVs correlated inversely with arachidonic acid in plasma phospholipids in patients (r = −0.315, p = 0.029), and positively with triglyceride in both patients (r = 0.33, p = 0.019) and controls (r = 0.46, p = 0.022). Conclusion: This is the first study of its kind and thus the results are explorative and only indicative. BLTR1+ MVs and CD14+CD36+ MVs has potential as markers of atherosclerosis pathophysiology, but this needs further investigation.
Collapse
Affiliation(s)
- Mathilde Sanden
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Jaco Botha
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | | | | | - Erik Berg Schmidt
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
50
|
Sionis A, Suades R, Sans-Roselló J, Sánchez-Martínez M, Crespo J, Padró T, Cubedo J, Ferrero-Gregori A, Vila-Perales M, Duran-Cambra A, Badimon L. Circulating microparticles are associated with clinical severity of persistent ST-segment elevation myocardial infarction complicated with cardiogenic shock. Int J Cardiol 2018; 258:249-256. [PMID: 29544939 DOI: 10.1016/j.ijcard.2017.10.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/12/2017] [Accepted: 10/12/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cardiogenic shock (CS) is the leading cause of death in patients admitted for acute myocardial infarction (MI). Despite the recent advances in reperfusion and medical treatment mortality remains unacceptably high. Whether cells of the blood compartment in CS-patients are activated and release microparticles (cMPs) that may be both messengers and biomarkers of cell damage is not known. We aimed to investigate the cMP subtypes and parental activated cells of ST-elevation MI (STEMI)-patients complicated by CS and that of non-CS STEMI-patients (non-CS) in order to identify a cMP signature that could aid CS patient's risk stratification. METHODS Clinically-characterized STEMI-patients with and without CS (36/group) were included. Treatment was delivered according to guidelines and included primary percutaneous coronary intervention. cMPs were characterized by triple-labeling flow cytometry using Annexin V and cell surface-specific monoclonal antibodies. RESULTS Increased levels of leukocyte-derived (neutrophil and granulocyte origin) and platelet-derived cMPs were detected in CS compared to non-CS patients. A signature of cMPs derived from platelets, leukocytes, and endothelium discriminated CS-patients (AUC of 0.743±0.059 [95% CI: 0.628-0.859], P<0.0001) and predicted mortality in CS (AUC of 0.869±0.06 [95% CI: 0.750-0.988], P<0.0001). In CS-patients, a higher number of platelet- and monocyte-cMPs and of tissue factor-rich cMPs associated to worse myocardial blush grade and thrombolysis in myocardial infarction flow. CONCLUSIONS cMPs derived from proinflammatory and prothrombotic cells were found to be elevated in CS-patients. In treated as per guidelines CS patients, granulocytes and neutrophils remained activated and actively shed cMPs. These cMPs were biomarkers of adverse prognosis in CS. TRANSLATIONAL ASPECT Increased levels of leukocyte and platelet-derived circulating microparticles (cMPs) are found in cardiogenic shock (CS) patients as compared to non-CS patients. In CS-patients, a higher number of platelet- and monocyte-cMPs and a higher number of tissue factor-rich cMPs were associated to worse myocardial reperfusion. A specific prothrombotic and proinflammatory cMPs signature in cardiogenic shock (CS) patients is a potential discriminator and survival prognostic biomarker for CS, which could aid management and improve clinical outcomes.
Collapse
Affiliation(s)
- A Sionis
- Acute and Intensive Cardiac Care Unit, Cardiology Department, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; CiberCV, Institute of Health Carlos III, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - R Suades
- ICCC, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - J Sans-Roselló
- Acute and Intensive Cardiac Care Unit, Cardiology Department, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - M Sánchez-Martínez
- Acute and Intensive Cardiac Care Unit, Cardiology Department, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - J Crespo
- ICCC, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - T Padró
- CiberCV, Institute of Health Carlos III, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; ICCC, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - J Cubedo
- CiberCV, Institute of Health Carlos III, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; ICCC, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - A Ferrero-Gregori
- Epidemiology Department, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - M Vila-Perales
- Acute and Intensive Cardiac Care Unit, Cardiology Department, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - A Duran-Cambra
- Acute and Intensive Cardiac Care Unit, Cardiology Department, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - L Badimon
- CiberCV, Institute of Health Carlos III, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; ICCC, Hospital Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Cardiovascular Research Chair, UAB, Barcelona, Spain.
| |
Collapse
|