1
|
Abstract
Significance: Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. Recent Advances: Aging affects blood coagulation and fibrinolysis via multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. Critical Issues: Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. Future Directions: Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.
Collapse
Affiliation(s)
- Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| |
Collapse
|
2
|
Xie X, Zhou Y, Tang Z, Yang X, Lian Q, Liu J, Yu B, Liu X. Mudanpioside C Discovered from Paeonia suffruticosa Andr. Acts as a Protein Disulfide Isomerase Inhibitor with Antithrombotic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6265-6275. [PMID: 38487839 DOI: 10.1021/acs.jafc.3c08380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Paeonia suffruticosa Andr. is a well-known landscape plant worldwide and also holds significant importance in China due to its medicinal and dietary properties. Previous studies have found that Cortex Moutan (CM), the dried root bark of P. suffruticosa, showed antiplatelet and cardioprotective effects, although the underlying mechanism and active compounds remain to be revealed. In this study, protein disulfide isomerase (PDI) inhibitors in CM were identified using a ligand-fishing method combined with the UHPLC-Q-TOF-MS assay. Further, their binding sites and inhibitory activities toward PDI were validated. The antiplatelet aggregation and antithrombotic activity were investigated. The results showed that two structurally similar compounds in CM were identified as the inhibitor for PDI with IC50 at 3.22 μM and 16.73 μM; among them Mudanpioside C (MC) is the most effective PDI inhibitor. Molecular docking, site-directed mutagenesis, and MST assay unequivocally demonstrated the specific binding of MC to the b'-x domain of PDI (Kd = 3.9 μM), acting as a potent PDI inhibitor by interacting with key amino acids K263, D292, and N298 within the b'-x domain. Meanwhile, MC could dose-dependently suppress collagen-induced platelet aggregation and interfere with platelet activation, adhesion, and spreading. Administration of MC can significantly inhibit thrombosis formation without disturbing hemostasis in mice. These findings present a promising perspective on the antithrombotic properties of CM and highlight the potential application of MC as lead compounds for targeting PDI in thrombosis therapy.
Collapse
Affiliation(s)
- Xingrong Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yatong Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Ziqi Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xinping Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qi Lian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Jihua Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Boyang Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, People's Republic of China
- Research Center for Traceability and Standardization of TCMs, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
3
|
Müller-Calleja N, Grunz K, Nguyen TS, Posma J, Pedrosa D, Meineck M, Hollerbach A, Braun J, Muth S, Schild H, Saar K, Hübner N, Krishnaswamy S, Royce J, Teyton L, Lemmermann N, Weinmann-Menke J, Lackner KJ, Ruf W. Targeting the tissue factor coagulation initiation complex prevents antiphospholipid antibody development. Blood 2024; 143:1167-1180. [PMID: 38142429 PMCID: PMC10972716 DOI: 10.1182/blood.2023022276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023] Open
Abstract
ABSTRACT Antiphospholipid antibodies (aPL) in primary or secondary antiphospholipid syndrome (APS) are a major cause for acquired thrombophilia, but specific interventions preventing autoimmune aPL development are an unmet clinical need. Although autoimmune aPL cross react with various coagulation regulatory proteins, lipid-reactive aPL, including those derived from patients with COVID-19, recognize the endolysosomal phospholipid lysobisphosphatidic acid presented by the cell surface-expressed endothelial protein C receptor. This specific recognition leads to complement-mediated activation of tissue factor (TF)-dependent proinflammatory signaling and thrombosis. Here, we show that specific inhibition of the TF coagulation initiation complex with nematode anticoagulant protein c2 (NAPc2) prevents the prothrombotic effects of aPL derived from patients with COVID-19 in mice and the aPL-induced proinflammatory and prothrombotic activation of monocytes. The induction of experimental APS is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, and NAPc2 suppresses monocyte endosomal reactive oxygen species production requiring the TF cytoplasmic domain and interferon-α secretion from dendritic cells. Latent infection with murine cytomegalovirus causes TF cytoplasmic domain-dependent development of persistent aPL and circulating phospholipid-reactive B1 cells, which is prevented by short-term intervention with NAPc2 during acute viral infection. In addition, treatment of lupus prone MRL-lpr mice with NAPc2, but not with heparin, suppresses dendritic-cell activation in the spleen, aPL production and circulating phospholipid-reactive B1 cells, and attenuates lupus pathology. These data demonstrate a convergent TF-dependent mechanism of aPL development in latent viral infection and autoimmune disease and provide initial evidence that specific targeting of the TF initiation complex has therapeutic benefits beyond currently used clinical anticoagulant strategies.
Collapse
Affiliation(s)
- Nadine Müller-Calleja
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - T. Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Jens Posma
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Myriam Meineck
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anne Hollerbach
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Johannes Braun
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Muth
- Institute for Immunology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hansjörg Schild
- Institute for Immunology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Kathrin Saar
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Norbert Hübner
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charite-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany
| | - Sriram Krishnaswamy
- Department of Pediatrics, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| | - Jennifer Royce
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| | - Niels Lemmermann
- Institute for Virology, Johannes Gutenberg University Medical Center, Mainz, Germany
- Institute of Virology, University Hospital Bonn, Bonn, Germany
| | - Julia Weinmann-Menke
- Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main, Mainz, Germany
| |
Collapse
|
4
|
Lizarralde-Iragorri MA, Parachalil Gopalan B, Merriweather B, Brooks J, Hill M, Lovins D, Pierre-Charles R, Cullinane A, Dulau-Florea A, Lee DY, Villasmil R, Jeffries N, Shet AS. Isoquercetin for thromboinflammation in sickle cell disease: a randomized double-blind placebo-controlled trial. Blood Adv 2024; 8:172-182. [PMID: 38157227 PMCID: PMC10787266 DOI: 10.1182/bloodadvances.2023011542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
ABSTRACT Data from a small trial in patients with cancer suggest that isoquercetin (IQ) treatment lowered thrombosis biomarkers and prevented clinical thrombosis, but, to our knowledge, no studies of IQ have been conducted to target thromboinflammation in adults with sickle cell disease (SCD). We conducted a randomized, double-blind, placebo-controlled trial in adults with steady-state SCD (hemoglobin SS [HbSS], HbSβ0thal, HbSβ+thal, or HbSC). The primary outcome was the change in plasma soluble P-selectin (sP-selectin) after treatment compared with baseline, analyzed in the intention-to-treat population. Between November 2019 and July 2022, 46 patients (aged 40 ± 11 years, 56% female, 75% under hydroxyurea treatment) were randomized to receive IQ (n = 23) or placebo (n = 23). IQ was well tolerated and all the adverse events (AEs; n = 21) or serious AEs (n = 14) recorded were not attributable to the study drug. The mean posttreatment change for sP-selectin showed no significant difference between the treatment groups (IQ, 0.10 ± 6.53 vs placebo, 0.74 ± 4.54; P = .64). In patients treated with IQ, whole-blood coagulation (P = .03) and collagen-induced platelet aggregation (P = .03) were significantly reduced from the baseline. Inducible mononuclear cell tissue factor gene expression and plasma protein disulfide isomerase reductase activity were also significantly inhibited (P = .003 and P = .02, respectively). Short-term fixed-dose IQ in patients with SCD was safe with no off-target bleeding and was associated with changes from the baseline in the appropriate direction for several biomarkers of thromboinflammation. The trial was registered at www.clinicaltrials.gov as #NCT04514510.
Collapse
Affiliation(s)
- Maria A Lizarralde-Iragorri
- Sickle Thrombosis and Vascular Biology Lab, Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Bindu Parachalil Gopalan
- Sickle Thrombosis and Vascular Biology Lab, Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brenda Merriweather
- Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Jennifer Brooks
- Office of the Clinical Director, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mai Hill
- Office of the Clinical Director, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Dianna Lovins
- Office of the Clinical Director, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ruth Pierre-Charles
- Office of the Clinical Director, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Ann Cullinane
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Alina Dulau-Florea
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD
| | - Duck-Yeon Lee
- Biochemistry Core Facility, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Rafael Villasmil
- Flow Cytometry Core Facility, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Neal Jeffries
- Office of Biostatistics Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Arun S Shet
- Sickle Thrombosis and Vascular Biology Lab, Sickle Cell Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
5
|
Langer F, Quick H, Beitzen-Heineke A, Janjetovic S, Mäder J, Lehr C, Bokemeyer C, Kuta P, Renné T, Fiedler W, Beckmann L, Klingler F, Rolling CC. Regulation of coagulation activation in newly diagnosed AML by the heme enzyme myeloperoxidase. Thromb Res 2023; 229:155-163. [PMID: 37473552 DOI: 10.1016/j.thromres.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Patients with acute myeloid leukemia (AML) are at increased risk of thrombohemorrhagic complications. Overexpressed tissue factor (TF) on AML blasts contributes to systemic coagulation activation. We have recently shown that the heme enzyme myeloperoxidase (MPO) negatively regulates TF procoagulant activity (PCA) on myelomonocytic cells in vitro. We now aimed to further characterize the functional interaction of MPO and TF in AML in vivo. METHODS We prospectively recruited 66 patients with newly diagnosed AML. TF PCA of isolated peripheral blood mononuclear cells (PBMC) was assessed by single-stage clotting assay in the presence or absence of inhibitors against MPO catalytic activity (ABAH) or against MPO-binding integrins (anti-CD18). MPO in plasma and in AML blasts was measured by ELISA, and plasma D-dimers and prothrombin fragment F1+2 were quantified by automated immunoturbidimetric and chemiluminescence assays, respectively. RESULTS Patients with AML had significantly higher MPO plasma levels compared to healthy controls and exhibited increased levels of D-dimers and F1+2. In vivo thrombin generation was mediated by TF PCA on circulating PBMC. Ex vivo incubation of isolated PBMC with ABAH or anti-CD18 antibody resulted in either increased or decreased TF PCA. The strong and robust correlation of F1+2 with TF PCA of circulating PBMC was abrogated at MPO plasma levels higher than 150 ng/mL, indicating a modulatory role for MPO on TF-mediated in vivo thrombin generation above this threshold. CONCLUSION Our study indicates that catalytically active MPO released by circulating myeloblasts regulates TF-dependent coagulation in patients with newly diagnosed AML in a CD18-dependent manner.
Collapse
Affiliation(s)
- Florian Langer
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Quick
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Beitzen-Heineke
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Snjezana Janjetovic
- Klinik für Hämatologie und Zelltherapie, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Jonathan Mäder
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carina Lehr
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Piotr Kuta
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Walter Fiedler
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Beckmann
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Klingler
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina C Rolling
- Oncology, Hematology and BMT with section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Rolling CC, Barrett TJ, Berger JS. Platelet-monocyte aggregates: molecular mediators of thromboinflammation. Front Cardiovasc Med 2023; 10:960398. [PMID: 37255704 PMCID: PMC10225702 DOI: 10.3389/fcvm.2023.960398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023] Open
Abstract
Platelets, key facilitators of primary hemostasis and thrombosis, have emerged as crucial cellular mediators of innate immunity and inflammation. Exemplified by their ability to alter the phenotype and function of monocytes, activated platelets bind to circulating monocytes to form monocyte-platelet aggregates (MPA). The platelet-monocyte axis has emerged as a key mechanism connecting thrombosis and inflammation. MPA are elevated across the spectrum of inflammatory and autoimmune disorders, including cardiovascular disease, systemic lupus erythematosus (SLE), and COVID-19, and are positively associated with disease severity. These clinical disorders are all characterized by an increased risk of thromboembolic complications. Intriguingly, monocytes in contact with platelets become proinflammatory and procoagulant, highlighting that this interaction is a central element of thromboinflammation.
Collapse
Affiliation(s)
- Christina C. Rolling
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
- Department of Oncology and Hematology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tessa J. Barrett
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Xiang M, Wu X, Jing H, Novakovic VA, Shi J. The intersection of obesity and (long) COVID-19: Hypoxia, thrombotic inflammation, and vascular endothelial injury. Front Cardiovasc Med 2023; 10:1062491. [PMID: 36824451 PMCID: PMC9941162 DOI: 10.3389/fcvm.2023.1062491] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The role of hypoxia, vascular endothelial injury, and thrombotic inflammation in worsening COVID-19 symptoms has been generally recognized. Damaged vascular endothelium plays a crucial role in forming in situ thrombosis, pulmonary dysfunction, and hypoxemia. Thrombotic inflammation can further aggravate local vascular endothelial injury and affect ventilation and blood flow ratio. According to the results of many studies, obesity is an independent risk factor for a variety of severe respiratory diseases and contributes to high mechanical ventilation rate, high mortality, and slow recovery in COVID-19 patients. This review will explore the mechanisms by which obesity may aggravate the acute phase of COVID-19 and delay long COVID recovery by affecting hypoxia, vascular endothelial injury, and thrombotic inflammation. A systematic search of PubMed database was conducted for papers published since January 2020, using the medical subject headings of "COVID-19" and "long COVID" combined with the following keywords: "obesity," "thrombosis," "endothelial injury," "inflammation," "hypoxia," "treatment," and "anticoagulation." In patients with obesity, the accumulation of central fat restricts the expansion of alveoli, exacerbating the pulmonary dysfunction caused by SARS-CoV-2 invasion, inflammatory damage, and lung edema. Abnormal fat secretion and immune impairment further aggravate the original tissue damage and inflammation diffusion. Obesity weakens baseline vascular endothelium function leading to an early injury and pre-thrombotic state after infection. Enhanced procoagulant activity and microthrombi promote early obstruction of the vascular. Obesity also prolongs the duration of symptoms and increases the risk of sequelae after hospital discharge. Persistent viral presence, long-term inflammation, microclots, and hypoxia may contribute to the development of persistent symptoms, suggesting that patients with obesity are uniquely susceptible to long COVID. Early interventions, including supplemental oxygen, comprehensive antithrombotic therapy, and anti-inflammatory drugs, show effectiveness in many studies in the prevention of serious hypoxia, thromboembolic events, and systemic inflammation, and are therefore recommended to reduce intensive care unit admission, mortality, and sequelae.
Collapse
Affiliation(s)
- Mengqi Xiang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Research, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Wang J, Keshava S, Das K, Kolesnick R, Jiang XC, Pendurthi UR, Rao LVM. Alterations to Sphingomyelin Metabolism Affect Hemostasis and Thrombosis. Arterioscler Thromb Vasc Biol 2023; 43:64-78. [PMID: 36412194 PMCID: PMC9762718 DOI: 10.1161/atvbaha.122.318443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Our recent studies suggest that sphingomyelin levels in the plasma membrane influence TF (tissue factor) procoagulant activity. The current study was performed to investigate how alterations to sphingomyelin metabolic pathway would affect TF procoagulant activity and thereby affect hemostatic and thrombotic processes. METHODS Macrophages and endothelial cells were transfected with specific siRNAs or infected with adenoviral vectors to alter sphingomyelin levels in the membrane. TF activity was measured in factor X activation assay. Saphenous vein incision-induced bleeding and the inferior vena cava ligation-induced flow restriction mouse models were used to evaluate hemostasis and thrombosis, respectively. RESULTS Overexpression of SMS (sphingomyelin synthase) 1 or SMS2 in human monocyte-derived macrophages suppresses ATP-stimulated TF procoagulant activity, whereas silencing SMS1 or SMS2 increases the basal cell surface TF activity to the same level as of ATP-decrypted TF activity. Consistent with the concept that sphingomyelin metabolism influences TF procoagulant activity, silencing of acid sphingomyelinase or neutral sphingomyelinase 2 or 3 attenuates ATP-induced enhanced TF procoagulant activity in macrophages and endothelial cells. Niemann-Pick disease fibroblasts with a higher concentration of sphingomyelin exhibited lower TF activity compared with wild-type fibroblasts. In vivo studies revealed that LPS+ATP-induced TF activity and thrombin generation were attenuated in ASMase-/- mice, while their levels were increased in SMS2-/- mice. Further studies revealed that acid sphingomyelinase deficiency leads to impaired hemostasis, whereas SMS2 deficiency increases thrombotic risk. CONCLUSIONS Overall, our data indicate that alterations in sphingomyelin metabolism would influence TF procoagulant activity and affect hemostatic and thrombotic processes.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| | - Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| | | | | | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler (J.W., S.K., K.D., U.R.P., L.V.M.R.)
| |
Collapse
|
9
|
Tissue factor in cancer-associated thromboembolism: possible mechanisms and clinical applications. Br J Cancer 2022; 127:2099-2107. [PMID: 36097177 PMCID: PMC9467428 DOI: 10.1038/s41416-022-01968-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2023] Open
Abstract
Venous and arterial thromboses, called as cancer-associated thromboembolism (CAT), are common complications in cancer patients that are associated with high mortality. The cell-surface glycoprotein tissue factor (TF) initiates the extrinsic blood coagulation cascade. TF is overexpressed in cancer cells and is a component of extracellular vesicles (EVs). Shedding of TF+EVs from cancer cells followed by association with coagulation factor VII (fVII) can trigger the blood coagulation cascade, followed by cancer-associated venous thromboembolism in some cancer types. Secretion of TF is controlled by multiple mechanisms of TF+EV biogenesis. The procoagulant function of TF is regulated via its conformational change. Thus, multiple steps participate in the elevation of plasma procoagulant activity. Whether cancer cell-derived TF is maximally active in the blood is unclear. Numerous mechanisms other than TF+EVs have been proposed as possible causes of CAT. In this review, we focused on a wide variety of regulatory and shedding mechanisms for TF, including the effect of SARS-CoV-2, to provide a broad overview for its role in CAT. Furthermore, we present the current technical issues in studying the relationship between CAT and TF.
Collapse
|
10
|
He Y, Wu Q. The Effect of Extracellular Vesicles on Thrombosis. J Cardiovasc Transl Res 2022:10.1007/s12265-022-10342-w. [DOI: 10.1007/s12265-022-10342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022]
Abstract
Abstract
The risk of cardiovascular events caused by acute thrombosis is high, including acute myocardial infarction, acute stroke, acute pulmonary embolism, and deep vein thrombosis. In this review, we summarize the roles of extracellular vesicles of different cellular origins in various cardiovascular events associated with acute thrombosis, as described in the current literature, to facilitate the future development of a precise therapy for thrombosis caused by such vesicles. We hope that our review will indicate a new horizon in the field of cardiovascular research with regard to the treatment of acute thrombosis, especially targeting thrombosis caused by extracellular vesicles secreted by individual cells. As more emerging technologies are being developed, new diagnostic and therapeutic strategies related to EVs are expected to be identified for related diseases in the future.
Collapse
|
11
|
Sachetto ATA, Mackman N. Tissue Factor and COVID-19: An Update. Curr Drug Targets 2022; 23:1573-1577. [PMID: 36165519 DOI: 10.2174/1389450123666220926144432] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 01/25/2023]
Abstract
The coronavirus 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Infection with SARS-CoV-2 is associated with acute respiratory distress syndrome, thrombosis and a high rate of mortality. Thrombotic events increase with severity. Tissue factor (TF) expression is increased during viral and bacterial infections. This review summarizes studies that have examined TF expression in response to SARS-CoV-2 infection. SARS-CoV-2 virus and its proteins upregulate TF mRNA, protein and activity in a variety of cells, including bronchial epithelial cells, neutrophils, monocytes, macrophages, endothelial cells and adventitial fibroblasts. COVID-19 patients have increased TF expression in lungs, bronchoalveolar lavage fluid and circulating extracellular vesicles. The increase in TF was associated with coagulation activation markers, thrombosis, inflammatory markers, severity of disease and mortality. Taken together, the studies suggest that TF plays a central role in thrombosis in COVID- 19. TF may be a useful prognostic marker and therapeutic target to reduce thrombosis and inflammation.
Collapse
Affiliation(s)
- Ana Teresa Azevedo Sachetto
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, São Paulo, Brazil.,University of São Paulo Medical School, São Paulo, São Paulo, Brazil.,Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Inhibition of protein disulfide isomerase with PACMA-31 regulates monocyte tissue factor through transcriptional and posttranscriptional mechanisms. Thromb Res 2022; 220:48-59. [DOI: 10.1016/j.thromres.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
|
13
|
Liu L, Jing H, Wu X, Xiang M, Novakovic VA, Wang S, Shi J. The cross-talk of lung and heart complications in COVID-19: Endothelial cells dysfunction, thrombosis, and treatment. Front Cardiovasc Med 2022; 9:957006. [PMID: 35990983 PMCID: PMC9390946 DOI: 10.3389/fcvm.2022.957006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/11/2022] [Indexed: 01/08/2023] Open
Abstract
The pandemic respiratory illness SARS-CoV-2 has increasingly been shown to be a systemic disease that can also have profound impacts on the cardiovascular system. Although associated cardiopulmonary sequelae can persist after infection, the link between viral infection and these complications remains unclear. There is now a recognized link between endothelial cell dysfunction and thrombosis. Its role in stimulating platelet activation and thrombotic inflammation has been widely reported. However, the procoagulant role of microparticles (MPs) in COVID-19 seems to have been neglected. As membrane vesicles released after cell injury or apoptosis, MPs exert procoagulant activity mainly by exposing phosphatidylserine (PS) on their lipid membranes. It can provide a catalytic surface for the assembly of the prothrombinase complex. Therefore, inhibiting PS externalization is a potential therapeutic strategy. In this paper, we describe the pathophysiological mechanism by which SARS-CoV-2 induces lung and heart complications through injury of endothelial cells, emphasizing the procoagulant effect of MPs and PS, and demonstrate the importance of early antithrombotic therapy. In addition, we will detail the mechanisms underlying hypoxia, another serious pulmonary complication related to SARS-CoV-2-induced endothelial cells injury and discuss the use of oxygen therapy. In the case of SARS-CoV-2 infection, virus invades endothelial cells through direct infection, hypoxia, imbalance of the RAAS, and cytokine storm. These factors cause endothelial cells to release MPs, form MPs storm, and eventually lead to thrombosis. This, in turn, accelerates hypoxia and cytokine storms, forming a positive feedback loop. Given the important role of thrombosis in the disease, early antithrombotic therapy is an important tool for COVID-19. It may maintain normal blood circulation, accelerating the clearance of viruses, waning the formation of MPs storm, and avoiding disease progression.
Collapse
Affiliation(s)
- Langjiao Liu
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Xiaoming Wu
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Mengqi Xiang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Valerie A. Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Shuye Wang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Shuye Wang
| | - Jialan Shi
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Jialan Shi ;
| |
Collapse
|
14
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
15
|
Koizume S, Kobayashi S, Ruf W, Miyagi Y. Authors' reply to the Letter to the Editor: Tissue factor and its procoagulant activity on cancer-associated thromboembolism in pancreatic cancer. Cancer Sci 2022; 113:1888-1890. [PMID: 35332617 PMCID: PMC9128152 DOI: 10.1111/cas.15324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
Tissue factor-procoagulant activity (TF-PCA) on cells is modified by multiple molecular mechanisms of encryption and decryption. The risk of thrombosis is higher for patients with a high tissue factor antigen level at registration as this enables patient's blood more PCA-high status before the onset of cancer-associated thromboembolism (CAT). ELISA, including the Quantikine assay with validation as performed in our study, can contribute to more precise prediction of CAT.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics DivisionKanagawa Cancer Center Research InstituteKanagawaJapan
- Pathology DivisionKanagawa Cancer CenterKanagawaJapan
| | - Satoshi Kobayashi
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology DivisionKanagawa Cancer CenterKanagawaJapan
| | - Wolfram Ruf
- Center for Thrombosis and HemostasisJohannes Gutenberg University Medical CenterMainzGermany
| | - Yohei Miyagi
- Molecular Pathology and Genetics DivisionKanagawa Cancer Center Research InstituteKanagawaJapan
- Pathology DivisionKanagawa Cancer CenterKanagawaJapan
| |
Collapse
|
16
|
Xiang M, Jing H, Wang C, Novakovic VA, Shi J. Persistent Lung Injury and Prothrombotic State in Long COVID. Front Immunol 2022; 13:862522. [PMID: 35464473 PMCID: PMC9021447 DOI: 10.3389/fimmu.2022.862522] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/17/2022] [Indexed: 12/19/2022] Open
Abstract
Lung injury may persist during the recovery period of COVID-19 as shown through imaging, six-minute walk, and lung function tests. The pathophysiological mechanisms leading to long COVID have not been adequately explained. Our aim is to investigate the basis of pulmonary susceptibility during sequelae and the possibility that prothrombotic states may influence long-term pulmonary symptoms of COVID-19. The patient’s lungs remain vulnerable during the recovery stage due to persistent shedding of the virus, the inflammatory environment, the prothrombotic state, and injury and subsequent repair of the blood-air barrier. The transformation of inflammation to proliferation and fibrosis, hypoxia-involved vascular remodeling, vascular endothelial cell damage, phosphatidylserine-involved hypercoagulability, and continuous changes in serological markers all contribute to post-discharge lung injury. Considering the important role of microthrombus and arteriovenous thrombus in the process of pulmonary functional lesions to organic lesions, we further study the possibility that prothrombotic states, including pulmonary vascular endothelial cell activation and hypercoagulability, may affect long-term pulmonary symptoms in long COVID. Early use of combined anticoagulant and antiplatelet therapy is a promising approach to reduce the incidence of pulmonary sequelae. Essentially, early treatment can block the occurrence of thrombotic events. Because impeded pulmonary circulation causes large pressure imbalances over the alveolar membrane leading to the infiltration of plasma into the alveolar cavity, inhibition of thrombotic events can prevent pulmonary hypertension, formation of lung hyaline membranes, and lung consolidation.
Collapse
Affiliation(s)
- Mengqi Xiang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Chengyue Wang
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Valerie A Novakovic
- Department of Research, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China.,Department of Research, Veterans Affairs Boston Healthcare System, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Immunothrombosis and the molecular control of tissue factor by pyroptosis: prospects for new anticoagulants. Biochem J 2022; 479:731-750. [PMID: 35344028 DOI: 10.1042/bcj20210522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
The interplay between innate immunity and coagulation after infection or injury, termed immunothrombosis, is the primary cause of disseminated intravascular coagulation (DIC), a condition that occurs in sepsis. Thrombosis associated with DIC is the leading cause of death worldwide. Interest in immunothrombosis has grown because of COVID-19, the respiratory disease caused by SARS-CoV-2, which has been termed a syndrome of dysregulated immunothrombosis. As the relatively new field of immunothrombosis expands at a rapid pace, the focus of academic and pharmacological research has shifted from generating treatments targeted at the traditional 'waterfall' model of coagulation to therapies better directed towards immune components that drive coagulopathies. Immunothrombosis can be initiated in macrophages by cleavage of the non-canonical inflammasome which contains caspase-11. This leads to release of tissue factor (TF), a membrane glycoprotein receptor that forms a high-affinity complex with coagulation factor VII/VIIa to proteolytically activate factors IX to IXa and X to Xa, generating thrombin and leading to fibrin formation and platelet activation. The mechanism involves the post-translational activation of TF, termed decryption, and release of decrypted TF via caspase-11-mediated pyroptosis. During aberrant immunothrombosis, decryption of TF leads to thromboinflammation, sepsis, and DIC. Therefore, developing therapies to target pyroptosis have emerged as an attractive concept to counteract dysregulated immunothrombosis. In this review, we detail the three mechanisms of TF control: concurrent induction of TF, caspase-11, and NLRP3 (signal 1); TF decryption, which increases its procoagulant activity (signal 2); and accelerated release of TF into the intravascular space via pyroptosis (signal 3). In this way, decryption of TF is analogous to the two signals of NLRP3 inflammasome activation, whereby induction of pro-IL-1β and NLRP3 (signal 1) is followed by activation of NLRP3 (signal 2). We describe in detail TF decryption, which involves pathogen-induced alterations in the composition of the plasma membrane and modification of key cysteines on TF, particularly at the location of the critical, allosterically regulated disulfide bond of TF in its 219-residue extracellular domain. In addition, we speculate towards the importance of identifying new therapeutics to block immunothrombotic triggering of TF, which can involve inhibition of pyroptosis to limit TF release, or the direct targeting of TF decryption using cysteine-modifying therapeutics.
Collapse
|
18
|
Beck S, Hochreiter B, Schmid JA. Extracellular Vesicles Linking Inflammation, Cancer and Thrombotic Risks. Front Cell Dev Biol 2022; 10:859863. [PMID: 35372327 PMCID: PMC8970602 DOI: 10.3389/fcell.2022.859863] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.
Collapse
Affiliation(s)
- Sarah Beck
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| | - Bernhard Hochreiter
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Johannes A. Schmid
- Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- *Correspondence: Sarah Beck, ; Johannes A. Schmid,
| |
Collapse
|
19
|
Joffre J, Hellman J. Oxidative Stress and Endothelial Dysfunction in Sepsis and Acute Inflammation. Antioxid Redox Signal 2021; 35:1291-1307. [PMID: 33637016 DOI: 10.1089/ars.2021.0027] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Under homeostatic conditions, the endothelium dynamically regulates vascular barrier function, coagulation pathways, leukocyte adhesion, and vasomotor tone. During sepsis and acute inflammation, endothelial cells (ECs) undergo multiple phenotypic and functional modifications that are initially adaptive but eventually become harmful, leading to microvascular dysfunction and multiorgan failure. Critical Issues and Recent Advances: Sepsis unbalances the redox homeostasis toward a pro-oxidant state, characterized by an excess production of reactive oxygen species and reactive nitrogen species, mitochondrial dysfunction, and a breakdown of antioxidant systems. In return, oxidative stress (OS) alters multiple EC functions and promotes a proinflammatory, procoagulant, and proadhesive phenotype. The OS also induces glycocalyx deterioration, cell death, increased permeability, and impaired vasoreactivity. Thus, during sepsis, the ECs are both a significant source and one of the main targets of OS. Future Directions: This review aims at covering the current understanding of the role of OS in the endothelial adaptive or maladaptive multifaceted response to sepsis and to outline the therapeutic potential and issues of targeting OS and endothelial dysfunction during sepsis and septic shock. One of the many challenges in the management of sepsis is now based on the detection and correction of these anomalies of endothelial function.
Collapse
Affiliation(s)
- Jérémie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, California, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco School of Medicine, San Francisco, California, USA
| |
Collapse
|
20
|
Bacitracin and Rutin Regulate Tissue Factor Production in Inflammatory Monocytes and Acute Myeloid Leukemia Blasts. Cancers (Basel) 2021; 13:cancers13163941. [PMID: 34439096 PMCID: PMC8393688 DOI: 10.3390/cancers13163941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Aberrant tissue factor (TF) expression by transformed myeloblasts and inflammatory monocytes contributes to coagulation activation in acute myeloid leukemia (AML). TF procoagulant activity (PCA) is regulated by protein disulfide isomerase (PDI), an oxidoreductase with chaperone activity, but its specific role in AML-associated TF biology is unclear. Here, we provide novel mechanistic insights into this interrelation. We show that bacitracin and rutin, two pan-inhibitors of the PDI family, prevent lipopolysaccharide (LPS)-induced monocyte TF production under inflammatory conditions and constitutive TF expression by THP1 cells and AML blasts, thus exerting promising anticoagulant activity. Downregulation of the TF protein was mainly restricted to its non-coagulant, cryptic pool and was at least partially regulated on the mRNA level in LPS-stimulated monocytes. Collectively, our study indicates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with the most abundant PDI being a promising therapeutic target in the management of AML-associated coagulopathies. Abstract Aberrant expression of tissue factor (TF) by transformed myeloblasts and inflammatory monocytes drives coagulation activation in acute myeloid leukemia (AML). Although regulation of TF procoagulant activity (PCA) involves thiol-disulfide exchange reactions, the specific role of protein disulfide isomerase (PDI) and other thiol isomerases in AML-associated TF biology is unclear. THP1 cells and peripheral blood mononuclear cells (PBMCs) from healthy controls or AML patients were analyzed for thiol isomerase-dependent TF production under various experimental conditions. Total cellular and membrane TF antigen, TF PCA and TF mRNA were analyzed by ELISA, flow cytometry, clotting or Xa generation assay and qPCR, respectively. PBMCs and THP1 cells showed significant insulin reductase activity, which was inhibited by bacitracin or rutin. Co-incubation with these thiol isomerase inhibitors prevented LPS-induced TF production by CD14-positive monocytes and constitutive TF expression by THP1 cells and AML blasts. Downregulation of the TF antigen was mainly restricted to the cryptic pool of TF, efficiently preventing phosphatidylserine-dependent TF activation by daunorubicin, and at least partially regulated on the mRNA level in LPS-stimulated monocytes. Our study thus delineates a complex role of thiol isomerases in the regulation of myeloid TF PCA, with PDI being a promising therapeutic target in the management of AML-associated coagulopathies.
Collapse
|
21
|
Zuo N, Liu W, Hu T, Liu Y, Li B, Liu H, Jing H, Chen X, Li Y, Du J, Hu T, Dong Z, Niu Y, Shi J. Microvesicles, blood cells, and endothelial cells mediate phosphatidylserine-related prothrombotic state in patients with periodontitis. J Periodontol 2021; 93:287-297. [PMID: 34155635 DOI: 10.1002/jper.21-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Phosphatidylserine (PS) is essential for inflammation-associated thrombogenesis, but the exact effect of PS on the prothrombotic state in periodontitis is uncertain. This study aimed to determine the PS-related procoagulant state in patients with periodontitis. METHODS A total of 138 patients with periodontitis were examined compared with 42 healthy controls. PS-exposing cells and microvesicles in blood samples were detected by confocal microscopy and flow cytometry. The clotting time assay and prothrombinase complex formation assay were used to measure the procoagulant activity of microvesicles, blood cells and endothelial cells. Periodontal clinical parameters and laboratory characteristics of patients with severe periodontitis were recorded and analyzed at baseline and 6 months after non-surgical periodontal therapy. RESULTS Total PS-positive (PS+ ) microvesicles and the percentage of PS+ blood cells increased in patients with severe periodontitis compared with patients with moderate/mild periodontitis or healthy controls. Endothelial cells cultured in serum from patients with severe periodontitis expressed more PS compared with those cultured in serum from healthy controls. Specifically, PS exposure on blood cells and endothelial cells significantly decreased after inhibiting the effect of inflammatory cytokines. The elevated levels of PS+ cells and microvesicles in severe periodontitis shortened clotting time and led to increased prothrombinase complex formation. Non-surgical periodontal therapy significantly attenuated the release of microvesicles and the PS exposure of blood cells in severe periodontitis. CONCLUSIONS The prothrombotic state of patients with periodontitis is mediated by PS+ cells and microvesicles stimulated by elevated levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Nan Zuo
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Wenhui Liu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Tenglong Hu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China.,Department of Oral Anatomy & Physiology, Stomatology School, Harbin Medical University, Harbin, China
| | - Yingmiao Liu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Baorong Li
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Huan Liu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Xiaojing Chen
- Department of Nephrology, the First Hospital, Harbin Medical University, Harbin, China
| | - Yueyue Li
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Jingwen Du
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China
| | - Tianshui Hu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Zengxiang Dong
- Department of Cardiology, the First Hospital, Harbin Medical University, Harbin, China
| | - Yumei Niu
- Department of Stomatology, the First Hospital, Harbin Medical University, Harbin, China
| | - Jialan Shi
- Department of Hematology, the First Hospital, Harbin Medical University, Harbin, China.,Departments of Research and Surgery, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
22
|
SARS-CoV-2 infection induces the activation of tissue factor-mediated coagulation by activation of acid sphingomyelinase. Blood 2021; 138:344-349. [PMID: 34075401 PMCID: PMC8172270 DOI: 10.1182/blood.2021010685] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection is associated with the hypercoagulable state. Tissue factor (TF) is the primary cellular initiator of coagulation. Most of the TF expressed on cell surfaces remains cryptic. Sphingomyelin (SM) is responsible for maintaining TF in the encrypted state, and hydrolysis of SM by acid sphingomyelinase (ASMase) increases TF activity. ASMase was shown to play a role in virus infection biology. In the present study, we investigated the role of ASMase in SARS-CoV-2 infection-induced TF procoagulant activity. Infection of human monocyte-derived macrophages (MDMs) with SARs-CoV-2 spike protein pseudovirus (SARS-CoV-2-SP-PV) markedly increased TF procoagulant activity at the cell surface and released TF+ extracellular vesicles (EVs). The pseudovirus infection did not increase either TF protein expression or phosphatidylserine externalization. SARS-CoV-2-SP-PV infection induced the translocation of ASMase to the outer leaflet of the plasma membrane, which led to the hydrolysis of SM in the membrane. Pharmacological inhibitors or genetic silencing of ASMase attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Inhibition of SARS-CoV-2 receptor, angiotensin-converting enzyme-2, attenuated SARS-CoV-2-SP-PV-induced increased TF activity. Overall, our data suggest that SARS-CoV-2 infection activates the coagulation by decrypting TF through activation of ASMase. Our data suggest that the FDA-approved functional inhibitors of ASMase may help treat hypercoagulability in COVID-19 patients.
Collapse
|
23
|
Alterations of the Platelet Proteome in Lung Cancer: Accelerated F13A1 and ER Processing as New Actors in Hypercoagulability. Cancers (Basel) 2021; 13:cancers13092260. [PMID: 34066760 PMCID: PMC8125802 DOI: 10.3390/cancers13092260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The risk of venous thromboembolism in cancer is nine times higher than in the general population and the second leading cause of death in these patients. Tissue factor and downstream plasmatic coagulation cascade are largely responsible for the risk of thrombosis in cancer. In recent years, it has been increasingly recognised that platelets also play a central role in tumour growth and cancer-associated thrombosis. The underlying molecular mechanisms are largely unknown. In order to comprehensively investigate the biochemical changes in platelets from cancers with high risk of thrombosis, we examined the platelet proteome of brain and lung cancer patients in comparison to sex and age-matched healthy controls. However, we only found alterations in lung cancer, where some of these platelet proteins directly promote thrombosis. One example is the increased amount of the enzyme protein disulfide isomerase, which is clinically investigated as an antithrombotic drug target of the plant-based flavonol quercetin. Abstract In order to comprehensively expose cancer-related biochemical changes, we compared the platelet proteome of two types of cancer with a high risk of thrombosis (22 patients with brain cancer, 19 with lung cancer) to 41 matched healthy controls using unbiased two-dimensional differential in-gel electrophoresis. The examined platelet proteome was unchanged in patients with brain cancer, but considerably affected in lung cancer with 15 significantly altered proteins. Amongst these, the endoplasmic reticulum (ER) proteins calreticulin (CALR), endoplasmic reticulum chaperone BiP (HSPA5) and protein disulfide-isomerase (P4HB) were significantly elevated. Accelerated conversion of the fibrin stabilising factor XIII was detected in platelets of patients with lung cancer by elevated levels of a coagulation factor XIII (F13A1) 55 kDa fragment. A significant correlation of this F13A1 cleavage product with plasma levels of the plasmin–α-2-antiplasmin complex and D-dimer suggests its enhanced degradation by the fibrinolytic system. Protein association network analysis showed that lung cancer-related proteins were involved in platelet degranulation and upregulated ER protein processing. As a possible outcome, plasma FVIII, an immediate end product for ER-mediated glycosylation, correlated significantly with the ER-executing chaperones CALR and HSPA5. These new data on the differential behaviour of platelets in various cancers revealed F13A1 and ER chaperones as potential novel diagnostic and therapeutic targets in lung cancer patients.
Collapse
|
24
|
Chen S, Lv K, Sharda A, Deng J, Zeng W, Zhang C, Hu Q, Jin P, Yao G, Xu X, Ming Z, Fang C. Anti-thrombotic effects mediated by dihydromyricetin involve both platelet inhibition and endothelial protection. Pharmacol Res 2021; 167:105540. [PMID: 33711433 DOI: 10.1016/j.phrs.2021.105540] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
Classical antithrombotics and antiplatelets are associated with high frequencies of bleeding complications or treatment failure when used as single agents. The platelet-independent fibrin generation by activated endothelium highlights the importance of vascular protection in addition to platelet inhibition in thrombosis prevention. Dihydromyricetin (DHM), the most abundant flavonoid in Ampelopsis grossedentata, has unique vasoprotective effects. This study aims to characterize the antithrombotic potential of DHM. The effects of DHM on the activation of platelets and endothelial cells were evaluated in vitro. Calcium mobilization and activation of mitogen-activated protein kinases (MAPKs) were examined as the potential targets of DHM based on molecular docking analysis. The in vivo effects of DHM were determined in FeCl3-injured carotid arteries and laser-injured cremasteric arterioles. The results showed that DHM suppressed a range of platelet responses including aggregation, secretion, adhesion, spreading and integrin activation, and inhibited exocytosis, phosphatidylserine exposure and tissue factor expression in activated endothelial cells. Mechanistically, DHM attenuated thrombin-induced calcium mobilization and phosphorylation of ERK1/2 and p38 both in platelets and endothelial cells. Intravenous treatment with DHM delayed FeCl3-induced carotid arterial thrombosis. Furthermore, DHM treatment inhibited both platelet accumulation and fibrin generation in the presence or absence of eptifibatide in the laser injury-induced thrombosis model, without prolonging ex vivo plasma coagulation or tail bleeding time. DHM represents a novel antithrombotic agent whose effects involve both inhibition of platelet activation and reduction of fibrin generation as a result of endothelial protection.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Department of Pharmacology, School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Anish Sharda
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jun Deng
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wanjiang Zeng
- Department of Perinatal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, China
| | - Qinghua Hu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology and Key Laboratory for Respiratory Diseases, Health Ministry of China, Wuhan, Hubei 430030, China
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guangmin Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhangyin Ming
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Hubei 430030, China.
| |
Collapse
|
25
|
Abstract
Oral anticoagulant therapy has changed by clinical evidence that coagulation factor Xa (FXa) can be safely and effectively targeted for thromboprophylaxis. Because thrombotic and thrombo-inflammatory diseases are frequently caused by excessive activation of the tissue factor (TF) pathway, activation of FX by the TF-FVIIa complex is of central importance for understanding the roles of FXa in thrombosis and hemostasis and functions beyond blood coagulation. Recent data showed that the nascent product FXa associated with TF-FVIIa not only supports hemostatic cofactor VIII activation, but also broadly influences immune reactions in inflammation, cancer, and autoimmunity. These signaling functions of FXa are mediated through protease activated receptor (PAR) cleavage and PAR2 activation occurs in extravascular environments specifically by macrophage synthesized FX. Cell autonomous FXa-PAR2 signaling is a mechanism for tumor-promoting macrophage polarization in the tumor microenvironment and tissue penetrance of oral FXa inhibitors favors the reprogramming of tumor-associated macrophages for non-coagulant therapeutic benefit. It is necessary to decipher the distinct functions of coagulation factors synthesized by the liver for circulation in blood versus those synthesized by extrahepatic immune cells for activity in tissue milieus. This research will lead to a better understanding of the broader roles of FXa as a central regulator of immune and hematopoietic systems.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
26
|
Zhang C, Yang Z, Zhou P, Yu M, Li B, Liu Y, Jin J, Liu W, Jing H, Du J, Tian J, Zhao Z, wang J, Chu Y, Zhang C, Novakovic VA, Shi J, Wu C. Phosphatidylserine-exposing tumor-derived microparticles exacerbate coagulation and cancer cell transendothelial migration in triple-negative breast cancer. Theranostics 2021; 11:6445-6460. [PMID: 33995667 PMCID: PMC8120203 DOI: 10.7150/thno.53637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/29/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Neoadjuvant chemotherapy is relevant to the formation of thromboembolism and secondary neoplasms in triple-negative breast cancer (TNBC). Chemotherapy-induced breast cancer cell-derived microparticles (BCMPs) may have important thrombogenic and pro-metastatic effects on platelets and endothelium, which may be related to the expression and distribution of phosphatidylserine (PS). However, investigating these interactions is challenging due to technical limitations. Methods: A study was conducted in 20 healthy individuals and 18 patients who had been recently diagnosed with TNBC and were undergoing neoadjuvant chemotherapy with doxorubicin and cyclophosphamide. BCMPs were isolated from patient blood samples and doxorubicin-treated breast cancer cell lines. Their structure and morphology were studied by electron microscopy and antigen levels were measured by fluorescence-activated cell sorting. In an inhibition assay, isolated BCMPs were pretreated with lactadherin or tissue factor antibodies. Platelets isolated from healthy subjects were treated with BCMPs and coagulation time, fibrin formation, and expression of intrinsic/extrinsic factor Xase (FXa) and thrombin were evaluated. The effects of BCMPs on endothelial thrombogenicity and integrity were assessed by confocal microscopy, electron microscopy, measurement of intrinsic/extrinsic FXa, prothrombinase assay, and transwell permeability assay. Results: Neoadjuvant chemotherapy significantly increased the expression of PS+ BCMPs in patient plasma. Its expression was associated with a rapid increase in procoagulant activity. Treatment with lactadherin, a PS-binding scavenging molecule, markedly reduced the adhesion of BCMPs and abolished their procoagulant activity, but this was not observed with tissue factor antibody treatment. Intravenous injection of BCMPs in mice induced a significant hypercoagulable state, reducing the extent of plasma fibrinogen and promoting the appearance of new thrombus. Cancer cells incubated with doxorubicin released large numbers of PS+ BCMPs, which stimulated and transformed endothelial cells into a procoagulant phenotype and increased the aggregation and activation of platelets. Moreover, cancer cells exploited this BCMP-induced endothelial leakiness and showed promoted metastasis. Pretreatment with lactadherin increased uptake of both PS+ BCMPs and cancer cells by endothelial cells and limited the transendothelial migration of cancer cells. Conclusion: Lactadherin, a biosensor that we developed, was used to study the extracellular vesicle distribution of PS, which revealed a novel PS+ BCMPs administrative axis that initiated a local coagulation cascade and facilitated metastatic colonization of circulating cancer cells.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - Zhuowen Yang
- Department of Gerontology, The First Hospital, Harbin Medical University, Harbin, China
| | - Peng Zhou
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Muxin Yu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Baorong Li
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Yingmiao Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Jiaqi Jin
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Wenhui Liu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Jingwen Du
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Jie Tian
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - Zhiyu Zhao
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - Jianxin wang
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - Yinzhu Chu
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | - ChunMei Zhang
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| | | | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Changjun Wu
- Department of Ultrasound, The First Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
27
|
Clere-Jehl R, Merdji H, Kassem M, Macquin C, De Cauwer A, Sibony A, Kurihara K, Minniti L, Abou Fayçal C, Bahram S, Meziani F, Helms J, Georgel P. A Translational Investigation of IFN-α and STAT1 Signaling in Endothelial Cells during Septic Shock Provides Therapeutic Perspectives. Am J Respir Cell Mol Biol 2021; 65:167-175. [PMID: 33798037 DOI: 10.1165/rcmb.2020-0401oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Septic shock and disseminated intravascular coagulation (DIC) are known to be characterized by an endothelial cell dysfunction. The molecular mechanisms underlying this relationship are, however, poorly understood. In this work, we aimed to investigate human circulating IFN-α in patients with septic shock-induced DIC and tested the potential role of endothelial Stat1 (signal transducer and activator of transcription 1) as a therapeutic target in a mouse model of sepsis. For this, circulating type I, type II, and type III IFNs and procoagulant microvesicles were quantified in a prospective cohort of patients with septic shock. Next, we used a septic shock model induced by cecal ligation and puncture in wild-type mice, in Ifnar1 (type I IFN receptor subunit 1)-knockout mice, and in Stat1 conditional knockout mice. In human samples, we observed higher concentrations of circulating IFN-α and IFN-α1 in patients with DIC compared with patients without DIC, whereas concentrations of IFN-β, IFN-γ, IFN-λ1, IFN-λ2, and IFN-λ3 were not different. IFN-α concentration was positively correlated with CD105 microvesicle concentrations, reflecting endothelial injury. In Ifnar1-/- mice, cecal ligation and puncture did not induce septic shock and was characterized by lesser endothelial cell injury, with lower aortic inflammatory cytokine expression, endothelial inflammatory-related gene expression, and fibrinolysis. In mice in which Stat1 was specifically ablated in endothelial cells, a marked protection against sepsis was also observed, suggesting the relevance of an endothelium-targeted strategy. Our work highlights the key roles of type I IFNs as pathogenic players in septic shock-induced DIC and the potential pertinence of endothelial STAT1 as a therapeutic target.
Collapse
Affiliation(s)
- Raphaël Clere-Jehl
- Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil.,ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - Hamid Merdji
- Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil.,Institut National de la Santé et de la Recherche Médicale, UMR_S1260, Nanomédecine Régenerative, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Mohamad Kassem
- Institut National de la Santé et de la Recherche Médicale, UMR_S1260, Nanomédecine Régenerative, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Cécile Macquin
- ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - Aurore De Cauwer
- ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - Alicia Sibony
- Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil.,ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - Kei Kurihara
- Institut National de la Santé et de la Recherche Médicale, UMR_S1260, Nanomédecine Régenerative, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Laetitia Minniti
- Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil.,ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - Chérine Abou Fayçal
- ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - Seiamak Bahram
- ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - Ferhat Meziani
- Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil.,Institut National de la Santé et de la Recherche Médicale, UMR_S1260, Nanomédecine Régenerative, Faculté de Pharmacie, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Julie Helms
- Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil.,ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| | - Philippe Georgel
- ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, UMR_S1109, Centre de Recherche d'Immunologie et d'Hematologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS)
| |
Collapse
|
28
|
High-level soluble expression of phospholipase D from Streptomyces chromofuscus in Escherichia coli by combinatorial optimization. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2020.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
The role of type 1 interferons in coagulation induced by gram-negative bacteria. Blood 2020; 135:1087-1100. [PMID: 32016282 DOI: 10.1182/blood.2019002282] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial infection not only stimulates innate immune responses but also activates coagulation cascades. Overactivation of the coagulation system in bacterial sepsis leads to disseminated intravascular coagulation (DIC), a life-threatening condition. However, the mechanisms by which bacterial infection activates the coagulation cascade are not fully understood. Here we show that type 1 interferons (IFNs), a widely expressed family of cytokines that orchestrate innate antiviral and antibacterial immunity, mediate bacterial infection-induced DIC by amplifying the release of high-mobility group box 1 (HMGB1) into the bloodstream. Inhibition of the expression of type 1 IFNs and disruption of their receptor IFN-α/βR or downstream effector (eg, HMGB1) uniformly decreased gram-negative bacteria-induced DIC. Mechanistically, extracellular HMGB1 markedly increased the procoagulant activity of tissue factor by promoting the externalization of phosphatidylserine to the outer cell surface, where phosphatidylserine assembles a complex of cofactor-proteases of the coagulation cascades. These findings not only provide novel insights into the link between innate immune responses and coagulation, but they also open a new avenue for developing novel therapeutic strategies to prevent DIC in sepsis.
Collapse
|
30
|
Wu Y, Essex DW. Vascular thiol isomerases in thrombosis: The yin and yang. J Thromb Haemost 2020; 18:2790-2800. [PMID: 32702157 PMCID: PMC10496414 DOI: 10.1111/jth.15019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022]
Abstract
There has recently been considerable progress of the field of extracellular protein disulfide isomerases with vascular thiol isomerases in the forefront. Four members of protein disulfide isomerase (PDI) family of enzymes, PDI, ERp57, ERp72, and ERp5, have been shown to be secreted from activated platelets and endothelial cells at the site of vascular injury. Each isomerase individually supports platelet accumulation and coagulation, as indicated by multiple levels of evidence, including inhibitory antibodies, targeted knockout mice, and mutant isomerases. The transmembrane PDI family member TMX1 was recently shown to inhibit platelet function and thrombosis, demonstrating that the PDIs can have opposing functions in thrombosis. These observations provide a new concept that thiol isomerases can both positively and negatively regulate hemostasis, constituting off-on redox switches controlling activation of hemostatic factors. This redox network serves to maintain vascular homeostasis. Integrins such as the αIIbβ3 fibrinogen receptor on platelets appear to be major substrates, with the platelet receptor for von Willebrand factor, glycoprotein Ibα, as another substrate. S-nitrosylation of the prothrombotic PDIs may additionally negatively regulate platelets and thrombosis. Thiol isomerases also regulate coagulation in mouse models, and a clinical trial with the oral PDI inhibitor isoquercetin substantially decreased markers of coagulation in patients at risk for thrombosis. This review updates recent findings in the field and addresses emerging evidence that thiol/disulfide-based reactions mediated by the prothrombotic secreted PDIs are balanced by the transmembrane member of this family, TMX1.
Collapse
Affiliation(s)
- Yi Wu
- Sol Sherry Thrombosis Center, Department of Medicine/Hematology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - David W Essex
- Sol Sherry Thrombosis Center, Department of Medicine/Hematology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
31
|
Anghel L, Sascău R, Radu R, Stătescu C. From Classical Laboratory Parameters to Novel Biomarkers for the Diagnosis of Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21061920. [PMID: 32168924 PMCID: PMC7139541 DOI: 10.3390/ijms21061920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Venous thrombosis is a common and potentially fatal disease, because of its high morbidity and mortality, especially in hospitalized patients. To establish the diagnosis of venous thrombosis, in the last years, a multi-modality approach that involves not only imaging modalities but also serology has been evolving. Multiple studies have demonstrated the use of some biomarkers, such as D-dimer, selectins, microparticles or inflammatory cytokines, for the diagnosis and treatment of venous thrombosis, but there is no single biomarker available to exclusively confirm the diagnosis of venous thrombosis. Considering the fact that there are some issues surrounding the management of patients with venous thrombosis and the duration of treatment, recent studies support the idea that these biomarkers may help guide the length of appropriate anticoagulation treatment, by identifying patients at high risk of recurrence. At the same time, biomarkers may help predict thrombus evolution, potentially identifying patients that would benefit from more aggressive therapies. This review focuses on classic and novel biomarkers currently under investigation, discussing their diagnostic performance and potential benefit in guiding the therapy for venous thrombosis.
Collapse
Affiliation(s)
- Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| | - Radu Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
- Correspondence: ; Tel.: +40-0232-211834
| | - Rodica Radu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, Iași 700503, Romania; (L.A.); (R.R.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Iași 700503, Romania
| |
Collapse
|
32
|
Acid sphingomyelinase plays a critical role in LPS- and cytokine-induced tissue factor procoagulant activity. Blood 2019; 134:645-655. [PMID: 31262782 DOI: 10.1182/blood.2019001400] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Tissue factor (TF) is a cofactor for factor VIIa and the primary cellular initiator of coagulation. Typically, most TF on cell surfaces exists in a cryptic coagulant-inactive state but are transformed to a procoagulant form (decryption) following cell activation. Our recent studies in cell model systems showed that sphingomyelin (SM) in the outer leaflet of the plasma membrane is responsible for maintaining TF in an encrypted state in resting cells, and the hydrolysis of SM leads to decryption of TF. The present study was carried out to investigate the relevance of this novel mechanism in the regulation of TF procoagulant activity in pathophysiology. As observed in cell systems, administration of adenosine triphosphate (ATP) to mice enhanced lipopolysaccharide (LPS)-induced TF procoagulant activity in monocytes. Treatment of mice with pharmacological inhibitors of acid sphingomyelinase (ASMase), desipramine and imipramine, attenuated ATP-induced TF decryption. Interestingly, ASMase inhibitors also blocked LPS-induced TF procoagulant activity without affecting the LPS-induced de novo synthesis of TF protein. Additional studies showed that LPS induced translocation of ASMase to the outer leaflet of the plasma membrane and reduced SM levels in monocytes. Studies using human monocyte-derived macrophages and endothelial cells further confirmed the role of ASMase in LPS- and cytokine-induced TF procoagulant activity. Overall, our data indicate that LPS- or cytokine-induced TF procoagulant activity requires the decryption of newly synthesized TF protein by ASMase-mediated hydrolysis of SM. The observation that ASMase inhibitors attenuate TF-induced coagulation raises the possibility of their therapeutic use in treating thrombotic disorders associated with aberrant expression of TF.
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The present review provides an overview of recent findings on new members of the protein disulfide isomerase (PDI) family required for thrombosis. RECENT FINDINGS Twenty years ago PDI was shown to mediate platelet aggregation, and 10 years ago PDI was shown to support thrombosis in vivo. Subsequently, other members of this endoplasmic reticulum family of enzymes, ERp57 and ERp5, were demonstrated to support thrombosis. A fourth member, ERp72, was recently shown to be required for platelet accumulation and fibrin deposition in vivo. None of these enzymes can individually support these processes. Moreover, aggregation of platelets deficient in a specific PDI is only recovered by the PDI that is missing. This implies that each PDI has a distinct role in activation of the αIIbβ3 fibrinogen receptor and platelet aggregation. Free thiols can be labeled in both subunits of αIIbβ3, suggesting cysteine-based reactions are involved in relaying conformational changes from the cytoplasmic tails to the integrin headpiece of this integrin. SUMMARY Multiple members of the PDI family support platelet function, and hemostasis and thrombosis with distinct roles in these processes. The individual cysteine targets of each enzyme and how these enzymes are integrated into a network that supports hemostasis and thrombosis remain to be elucidated.
Collapse
|
34
|
Ansari SA, Pendurthi UR, Rao LVM. Role of Cell Surface Lipids and Thiol-Disulphide Exchange Pathways in Regulating the Encryption and Decryption of Tissue Factor. Thromb Haemost 2019; 119:860-870. [PMID: 30861549 DOI: 10.1055/s-0039-1681102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue factor (TF), a transmembrane glycoprotein, is the cellular receptor of the coagulation factors VII (FVII) and VIIa (FVIIa). The formation of TF-FVIIa complex triggers the initiation of the blood coagulation pathway. TF plays an essential role in haemostasis, but an aberrant expression of TF activity contributes to thrombotic disorders. In health, TF pro-coagulant activity on cells is controlled tightly to allow sufficient coagulant activity to achieve haemostasis but not to cause thrombosis. It is achieved largely by selective localization of TF in the body and encryption of TF at the cell surface. A vast majority of TF on resting cells exists in an encrypted state with minimal pro-coagulant activity but becomes pro-thrombotic following cell injury or activation. At present, the mechanisms that are responsible for TF encryption and activation (decryption) are not entirely clear, but recent studies provide important mechanistic insights into these processes. To date, externalization of phosphatidylserine to the outer leaflet and thiol-disulphide exchange pathways that either turn on and off the allosteric disulphide bond in TF are shown to play a major role in regulating TF pro-coagulant activity on cell surfaces. Recent studies showed that sphingomyelin, a major phospholipid in the outer leaflet of plasma membrane, plays a critical role in the encryption of TF in resting cells. The present review provides an overview of recent literature on the above-described mechanisms of TF encryption and decryption with a particular emphasis on our recent findings.
Collapse
Affiliation(s)
- Shabbir A Ansari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| |
Collapse
|
35
|
Complement C5 but not C3 is expendable for tissue factor activation by cofactor-independent antiphospholipid antibodies. Blood Adv 2019; 2:979-986. [PMID: 29716893 DOI: 10.1182/bloodadvances.2018017095] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/31/2018] [Indexed: 11/20/2022] Open
Abstract
The complement and coagulation cascades interact at multiple levels in thrombosis and inflammatory diseases. In venous thrombosis, complement factor 3 (C3) is crucial for platelet and tissue factor (TF) procoagulant activation dependent on protein disulfide isomerase (PDI). Furthermore, C5 selectively contributes to the exposure of leukocyte procoagulant phosphatidylserine (PS), which is a prerequisite for rapid activation of monocyte TF and fibrin formation in thrombosis. Here, we show that monoclonal cofactor-independent antiphospholipid antibodies (aPLs) rapidly activate TF on myelomonocytic cells. TF activation is blocked by PDI inhibitor and an anti-TF antibody interfering with PDI binding to TF, and requires C3 but unexpectedly not C5. Other prothrombotic, complement-fixing antibodies, for example, antithymocyte globulin, typically induce TF activation dependent on C5b-7-mediated PS exposure on the outer membrane of monocytes. We show that aPLs directly induce procoagulant PS exposure independent of C5. Accordingly, mice deficient in C3, but not mice deficient in C5, are protected from in vivo thrombus formation induced by cofactor-independent aPLs. Only immunoglobulin G (IgG) fractions with cofactor-independent anticardiolipin reactivity from patients with antiphospholipid syndrome (APS) induce complement-independent monocyte PS exposure and PDI-dependent TF activation. Neither a human monoclonal aPL directed against β2-glycoprotein I (β2GPI) nor patient IgG with selective reactivity to β2GPI rapidly activated monocyte TF. These results indicate that inhibitors of PDI and TF, but not necessarily clinically available drugs targeting C5, have therapeutic benefit in preventing thrombosis associated with APS caused by pathogenic aPLs primarily reactive with lipid, independent of β2GPI.
Collapse
|
36
|
Riondino S, Ferroni P, Zanzotto FM, Roselli M, Guadagni F. Predicting VTE in Cancer Patients: Candidate Biomarkers and Risk Assessment Models. Cancers (Basel) 2019; 11:cancers11010095. [PMID: 30650562 PMCID: PMC6356247 DOI: 10.3390/cancers11010095] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Risk prediction of chemotherapy-associated venous thromboembolism (VTE) is a compelling challenge in contemporary oncology, as VTE may result in treatment delays, impaired quality of life, and increased mortality. Current guidelines do not recommend thromboprophylaxis for primary prevention, but assessment of the patient's individual risk of VTE prior to chemotherapy is generally advocated. In recent years, efforts have been devoted to building accurate predictive tools for VTE risk assessment in cancer patients. This review focuses on candidate biomarkers and prediction models currently under investigation, considering their advantages and disadvantages, and discussing their diagnostic performance and potential pitfalls.
Collapse
Affiliation(s)
- Silvia Riondino
- Interinstitutional Multidisciplinary Biobank, IRCCS San Raffaele Pisana, 00166 Rome, Italy.
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Patrizia Ferroni
- Interinstitutional Multidisciplinary Biobank, IRCCS San Raffaele Pisana, 00166 Rome, Italy.
- Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy.
| | - Fabio Massimo Zanzotto
- Department of Enterprise Engineering, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Fiorella Guadagni
- Interinstitutional Multidisciplinary Biobank, IRCCS San Raffaele Pisana, 00166 Rome, Italy.
- Department of Human Sciences & Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|
37
|
Bekendam RH, Iyu D, Passam F, Stopa JD, De Ceunynck K, Muse O, Bendapudi PK, Garnier CL, Gopal S, Crescence L, Chiu J, Furie B, Panicot-Dubois L, Hogg PJ, Dubois C, Flaumenhaft R. Protein disulfide isomerase regulation by nitric oxide maintains vascular quiescence and controls thrombus formation. J Thromb Haemost 2018; 16:2322-2335. [PMID: 30207066 PMCID: PMC6374154 DOI: 10.1111/jth.14291] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Indexed: 12/17/2022]
Abstract
Essentials Nitric oxide synthesis controls protein disulfide isomerase (PDI) function. Nitric oxide (NO) modulation of PDI controls endothelial thrombogenicity. S-nitrosylated PDI inhibits platelet function and thrombosis. Nitric oxide maintains vascular quiescence in part through inhibition of PDI. SUMMARY: Background Protein disulfide isomerase (PDI) plays an essential role in thrombus formation, and PDI inhibition is being evaluated clinically as a novel anticoagulant strategy. However, little is known about the regulation of PDI in the vasculature. Thiols within the catalytic motif of PDI are essential for its role in thrombosis. These same thiols bind nitric oxide (NO), which is a potent regulator of vessel function. To determine whether regulation of PDI represents a mechanism by which NO controls vascular quiescence, we evaluated the effect of NO on PDI function in endothelial cells and platelets, and thrombus formation in vivo. Aim To assess the effect of S-nitrosylation on the regulation of PDI and other thiol isomerases in the vasculature. Methods and results The role of endogenous NO in PDI activity was evaluated by incubating endothelium with an NO scavenger, which resulted in exposure of free thiols, increased thiol isomerase activity, and enhanced thrombin generation on the cell membrane. Conversely, exposure of endothelium to NO+ carriers or elevation of endogenous NO levels by induction of NO synthesis resulted in S-nitrosylation of PDI and decreased surface thiol reductase activity. S-nitrosylation of platelet PDI inhibited its reductase activity, and S-nitrosylated PDI interfered with platelet aggregation, α-granule release, and thrombin generation on platelets. S-nitrosylated PDI also blocked laser-induced thrombus formation when infused into mice. S-nitrosylated ERp5 and ERp57 were found to have similar inhibitory activity. Conclusions These studies identify NO as a critical regulator of vascular PDI, and show that regulation of PDI function is an important mechanism by which NO maintains vascular quiescence.
Collapse
Affiliation(s)
- Roelof H. Bekendam
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - David Iyu
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
- Departamento de Fisiología. Facultad de Medicina, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Murcia, Spain
| | - Freda Passam
- St George Clinical School, University of New South Wales, Kogarah, New South Wales, Australia
| | - Jack D. Stopa
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Karen De Ceunynck
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Oluwatoyosi Muse
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Pavan K. Bendapudi
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Céline L. Garnier
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Srila Gopal
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Lydie Crescence
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Joyce Chiu
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney New South Wales, Australia
| | - Bruce Furie
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Laurence Panicot-Dubois
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Philip J. Hogg
- The Centenary Institute, NHMRC Clinical Trials Centre, Sydney Medical School, University of Sydney New South Wales, Australia
| | - Christophe Dubois
- Aix Marseille Université, INSERM UMR-S1076, Vascular Research Center Marseille, Marseille, France
| | - Robert Flaumenhaft
- Department of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| |
Collapse
|
38
|
Stopa JD, Zwicker JI. The intersection of protein disulfide isomerase and cancer associated thrombosis. Thromb Res 2018; 164 Suppl 1:S130-S135. [PMID: 29703471 DOI: 10.1016/j.thromres.2018.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
The mechanisms underlying the hypercoagulability of cancer are complex and include the upregulation coagulation factors or procoagulant proteins, shedding of microparticles, and direct activation of vascular cells. Protein disulfide isomerase (PDI) is a thiol isomerase secreted from activated platelets and endothelial cells and plays a critical role in both platelet aggregation and fibrin generation. A number of potential intravascular targets of PDI have been identified including cell surface receptors (e.g. β-integrins and glycoprotein Ib), receptor ligands (e.g. fibrinogen and von Willebrand factor), serine proteases (e.g. cathepsin G and kallekrein-14), and coagulation factors (e.g. factor XI and factor V). Recent clinical studies demonstrated that a small molecule inhibitor of PDI, isoquercetin, decreases platelet-dependent thrombin generation and PDI activity in plasma following oral administration. This review explores the mechanistic overlap between the molecular drivers of cancer associated thrombosis and the potential roles PDI plays in mediating thrombosis. These molecular insights provide rationale for clinical trials targeting PDI to prevent thrombosis in cancer patients.
Collapse
Affiliation(s)
- Jack D Stopa
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jeffrey I Zwicker
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
39
|
Zelaya H, Rothmeier AS, Ruf W. Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost 2018; 16:1941-1952. [PMID: 30030891 DOI: 10.1111/jth.14246] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Indexed: 12/16/2022]
Abstract
The tissue factor (TF) pathway plays a central role in hemostasis and thrombo-inflammatory diseases. Although structure-function relationships of the TF initiation complex are elucidated, new facets of the dynamic regulation of TF's activities in cells continue to emerge. Cellular pathways that render TF non-coagulant participate in signaling of distinct TF complexes with associated proteases through the protease-activated receptor (PAR) family of G protein-coupled receptors. Additional co-receptors, including the endothelial protein C receptor (EPCR) and integrins, confer signaling specificity by directing subcellular localization and trafficking. We here review how TF is switched between its role in coagulation and cell signaling through thiol-disulfide exchange reactions in the context of physiologically relevant lipid microdomains. Inflammatory mediators, including reactive oxygen species, activators of the inflammasome, and the complement cascade play pivotal roles in TF procoagulant activation on monocytes, macrophages and endothelial cells. We furthermore discuss how TF, intracellular ligands, co-receptors and associated proteases are integrated in PAR-dependent cell signaling pathways controlling innate immunity, cancer and metabolic inflammation. Knowledge of the precise interactions of TF in coagulation and cell signaling is important for understanding effects of new anticoagulants beyond thrombosis and identification of new applications of these drugs for potential additional therapeutic benefits.
Collapse
Affiliation(s)
- H Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET) and National University of Tucumán, Tucumán, Argentina
| | - A S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - W Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- German Center for Cardiovascular Research (DZHK), Partnersite Rhein-Main, Mainz, Germany
| |
Collapse
|
40
|
Sachetto ATA, Rosa JG, Santoro ML. Rutin (quercetin-3-rutinoside) modulates the hemostatic disturbances and redox imbalance induced by Bothrops jararaca snake venom in mice. PLoS Negl Trop Dis 2018; 12:e0006774. [PMID: 30307940 PMCID: PMC6181271 DOI: 10.1371/journal.pntd.0006774] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022] Open
Abstract
Snakebites are a major Collective Health problem worldwide. In Brazil, Bothrops jararaca snake venom (BjV) evokes hemostatic disturbances, bleeding manifestations, and redox status imbalance. Specific antivenom therapy, although efficacious to revert most snakebite-induced manifestations, is incapable of treating secondary manifestations, such as oxidative/nitrosative stress. Searching for new complementary therapies that could attenuate physiological derangements triggered by envenomation, we elected to test quercetin-3-rutinoside (rutin) by its potential as both a potent antioxidant and a hemostasis modulatory compound. The activity of rutin was evaluated both on the biological activities of crude BjV in vitro, and in vivo by the ability of rutin (14.4 mg/kg b.w.) to modulate hematological, hemostatic and redox status markers altered by BjV injection (1.6 mg/kg b.w., s.c.) in mice. In vitro, rutin failed to inhibit BjV-induced platelet aggregation and biological activities of major BjV enzymes (metalloproteinases, phospholipases A2, serine proteases, and L-amino acid oxidases). On the other hand, rutin attenuated local hemorrhage, and the increase in reactive species, prevented the fall in RBC counts and fibrinogen levels, diminished tail bleeding and shortened prothrombin time (PT) evoked by envenomation. Furthermore, rutin reduced tissue factor (TF) activity and altered the protein expression of TF in liver, lungs, heart and skin. In conclusion, the disturbances in redox status and hemostatic system induced by B. jararaca envenomation were modulated by rutin, suggesting it has a great potential to be used as an ancillary therapeutic agent for snakebites.
Collapse
Affiliation(s)
- Ana Teresa Azevedo Sachetto
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, São Paulo, Brazil
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jaqueline Gomes Rosa
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, São Paulo, Brazil
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcelo Larami Santoro
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, São Paulo, Brazil
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Gieseler F, Plattfaut C, Quecke T, Freund A, Ungefroren H, Ender F. Heterogeneity of microvesicles from cancer cell lines under inflammatory stimulation with TNF-α. Cell Biol Int 2018; 42:1533-1544. [PMID: 30080276 DOI: 10.1002/cbin.11040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/29/2018] [Indexed: 12/11/2022]
Abstract
Microvesicles (MVs) represent a subgroup of extracellular vesicles (EVs) emerging from various cells by blebbing of their outer membrane. Therefore, they share features such as membrane composition and antigenicity with their parental cells. Released by many immune and tumor cells, MVs act as intercellular messengers, account for horizontal gene transfer and can activate the coagulation system. With the aim to investigate their relevance for tumor cell biology, we characterized MVs released by human tumor cell lines of various origins in the absence or presence of TNF-α. After stimulation, we used the combination of low and high-speed centrifugation to enrich MVs from cell culture supernatants. We analyzed the presentation of phosphatidylserine (PS) and tissue factor (TF) activity on the cell surface and investigated their potency to induce tumor cell migration. In all tumor cell lines, TNF-α stimulation enhanced the release of MVs. While the expression of PS was universally increased, an elevated activity of procoagulant TF could be detected on MVs from lung, pancreatic, and colon carcinoma, but not from breast and ovarian cancer cell lines. Functionally, TNF-α stimulation significantly increased the potency of MVs to induce tumor cell migration. In conclusion, inflammatory conditions promote the release of MVs with increased procoagulant activity from tumor cell lines in vitro. PS-containing and TF-expressing MVs may account for systemic activation of the coagulation system as seen in cancer patients and, since they induce tumor cell migration, they may serve as biomarkers for tumor progression.
Collapse
Affiliation(s)
- Frank Gieseler
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Corinna Plattfaut
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Tabea Quecke
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Annika Freund
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| | - Hendrik Ungefroren
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany.,Department of General and Thoracic Surgery, University Hospital Schleswig-Holstein, Kiel, 24105, Germany
| | - Fanny Ender
- Section Experimental Oncology, University Hospital and Medical School (UKSH), University of Luebeck, Luebeck, 23538, Germany
| |
Collapse
|
42
|
Paraoxonase-2 regulates coagulation activation through endothelial tissue factor. Blood 2018; 131:2161-2172. [PMID: 29439952 DOI: 10.1182/blood-2017-09-807040] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress and inflammation of the vessel wall contribute to prothrombotic states. The antioxidative protein paraoxonase-2 (PON2) shows reduced expression in human atherosclerotic plaques and endothelial cells in particular. Supporting a direct role for PON2 in cardiovascular diseases, Pon2 deficiency in mice promotes atherogenesis through incompletely understood mechanisms. Here, we show that deregulated redox regulation in Pon2 deficiency causes vascular inflammation and abnormalities in blood coagulation. In unchallenged Pon2-/- mice, we find increased oxidative stress and endothelial dysfunction. Bone marrow transplantation experiments and studies with endothelial cells provide evidence that increased inflammation, indicated by circulating interleukin-6 levels, originates from Pon2 deficiency in the vasculature. Isolated endothelial cells from Pon2-/- mice display increased tissue factor (TF) activity in vitro. Coagulation times were shortened and platelet procoagulant activity increased in Pon2-/- mice relative to wild-type controls. Coagulation abnormalities of Pon2-/- mice were normalized by anti-TF treatment, demonstrating directly that TF increases coagulation. PON2 reexpression in endothelial cells by conditional reversal of the knockout Pon2 cassette, restoration in the vessel wall using bone marrow chimeras, or treatment with the antioxidant N-acetylcysteine normalized the procoagulant state. These experiments delineate a PON2 redox-dependent mechanism that regulates endothelial cell TF activity and prevents systemic coagulation activation and inflammation.
Collapse
|
43
|
Miao W, Zhao K, Deng W, Teng J. Coagulation Factor Hyperfunction After Subarachnoid Hemorrhage Induces Deep Venous Thrombosis. World Neurosurg 2018; 110:e46-e52. [DOI: 10.1016/j.wneu.2017.09.200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
44
|
Spannagl M, Engelmann B. Activators, therapeutics and immunity-related aspects of thrombosis. Thromb Haemost 2017; 111:568-9. [DOI: 10.1160/th14-03-0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 11/05/2022]
|
45
|
Abstract
PURPOSE OF REVIEW The role of tissue factor (TF) in the initiation of the blood coagulation network leading to generation of a fibrin clot has been well defined over the past 50 years. Although much is known about this sequence of events and its regulation, many important questions remain unresolved. More recently, a complex role for TF in cellular processes independent of fibrin generation has emerged. This review summarizes some of the advances in this field. RECENT FINDINGS TF is the cellular receptor and cofactor for factor VII/VIIa; however, controversy still surrounds expression of TF within the vasculature, the role of circulating microvesicle pools of TF and mechanisms of 'encryption' of TF activity. However, there have been significant advances in the role of TF-initiated cell signalling. Lastly, an alternatively spliced TF transcript has been identified and some insights into its role in cancer cell metastasis/proliferation have been elucidated. SUMMARY Understanding of TF structure function has increased substantially; however, multiple controversies still surround some aspects of its regulation. TF has emerged as a pivotal player in orchestrating not only fibrin generation but wound repair. Derangement of these repair processes contributes significantly to the pathophysiology of a number of disease processes.
Collapse
|
46
|
Wang J, Pendurthi UR, Rao LVM. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Adv 2017; 1:849-862. [PMID: 28758160 PMCID: PMC5531194 DOI: 10.1182/bloodadvances.2016003947] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/09/2017] [Indexed: 11/20/2022] Open
Abstract
A majority of tissue factor (TF) on cell surfaces exists in an encrypted state with minimal to no procoagulant activity. At present, it is unclear whether limited availability of phosphatidylserine (PS) and/or a specific membrane lipid in the outer leaflet of the plasma membrane contributes to TF encryption. Sphingomyelin (SM) is a major phospholipid in the outer leaflet, and SM metabolism is shown to be altered in many disease settings that cause thrombotic disorders. The present study is carried out to investigate the effect of SM metabolism on TF activity and TF+ microvesicles (MVs) release. In vitro studies using TF reconstituted into liposomes containing varying molar ratios of SM showed that a high molar ratio of SM in the proteoliposomes inhibits TF coagulant activity. Treatment of macrophages with sphingomyelinase (SMase) that hydrolyzes SM in the outer leaflet results in increased TF activity at the cell surface and TF+ MVs release without increasing PS externalization. Adenosine triphosphate (ATP) stimulation of macrophages that activates TF and induces MV shedding also leads to translocation of acid-sphingomyelinase (A-SMase) to the plasma membrane. ATP stimulation increases the hydrolysis of SM in the outer leaflet. Inhibition of A-SMase expression or activity not only attenuates ATP-induced SM hydrolysis, but also inhibits ATP-induced TF decryption and TF+ MVs release. Overall, our novel findings show that SM plays a role in maintaining TF in an encrypted state in resting cells and hydrolysis of SM following cell injury removes the inhibitory effect of SM on TF activity, thus leading to TF decryption.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
47
|
Rothmeier AS, Marchese P, Langer F, Kamikubo Y, Schaffner F, Cantor J, Ginsberg MH, Ruggeri ZM, Ruf W. Tissue Factor Prothrombotic Activity Is Regulated by Integrin-arf6 Trafficking. Arterioscler Thromb Vasc Biol 2017; 37:1323-1331. [PMID: 28495929 DOI: 10.1161/atvbaha.117.309315] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/01/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Coagulation initiation by tissue factor (TF) is regulated by cellular inhibitors, cell surface availability of procoagulant phosphatidylserine, and thiol-disulfide exchange. How these mechanisms contribute to keeping TF in a noncoagulant state and to generating prothrombotic TF remain incompletely understood. APPROACH AND RESULTS Here, we study the activation of TF in primary macrophages by a combination of pharmacological, genetic, and biochemical approaches. We demonstrate that primed macrophages effectively control TF cell surface activity by receptor internalization. After cell injury, ATP signals through the purinergic receptor P2rx7 induce release of TF+ microvesicles. TF cell surface availability for release onto microvesicles is regulated by the GTPase arf6 associated with integrin α4β1. Furthermore, microvesicles proteome analysis identifies activation of Gαi2 as a participating factor in the release of microvesicles with prothrombotic activity in flowing blood. ATP not only prevents TF and phosphatidylserine internalization but also induces TF conversion to a conformation with high affinity for its ligand, coagulation factor VII. Although inhibition of dynamin-dependent internalization also exposes outer membrane procoagulant phosphatidylserine, the resulting TF+ microvesicles distinctly lack protein disulfide isomerase and high affinity TF and fail to produce fibrin strands typical for microvesicles generated by thrombo-inflammatory P2rx7 activation. CONCLUSIONS These data show that procoagulant phospholipid exposure is not sufficient and that TF affinity maturation is required to generate prothrombotic microvesicles from a variety of cell types. These findings are significant for understanding TF-initiated thrombosis and should be considered in designing functional microvesicles-based diagnostic approaches.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.)
| | - Patrizia Marchese
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.)
| | - Florian Langer
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.)
| | - Yuichi Kamikubo
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.)
| | - Florence Schaffner
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.)
| | - Joseph Cantor
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.)
| | - Mark H Ginsberg
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.)
| | - Zaverio M Ruggeri
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.)
| | - Wolfram Ruf
- From the Department of Immunology and Microbiology (A.S.R., F.S., W.R.) and Molecular Medicine (P.M., Y.K., Z.M.R.), The Scripps Research Institute, La Jolla, CA; II. Medical Clinic and Polyclinic, University Medical Center Eppendorf, Hamburg, Germany (F.L.); Department of Medicine, University of California San Diego, La Jolla (J.C., M.H.G.); Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany (W.R.).
| |
Collapse
|
48
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
49
|
Procoagulant activity of extracellular vesicles as a potential biomarker for risk of thrombosis and DIC in patients with acute leukaemia. J Thromb Thrombolysis 2017; 43:224-232. [PMID: 28074413 DOI: 10.1007/s11239-016-1471-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Haemostatic complication is common for patients with hematologic malignancies. Recent studies suggest that the procoagulant activity (PCA) of extracellular vesicles (EV) may play a major role in venous thromboembolism and disseminated intravascular coagulation (DIC) in acute leukaemia. To study the impact of EVs from leukaemic patients on thrombin generation and to assess EV-PCA as a potential biomarker for thrombotic complications in patients with acute leukaemia. Blood samples from a cohort of patients with newly diagnosed acute leukaemia were obtained before treatment (D-0), 3 and 7 days after treatment (D-3 and D-7). Extracellular vesicles were isolated and concentrated by ultracentrifugation. EV-PCA was assessed by thrombin generation assay, and EV-associated tissue factor activity was measured using a commercial bio-immunoassay (Zymuphen MP-TF®). Of the 53 patients, 6 had increased EV-PCA at D-0 and 4 had a thrombotic event. Patients without thrombotic events (n = 47) had no elevated EV-PCA. One patient had increased EVs with procoagulant activity at D-3 and developed a DIC at D-5. This patient had no increased EVs-related tissue factor activity from D-0 to D-7 (<2 pg/ml). Eight patients had increased EVs with tissue factor activity (>2 pg/ml), of these, four had a thrombosis and two had haemorrhages. Procoagulant activity of extracellular vesicles could have a predictive value in excluding the risk of thrombotic events. Our findings also suggest a possible association between thrombotic events and EV-PCA.
Collapse
|
50
|
Chiva-Blanch G, Laake K, Myhre P, Bratseth V, Arnesen H, Solheim S, Badimon L, Seljeflot I. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One 2017; 12:e0172558. [PMID: 28207887 PMCID: PMC5313202 DOI: 10.1371/journal.pone.0172558] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/06/2017] [Indexed: 11/18/2022] Open
Abstract
Objective Circulating microparticles (cMPs) are phospholipid-rich vesicles released from cells when activated or injured, and contribute to the formation of intracoronary thrombi. Tissue factor (TF, CD142) is the main trigger of fibrin formation and TF-carrying cMPs are considered one of the most procoagulant cMPs. Similar types of atherosclerotic lesions may lead to different types of AMI, although the mechanisms behind are unresolved. Therefore, we aimed to investigate the phenotype of cMPs found in plasma of ACS patients and its relation to AMI severity and thrombotic burden. Methods In a cross-sectional study, two hundred patients aged 75±4 years were included in the study 2–8 weeks after suffering an AMI. Annexin V positive (AV+)-cMPs derived from blood and vascular cells were measured by flow cytometry. Plasma procoagulant activity (TF-PCA) was measured through a chromogenic assay. Results STEMI patients (n = 75) showed higher levels of platelet-derived cMPs [CD61+/AV+, CD31+/AV+, CD42b+/AV+ and CD31+/CD42b+/AV+, P = 0.048, 0.038, 0.009 and 0.006, respectively], compared to NSTEMI patients (n = 125). Patients who suffered a heart failure during AMI (n = 17) had increased levels of platelet (CD61+)-and monocyte (CD14+)-derived cMPs carrying TF (CD142+) (P<0.0001 and 0.004, respectively). Additionally, NYHA class III (n = 23) patients showed higher levels of CD142+/AV+, CD14+/AV+ and CD14+/CD142+/AV+ cMPs than those in class I/II (P = 0.001, 0.015 and 0.014, respectively). The levels of these cMPs positively correlated with TF-PCA (r≥0.166, P≤0.027, all). Conclusions Platelets and monocytes remain activated in AMI patients treated as per guidelines and release cMPs that discriminate AMI severity. Therefore, TF-MPs, and platelet- and monocyte-MPs may reflect thrombotic burden in AMI patients.
Collapse
Affiliation(s)
- Gemma Chiva-Blanch
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Cardiovascular Research Centre (CSIC-ICCC) and Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
- * E-mail:
| | - Kristian Laake
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Peder Myhre
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Vibeke Bratseth
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Harald Arnesen
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Svein Solheim
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Lina Badimon
- Cardiovascular Research Centre (CSIC-ICCC) and Biomedical Research Institute Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Ingebjørg Seljeflot
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|