1
|
Fu M, Shu S, Peng Z, Liu X, Chen X, Zeng Z, Yang Y, Cui H, Zhao R, Wang X, Du L, Wu M, Feng W, Song J. Single-Cell RNA Sequencing of Coronary Perivascular Adipose Tissue From End-Stage Heart Failure Patients Identifies SPP1+ Macrophage Subpopulation as a Target for Alleviating Fibrosis. Arterioscler Thromb Vasc Biol 2023; 43:2143-2164. [PMID: 37706320 PMCID: PMC10597444 DOI: 10.1161/atvbaha.123.319828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Perivascular adipose tissue (PVAT) is vital for vascular homeostasis, and PVAT dysfunction is associated with increased atherosclerotic plaque burden. But the mechanisms underlining coronary PVAT dysfunction in coronary atherosclerosis remain elusive. METHODS We performed single-cell RNA sequencing of the stromal vascular fraction of coronary PVAT from 3 groups of heart transplant recipients with end-stage heart failure, including 3 patients with nonobstructive coronary atherosclerosis, 3 patients with obstructive coronary artery atherosclerosis, and 4 nonatherosclerosis control subjects. Bioinformatics was used to annotate the cellular populations, depict the cellular developmental trajectories and interactions, and explore the differences among 3 groups of coronary PVAT at the cellular and molecular levels. Pathological staining, quantitative real-time polymerase chain reaction, and in vitro studies were performed to validate the key findings. RESULTS Ten cell types were identified among 67 936 cells from human coronary PVAT. Several cellular subpopulations, including SPP1+ (secreted phosphoprotein 1) macrophages and profibrotic fibroadipogenic progenitor cells, were accumulated in PVAT surrounding atherosclerotic coronary arteries compared with nonatherosclerosis coronary arteries. The fibrosis percentage was increased in PVAT surrounding atherosclerotic coronary arteries, and it was positively associated with the grade of coronary artery stenosis. Cellular interaction analysis suggested OPN (osteopontin) secreted by SPP1+ macrophages interacted with CD44 (cluster of differentiation 44)/integrin on fibroadipogenic progenitor cells. Strikingly, correlation analyses uncovered that higher level of SPP1 in PVAT correlates with a more severe fibrosis degree and a higher coronary stenosis grade. In vitro studies showed that conditioned medium from atherosclerotic coronary PVAT promoted the migration and proliferation of fibroadipogenic progenitor cells, while such effect was prevented by blocking CD44 or integrin. CONCLUSIONS SPP1+ macrophages accumulated in the PVAT surrounding atherosclerotic coronary arteries, and they promoted the migration and proliferation of fibroadipogenic progenitor cells via OPN-CD44/integrin interaction and thus aggravated the fibrosis of coronary PVAT, which was positively correlated to the coronary stenosis burden. Therefore, SPP1+ macrophages in coronary PVAT may participate in the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Mengxia Fu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital (M.F., M.W.), Capital Medical University, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Zhiming Peng
- Department of Orthopedics, Peking Union Medical College Hospital (Z.P.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaorui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Zhiwei Zeng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Ruojin Zhao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Xiaohu Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
| | - Leilei Du
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital (L.D.), Capital Medical University, China
| | - Min Wu
- Galactophore Department, Galactophore Center, Beijing Shijitan Hospital (M.F., M.W.), Capital Medical University, China
| | - Wei Feng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases (M.F., S.S., X.L., X.C., Z.Z., Y.Y., H.C., R.Z., X.W., W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases (W.F., J.S.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- The Cardiomyopathy Research Group at Fuwai Hospital, China (S.S., X.L., X.C., H.C., R.Z., X.W., J.S.)
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, China (J.S.)
| |
Collapse
|
2
|
Sylvester CB, Amirkhosravi F, Bortoletto AS, West WJ, Connell JP, Grande-Allen KJ. Dantrolene inhibits lysophosphatidylcholine-induced valve interstitial cell calcific nodule formation via blockade of the ryanodine receptor. Front Cardiovasc Med 2023; 10:1112965. [PMID: 37063962 PMCID: PMC10100588 DOI: 10.3389/fcvm.2023.1112965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Calcific aortic valve disease (CAVD), a fibrocalcific thickening of the aortic valve leaflets causing obstruction of the left ventricular outflow tract, affects nearly 10 million people worldwide. For those who reach end-stage CAVD, the only treatment is highly invasive valve replacement. The development of pharmaceutical treatments that can slow or reverse the progression in those affected by CAVD would greatly advance the treatment of this disease. The principal cell type responsible for the fibrocalcific thickening of the valve leaflets in CAVD is valvular interstitial cells (VICs). The cellular processes mediating this calcification are complex, but calcium second messenger signaling, regulated in part by the ryanodine receptor (RyR), has been shown to play a role in a number of other fibrocalcific diseases. We sought to determine if the blockade of calcium signaling in VICs could ameliorate calcification in an in vitro model. We previously found that VICs express RyR isotype 3 and that its modulation could prevent VIC calcific nodule formation in vitro. We sought to expand upon these results by further investigating the effects of calcium signaling blockade on VIC gene expression and behavior using dantrolene, an FDA-approved pan-RyR inhibitor. We found that dantrolene also prevented calcific nodule formation in VICs due to cholesterol-derived lysophosphatidylcholine (LPC). This protective effect corresponded with decreases in intracellular calcium flux, apoptosis, and ACTA2 expression but not reactive oxygen species formation caused by LPC. Interestingly, dantrolene increased the expression of the regulator genes RUNX2 and SOX9, indicating complex gene regulation changes. Further investigation via RNA sequencing revealed that dantrolene induced several cytoprotective genes that are likely also responsible for its attenuation of LPC-induced calcification. These results suggest that RyR3 is a viable therapeutic target for the treatment of CAVD. Further studies of the effects of RyR3 inhibition on CAVD are warranted.
Collapse
Affiliation(s)
- Christopher B. Sylvester
- Department of Bioengineering, Rice University, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Farshad Amirkhosravi
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Angelina S. Bortoletto
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
- Center for Cell and Gene, Stem Cells, and Regenerative Medicine Center, Translational and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, United States
| | - William J. West
- Department of Bioengineering, Rice University, Houston, TX, United States
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - K. Jane Grande-Allen
- Department of Bioengineering, Rice University, Houston, TX, United States
- Correspondence: K. Jane Grande-Allen
| |
Collapse
|
3
|
Halawa S, Latif N, Tseng YT, Ibrahim AM, Chester AH, Moustafa A, Aguib Y, Yacoub MH. Profiling Genome-Wide DNA Methylation Patterns in Human Aortic and Mitral Valves. Front Cardiovasc Med 2022; 9:840647. [PMID: 35463757 PMCID: PMC9019152 DOI: 10.3389/fcvm.2022.840647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/11/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiac valves exhibit highly complex structures and specialized functions that include dynamic interactions between cells, extracellular matrix (ECM) and their hemodynamic environment. Valvular gene expression is tightly regulated by a variety of mechanisms including epigenetic factors such as histone modifications, RNA-based mechanisms and DNA methylation. To date, methylation fingerprints of non-diseased human aortic and mitral valves have not been studied. In this work we analyzed the differential methylation profiles of 12 non-diseased aortic and mitral valve tissue samples (in matched pairs). Analysis of methylation data [reduced representation bisulfite sequencing (RRBS)] of 16,101 promoters genome-wide revealed 584 differentially methylated (DM) promoters, of which 13 were reported in endothelial mesenchymal trans-differentiation (EMT), 37 in aortic and mitral valve disease and 7 in ECM remodeling. Both functional classification as well as network analysis showed that the genes associated with the DM promoters were enriched for WNT-, Cadherin-, Endothelin-, PDGF-, HIF-1 and VEGF- signaling implicated in valvular physiology and pathophysiology. Additional enrichment was detected for TGFB-, NOTCH- and Integrin- signaling involved in EMT as well as ECM remodeling. This data provides the first insight into differential regulation of human aortic and mitral valve tissue and identifies candidate genes linked to DM promoters. Our work will improve the understanding of valve biology, valve tissue engineering approaches and contributes to the identification of relevant drug targets.
Collapse
Affiliation(s)
- Sarah Halawa
- Aswan Heart Centre, Aswan, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Sarah Halawa
| | - Najma Latif
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Yuan-Tsan Tseng
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Ayman M. Ibrahim
- Aswan Heart Centre, Aswan, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Adrian H. Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
| | - Ahmed Moustafa
- Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
- Department of Biology, American University in Cairo, New Cairo, Egypt
| | - Yasmine Aguib
- Aswan Heart Centre, Aswan, Egypt
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- Yasmine Aguib
| | - Magdi H. Yacoub
- Aswan Heart Centre, Aswan, Egypt
- Heart Science Centre, Magdi Yacoub Institute, Harefield, United Kingdom
- National Heart and Lung Institute (NHLI), Imperial College London, London, United Kingdom
- *Correspondence: Magdi H. Yacoub
| |
Collapse
|
4
|
Marchetti G, Ziliotto N, Meneghetti S, Baroni M, Lunghi B, Menegatti E, Pedriali M, Salvi F, Bartolomei I, Straudi S, Manfredini F, Voltan R, Basaglia N, Mascoli F, Zamboni P, Bernardi F. Changes in expression profiles of internal jugular vein wall and plasma protein levels in multiple sclerosis. Mol Med 2018; 24:42. [PMID: 30134823 PMCID: PMC6085618 DOI: 10.1186/s10020-018-0043-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background Multiple sclerosis (MS) is an inflammatory, demyelinating and degenerative disorder of the central nervous system (CNS). Several observations support interactions between vascular and neurodegenerative mechanisms in multiple sclerosis (MS). To investigate the contribution of the extracranial venous compartment, we analysed expression profiles of internal jugular vein (IJV), which drains blood from CNS, and related plasma protein levels. Methods We studied a group of MS patients (n = 19), screened by echo-color Doppler and magnetic resonance venography, who underwent surgical reconstruction of IJV for chronic cerebrospinal venous insufficiency (CCSVI). Microarray-based transcriptome analysis was conducted on specimens of IJV wall from MS patients and from subjects undergoing carotid endarterectomy, as controls. Protein levels were determined by multiplex assay in: i) jugular and peripheral plasma from 17 MS/CCSVI patients; ii) peripheral plasma from 60 progressive MS patients, after repeated sampling and iii) healthy individuals. Results Of the differentially expressed genes (≥ 2 fold-change, multiple testing correction, P < 0.05), the immune-related CD86 (8.5 fold-change, P = 0.002) emerged among the up regulated genes (N = 409). Several genes encoding HOX transcription factors and histones potentially regulated by blood flow, were overexpressed. Smooth muscle contraction and cell adhesion processes emerged among down regulated genes (N = 515), including the neuronal cell adhesion L1CAM as top scorer (5 fold-change, P = 5 × 10− 4). Repeated measurements in jugular/peripheral plasma and overtime in peripheral plasma showed conserved individual plasma patterns for immune-inflammatory (CCL13, CCL18) and adhesion (NCAM1, VAP1, SELL) proteins, despite significant variations overtime (SELL P < 0.0001). Both age and MS disease phenotypes were determinants of VAP1 plasma levels. Data supported cerebral related-mechanisms regulating ANGPT1 levels, which were remarkably lower in jugular plasma and correlated in repeated assays but not between jugular/peripheral compartments. Conclusions This study provides for the first time expression patterns of the IJV wall, suggesting signatures of altered vascular mRNA profiles in MS disease also independently from CCSVI. The combined transcriptome-protein analysis provides intriguing links between IJV wall transcript alteration and plasma protein expression, thus highlighting proteins of interest for MS pathophysiology. Electronic supplementary material The online version of this article (10.1186/s10020-018-0043-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, via Fossato di Mortara n 74, 44121, Ferrara, Italy.
| | - Nicole Ziliotto
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Meneghetti
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Marcello Baroni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Barbara Lunghi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Erica Menegatti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Massimo Pedriali
- Department of Experimental and Diagnostic Medicine, Sant'Anna University- Hospital, Ferrara, Italy
| | - Fabrizio Salvi
- Center for Immunological and Rare Neurological Diseases, Bellaria Hospital, IRCCS of Neurological Sciences, Bologna, Italy
| | - Ilaria Bartolomei
- Center for Immunological and Rare Neurological Diseases, Bellaria Hospital, IRCCS of Neurological Sciences, Bologna, Italy
| | - Sofia Straudi
- Department of Neurosciences and Rehabilitation, Sant'Anna University- Hospital, Ferrara, Italy
| | - Fabio Manfredini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, via Fossato di Mortara n 74, 44121, Ferrara, Italy
| | - Rebecca Voltan
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, via Fossato di Mortara n 74, 44121, Ferrara, Italy
| | - Francesco Mascoli
- Unit of Vascular and Endovascular Surgery, S. Anna University-Hospital, Ferrara, Italy
| | - Paolo Zamboni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|
6
|
Zhang Y, Wilson R, Heiss J, Breitling LP, Saum KU, Schöttker B, Holleczek B, Waldenberger M, Peters A, Brenner H. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat Commun 2017; 8:14617. [PMID: 28303888 PMCID: PMC5357865 DOI: 10.1038/ncomms14617] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/17/2017] [Indexed: 12/27/2022] Open
Abstract
DNA methylation (DNAm) has been revealed to play a role in various diseases. Here we performed epigenome-wide screening and validation to identify mortality-related DNAm signatures in a general population-based cohort with up to 14 years follow-up. In the discovery panel in a case-cohort approach, 11,063 CpGs reach genome-wide significance (FDR<0.05). 58 CpGs, mapping to 38 well-known disease-related genes and 14 intergenic regions, are confirmed in a validation panel. A mortality risk score based on ten selected CpGs exhibits strong association with all-cause mortality, showing hazard ratios (95% CI) of 2.16 (1.10–4.24), 3.42 (1.81–6.46) and 7.36 (3.69–14.68), respectively, for participants with scores of 1, 2–5 and 5+ compared with a score of 0. These associations are confirmed in an independent cohort and are independent from the ‘epigenetic clock'. In conclusion, DNAm of multiple disease-related genes are strongly linked to mortality outcomes. The DNAm-based risk score might be informative for risk assessment and stratification. DNA methylation is modulated by environmental factors and has a role in many complex diseases. Here, the authors find that methylation at specific DNA sites is associated with all-cause mortality, and a methylation-based risk score may be informative for risk assessment and stratification.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Center for Environmental Health, D-85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Jonathan Heiss
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Lutz P Breitling
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.,Network Ageing Research, University of Heidelberg, Bergheimer Strasse 20, D-69115 Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Präsident Baltz Strasse 5, D-66119 Saarbrücken, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Center for Environmental Health, D-85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Center for Environmental Health, D-85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764 Neuherberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Research Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.,Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, D-69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
7
|
Straudi S, Manfredini F, Lamberti N, Zamboni P, Bernardi F, Marchetti G, Pinton P, Bonora M, Secchiero P, Tisato V, Volpato S, Basaglia N. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Trials 2017; 18:88. [PMID: 28241776 PMCID: PMC5330064 DOI: 10.1186/s13063-017-1838-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 02/12/2017] [Indexed: 11/22/2022] Open
Abstract
Background Gait and mobility impairments affect the quality of life (QoL) of patients with progressive multiple sclerosis (MS). Robot-assisted gait training (RAGT) is an effective rehabilitative treatment but evidence of its superiority compared to other options is lacking. Furthermore, the response to rehabilitation is multidimensional, person-specific and possibly involves functional reorganization processes. The aims of this study are: (1) to test the effectiveness on gait speed, mobility, balance, fatigue and QoL of RAGT compared to conventional therapy (CT) in progressive MS and (2) to explore changes of clinical and circulating biomarkers of neural plasticity. Methods This will be a parallel-group, randomized controlled trial design with the assessor blinded to the group allocation of participants. Ninety-eight (49 per arm) progressive MS patients (EDSS scale 6–7) will be randomly assigned to receive twelve 2-h training sessions over a 4-week period (three sessions/week) of either: (1) RAGT intervention on a robotic-driven gait orthosis (Lokomat, Hocoma, Switzerland). The training parameters (torque of the knee and hip drives, treadmill speed, body weight support) are set during the first session and progressively adjusted during training progression or (2) individual conventional physiotherapy focusing on over-ground walking training performed with the habitual walking device. The same assessors will perform outcome measurements at four time points: baseline (before the first intervention session); intermediate (after six training sessions); end of treatment (after the completion of 12 sessions); and follow-up (after 3 months from the end of the training program). The primary outcome is gait speed, assessed by the Timed 25-Foot Walk Test. We will also assess walking endurance, balance, depression, fatigue and QoL as well as instrumental laboratory markers (muscle metabolism, cerebral venous hemodynamics, cortical activation) and circulating laboratory markers (rare circulating cell populations pro and anti-inflammatory cytokines/chemokines, growth factors, neurotrophic factors, coagulation factors, other plasma proteins suggested by transcriptomic analysis and metabolic parameters). Discussion The RAGT training is expected to improve mobility compared to the active control intervention in progressive MS. Unique to this study is the analysis of various potential markers of plasticity in relation with clinical outcomes. Trial registration ClinicalTrials.gov, identifier: NCT02421731. Registered on 19 January 2015 (retrospectively registered). Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1838-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sofia Straudi
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy
| | - Fabio Manfredini
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy. .,Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy.
| | - Nicola Lamberti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Unit of Translational Surgery and Vascular Diseases Center, Ferrara University Hospital, Ferrara, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giovanna Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine, Section of Anatomy and Histology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Stefano Volpato
- Center for Clinical Epidemiology, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Nino Basaglia
- Neuroscience and Rehabilitation Department, Ferrara University Hospital, Via Aldo Moro 8, 44124, Ferrara, Italy
| |
Collapse
|
8
|
Gehrke N, Wörns MA, Huber Y, Hess M, Straub BK, Hövelmeyer N, Waisman A, Kim YO, Schuppan D, Galle PR, Schattenberg JM. Hepatic B cell leukemia-3 promotes hepatic steatosis and inflammation through insulin-sensitive metabolic transcription factors. J Hepatol 2016; 65:1188-1197. [PMID: 27405060 DOI: 10.1016/j.jhep.2016.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/26/2016] [Accepted: 06/28/2016] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS The pathomechanisms underlying non-alcoholic fatty liver disease (NAFLD) and the involved molecular regulators are incompletely explored. The nuclear factor-kappa B (NF-κB)-cofactor gene B cell leukemia-3 (Bcl-3) plays a critical role in altering the transcriptional capacity of NF-κB - a key inducer of inflammation - but also of genes involved in cellular energy metabolism. METHODS To define the role of Bcl-3 in non-alcoholic steatohepatitis (NASH), we developed a novel transgenic mouse model with hepatocyte-specific overexpression of Bcl-3 (Bcl-3Hep) and employed a high-fat, high-carbohydrate dietary feeding model. To characterize the transgenic model, deep RNA sequencing was performed. The relevance of the findings was confirmed in human liver samples. RESULTS Hepatocyte-specific overexpression of Bcl-3 led to pronounced metabolic derangement, characterized by enhanced hepatic steatosis from increased de novo lipogenesis and uptake, as well as decreased hydrolysis and export of fatty acids. Steatosis in Bcl-3Hep mice was accompanied by an augmented inflammatory milieu and liver cell injury. Moreover, Bcl-3 expression decreased insulin sensitivity and resulted in compensatory regulation of insulin-signaling pathways. Based on in vivo and in vitro studies we identified the transcription factors PPARα, PPARγ and PGC-1α as critical regulators of hepatic metabolism and inflammation downstream of Bcl-3. Metformin treatment improved the metabolic and inflammatory phenotype in Bcl-3Hep mice through modulation of PPARα and PGC-1α. Remarkably, these findings were recapitulated in human NASH, which exhibited increased expression and nuclear localization of Bcl-3. CONCLUSIONS In summary, Bcl-3 emerges as a novel regulator of hepatic steatosis, insulin sensitivity and inflammation in NASH. LAY SUMMARY Non-alcoholic fatty liver disease (NAFLD) is considered the most prevalent liver disease worldwide. Patients can develop end-stage liver disease resulting in liver cirrhosis or hepatocellular carcinoma, but also develop complications unrelated to liver disease, e.g., cardiovascular disease. Still there is no full understanding of the mechanisms that cause NAFLD. In this study, genetically engineered mice were employed to examine the role of a specific protein in the liver that is involved in inflammation and the metabolism, namely Bcl-3. By this approach, a better understanding of the mechanisms contributing to disease progression was established. This can help to develop novel therapeutic and diagnostic options for patients with NAFLD.
Collapse
Affiliation(s)
- Nadine Gehrke
- I. Department of Medicine, University Medical Center Mainz, Germany
| | - Marcus A Wörns
- I. Department of Medicine, University Medical Center Mainz, Germany
| | - Yvonne Huber
- I. Department of Medicine, University Medical Center Mainz, Germany
| | - Moritz Hess
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center Mainz, Germany
| | - Beate K Straub
- Institute of Pathology, University Heidelberg and University Medical Center Mainz, Germany
| | - Nadine Hövelmeyer
- Institute of Molecular Medicine, University Medical Center Mainz, Germany
| | - Ari Waisman
- Institute of Molecular Medicine, University Medical Center Mainz, Germany
| | - Yong Ook Kim
- Institute of Translational Immunology, University Medical Center Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center Mainz, Germany
| | - Peter R Galle
- I. Department of Medicine, University Medical Center Mainz, Germany
| | | |
Collapse
|
9
|
Zhang H, Zhai Q, Zhang Z, Cai B, Cai H, Zhou S, Sun L, Xie Y, Kong D, Xu Z, Yuan K, Zi W, Liu X, Xu G. Association of GWAS-Supported Variants rs556621 on Chromosome 6p21.1 with Large Artery Atherosclerotic Stroke in a Southern Chinese Han Population. Neuromolecular Med 2016; 19:94-100. [DOI: 10.1007/s12017-016-8433-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/09/2016] [Indexed: 01/29/2023]
|
10
|
Bennett BJ, Davis RC, Civelek M, Orozco L, Wu J, Qi H, Pan C, Packard RRS, Eskin E, Yan M, Kirchgessner T, Wang Z, Li X, Gregory JC, Hazen SL, Gargalovic PS, Lusis AJ. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genet 2015; 11:e1005711. [PMID: 26694027 PMCID: PMC4687930 DOI: 10.1371/journal.pgen.1005711] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/06/2015] [Indexed: 12/15/2022] Open
Abstract
Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis. While recent genetic association studies in human populations have succeeded in identifying genetic loci that contribute to coronary artery disease (CAD) and related phenotypes, these loci explain only a small fraction of the genetic variation in CAD and associated traits. Here, we present a complementary approach using association analysis of atherosclerotic traits among inbred strains of mice. A strength of this approach is that it enables in-depth phenotypic characterization including gene expression and metabolic profiling across a variety of tissues, and integration of these molecular phenotypes with coronary artery disease itself. A striking finding was the large fraction of atherosclerosis that was explained by genetic interactions. Association analysis allowed us to identify genetic loci for atherosclerotic lesion area as well as transcript, cytokine and metabolite levels, and relationships among the traits were examined by correlation and network modeling. The plasma metabolites associated with atherosclerosis in mice, namely, LDL/VLDL-cholesterol, TMAO, arginine, glucose and insulin, overlapped with those observed in humans and accounted for approximately 30 to 40% of the observed variation in atherosclerotic lesion area. In summary, our data provide a detailed overview of the genetic architecture of atherosclerosis in mice and a rich resource for studies of the complex genetic and metabolic interactions that underlie the disease.
Collapse
Affiliation(s)
- Brian J. Bennett
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Richard C. Davis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Mete Civelek
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Luz Orozco
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Judy Wu
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Hannah Qi
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Calvin Pan
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - René R. Sevag Packard
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Mujing Yan
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Todd Kirchgessner
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Xinmin Li
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Jill C. Gregory
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Peter S. Gargalovic
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|