1
|
Pang Y, Zhang YH, Yue C, Wang L. Reduced Platelets Associated with All-Cause Mortality in the Pediatric Intensive Care Unit. Clin Appl Thromb Hemost 2024; 30:10760296241271390. [PMID: 39099432 DOI: 10.1177/10760296241271390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Platelets are crucial for maintaining physiological equilibrium, thrombosis formation, inflammation, bacterial defense, wound repair, angiogenesis, and tumorigenesis. In the Pediatric Intensive Care Unit (PICU), children frequently exhibit platelet reductions or functional alterations due to diverse pathological conditions, which significantly influence disease progression and therapeutic approaches. We analyzed the association between platelets count and its derived parameters and all-cause mortality. Adjusted smoothing spline plots, subgroup analysis and segmented multivariate logistic regression analysis were conducted to estimate the relative risk between proportional risk between platelets and all-cause mortality. Of the 11625 children, 677 (5.82%) died. After adjusting for confounders, there was a negative association between platelets and the risk of all-cause mortality in PICU. For every 100 × 10^9/L increase in platelets, the risk of death was reduced by 17% (adjusted OR = 0.83, 95% CI: 0.78, 0.89). The results of sensitivity analysis showed that in different stratified analyses (age, ICU category,WBC Count), the effect of platelets count on all-cause mortality remained stable. After adjusting for inflammation, nutrition, and liver function factors, platelets reduction is still an independent risk factor for PICU all-cause mortality.
Collapse
Affiliation(s)
- Yajing Pang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yong Hong Zhang
- Department of Neonatology, XinHua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaoyan Yue
- Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Li Wang
- Department of Neonatology, XinHua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Papadogeorgou P, Boutsikou T, Boutsikou M, Pergantou E, Mantzou A, Papassotiriou I, Iliodromiti Z, Sokou R, Bouza E, Politou M, Iacovidou N, Valsami S. A Global Assessment of Coagulation Profile and a Novel Insight into Adamts-13 Implication in Neonatal Sepsis. BIOLOGY 2023; 12:1281. [PMID: 37886991 PMCID: PMC10604288 DOI: 10.3390/biology12101281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Neonatal sepsis is a life-threatening condition associated with significant morbidity and mortality. Sepsis-induced coagulopathy is a well-recognized entity, signifying the strong cross-talk between inflammation and coagulation. The aim of the present study was to compare the coagulation profile between the acute phase of sepsis and recovery in term and preterm neonates. Additional comparisons to healthy neonates were undertaken. Levels of clotting, anti-clotting factors and ADAMTS-13 (A disintegrin and metalloprotease with thrombospondin type-1 motives), the cleaving protein of von Willebrand factor (VWF), were measured in 16 term and preterm neonates in the acute phase of infection and following recovery, as well as in 18 healthy neonates. Clotting times were prolonged, while levels of particular clotting factors were lower in the acute phase of infection compared to controls and recovery. On the other hand, levels of fibrinogen, factor VIII (FVIII) and VWF were significantly higher in the acute phase in comparison to controls and recovery, while they remained persistently higher in the infection group compared to controls. In regard to the anticlotting mechanism, a clear suppression was observed in septic neonates. ADAMTS-13 levels were significantly lower in the acute phase of infection in comparison to controls and recovery (p = 0.015 and 0.004, respectively), while a trend toward superimposed normalization was demonstrated post infection, as higher ADAMTS-13 levels were measured in recovered neonates compared to controls (p = 0.002). The coagulation profile is considerably deranged in neonatal sepsis. ADAMTS-13 deficiency in septic neonates is a novel finding with promising future implications, as ADAMTS-13 substitution may serve as a useful therapeutic option in neonatal sepsis, prompting further investigation in future studies.
Collapse
Affiliation(s)
- Paraskevi Papadogeorgou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Theodora Boutsikou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Maria Boutsikou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Eleni Pergantou
- Haemostasis Unit/Haemophilia Centre, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Aimilia Mantzou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Ioannis Papassotiriou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Zoi Iliodromiti
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Rozeta Sokou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Elena Bouza
- 2nd Neonatal Intensive Care Unit, “Aghia Sophia” Children’s Hospital, 115 27 Athens, Greece
| | - Marianna Politou
- Blood Transfusion Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| | - Nikoletta Iacovidou
- Neonatal Department, Medical School, National and Kapodistrian University of Athens, Aretaieio Hospital, 115 28 Athens, Greece
| | - Serena Valsami
- Blood Transfusion Department, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 28 Athens, Greece
| |
Collapse
|
3
|
Khizroeva J, Makatsariya A, Vorobev A, Bitsadze V, Elalamy I, Lazarchuk A, Salnikova P, Einullaeva S, Solopova A, Tretykova M, Antonova A, Mashkova T, Grigoreva K, Kvaratskheliia M, Yakubova F, Degtyareva N, Tsibizova V, Gashimova N, Blbulyan D. The Hemostatic System in Newborns and the Risk of Neonatal Thrombosis. Int J Mol Sci 2023; 24:13864. [PMID: 37762167 PMCID: PMC10530883 DOI: 10.3390/ijms241813864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Newborns are the most vulnerable patients for thrombosis development among all children, with critically ill and premature infants being in the highest risk group. The upward trend in the rate of neonatal thrombosis could be attributed to progress in the treatment of severe neonatal conditions and the increased survival in premature babies. There are physiological differences in the hemostatic system between neonates and adults. Neonates differ in concentrations and rate of synthesis of most coagulation factors, turnover rates, the ability to regulate thrombin and plasmin, and in greater variability compared to adults. Natural inhibitors of coagulation (protein C, protein S, antithrombin, heparin cofactor II) and vitamin K-dependent coagulation factors (factors II, VII, IX, X) are low, but factor VIII and von Willebrand factor are elevated. Newborns have decreased fibrinolytic activity. In the healthy neonate, the balance is maintained but appears more easily converted into thrombosis. Neonatal hemostasis has less buffer capacity, and almost 95% of thrombosis is provoked. Different triggering risk factors are responsible for thrombosis in neonates, but the most important risk factors for thrombosis are central catheters, fluid fluctuations, liver dysfunction, and septic and inflammatory conditions. Low-molecular-weight heparins are the agents of choice for anticoagulation.
Collapse
Affiliation(s)
- Jamilya Khizroeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Alexander Makatsariya
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Alexander Vorobev
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Victoria Bitsadze
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Ismail Elalamy
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
- Hematology and Thrombosis Center, Tenon Hospital, Sorbonne University, 4 Rue de la Chine, 75020 Paris, France
| | - Arina Lazarchuk
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Polina Salnikova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Sabina Einullaeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Antonina Solopova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Maria Tretykova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Alexandra Antonova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Tamara Mashkova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Kristina Grigoreva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Margaret Kvaratskheliia
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Fidan Yakubova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Natalia Degtyareva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - Valentina Tsibizova
- Almazov National Medical Research Centre, Health Ministry of Russian Federation, 2 Akkuratova Str., 197341 Saint Petersburg, Russia;
| | - Nilufar Gashimova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| | - David Blbulyan
- Department of Obstetrics, Gynecology and Perinatal Medicine, N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (A.M.); (A.V.); (V.B.); (I.E.); (A.L.); (P.S.); (S.E.); (A.S.); (M.T.); (A.A.); (T.M.); (K.G.); (M.K.); (F.Y.); (N.D.); (N.G.); (D.B.)
| |
Collapse
|
4
|
Weiss LJ, Drayss M, Mott K, Beck S, Unsin D, Just B, Speer CP, Härtel C, Andres O, Schulze H. Ontogenesis of functional platelet subpopulations from preterm and term neonates to adulthood: The PLINIUS study. Blood Adv 2023; 7:4334-4348. [PMID: 37042931 PMCID: PMC10432615 DOI: 10.1182/bloodadvances.2023009824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Erythrocytes undergo a well-defined switch from fetal to postnatal circulation, which is mainly reflected by the stage-specific expression of hemoglobin chains. Perinatal alterations in thrombopoiesis are poorly understood. We assessed the ontogenesis of platelet phenotype and function from early prematurity to adulthood. We recruited 64 subjects comprising 7 extremely preterm (27-31 weeks gestational age), 25 moderately preterm (32-36 weeks), 10 term neonates, 8 infants (<2 years), 5 children (2-13 years), and 9 adults (>13 years). Blood was withdrawn at up to 3 different time points in neonates (t1: 0-2, t2: 3-7, and t3: 8-14 days after birth). We found that the expression levels of the major surface receptors for fibrinogen, collagen, vWF, fibronectin, and laminin were reduced but correlated with decreased platelet size, indicating a normal surface density. Although CD62P and CD63 surface exposure upon stimulation with TRAP-6, ADP, or U46619 was unaltered or only slightly reduced in neonates, GPIIb/IIIa inside-out and outside-in activation was blunted but showed a continuous increase until adulthood, correlating with the expression of the GPIIb/IIIa regulating tetraspanin CD151. Platelet subpopulation analysis using automated clustering revealed that neonates presented with a CD63+/PAC-1- pattern, followed by a continuous increase in CD63+/PAC-1+ platelets until adulthood. Our findings revealed that the number of platelet-monocyte and platelet-neutrophil aggregates, but not platelet-lymphocyte aggregates, is increased in neonates and that neonatal aggregate formation depends in part on CD62P activation. Our PLatelets In Neonatal Infants Study (PLINIUS) provides several lines of evidence that the platelet phenotype and function evolve continuously from neonates to adulthood.
Collapse
Affiliation(s)
- Lukas J. Weiss
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Maria Drayss
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Mott
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Sarah Beck
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
- University of Würzburg, Rudolf Virchow Center, Würzburg, Germany
| | - David Unsin
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Bastian Just
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
| | - Christian P. Speer
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Christoph Härtel
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
| | - Oliver Andres
- Department of Pediatrics, University Hospital Würzburg, Würzburg, Germany
- University Hospital Würzburg, Center of Inherited Blood Cell Disorders, Würzburg, Germany
| | - Harald Schulze
- University Hospital Würzburg, Institute of Experimental Biomedicine, Würzburg, Germany
- University Hospital Würzburg, Center of Inherited Blood Cell Disorders, Würzburg, Germany
| |
Collapse
|
5
|
Seliniotaki AK, Haidich AB, Moutzouri S, Lithoxopoulou M, Ziakas N, Lundgren P, Hellstrom A, Mataftsi A. Association of platelet deficiency with severe retinopathy of prematurity: a review. Acta Paediatr 2022; 111:2056-2070. [PMID: 35778901 DOI: 10.1111/apa.16472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
AIM The aim of this review was to compile existing evidence on the role of platelets in the development of severe retinopathy of prematurity (ROP), highlight the strengths and weaknesses of the available studies and critically discuss the reported data. METHODS A comprehensive literature search was conducted on PubMed from January 2000 to January 2022, and the reference lists of the included studies were screened manually. RESULTS There were 19 primary studies that fulfilled the eligibility criteria. Experimental research indicated lower platelet count in mice oxygen-induced retinopathy model compared with normoxia controls, while platelet transfusions suppressed neovascularisation. The latter finding was not consistently confirmed in clinical research, where a low platelet count, an increased number of thrombopenic episodes and of platelet transfusions have all been implicated in the development of ROP requiring treatment, either type I or aggressive posterior or both. However, existing studies exhibit significant clinical heterogeneity and present methodological limitations that imperil their reliability and validity. CONCLUSION Platelet deficiency has been associated with severe ROP. However, critical thresholds of platelet parameters are still unrecognised. Future research is required to determine whether platelet parameters can be predictive biomarkers for ROP requiring treatment and at what thresholds.
Collapse
Affiliation(s)
- Aikaterini K Seliniotaki
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna-Bettina Haidich
- Department of Hygiene, Social-Preventive Medicine & Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stella Moutzouri
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Lithoxopoulou
- 2nd Department of Neonatology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Ziakas
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pia Lundgren
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Asimina Mataftsi
- 2nd Department of Ophthalmology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Vorobev AV, Bitsadze VO, Khizroeva JK, Potapkina SA, Makatsariya NA, Rizzo G, Di Renzo GC, Blinov DV, Pankratyeva LL, Tsibizova VI. Neonatal thrombosis: risk factors and principles of prophylaxis. OBSTETRICS, GYNECOLOGY AND REPRODUCTION 2021. [DOI: 10.17749/2313-7347/ob.gyn.rep.2021.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Data analysis on the pathogenesis and risk factors of neonatal thrombosis was carried out. The main risk factor of any neonatal thrombosis is central catheter installment, but other maternal, fetal and neonatal factors should be taken into consideration. We discuss the epidemiology of neonatal thrombosis and the main features of the hemostasis system in newborns, the most significant risk factors, including genetic and acquired thrombophilia. We consider the von Willebrand factor activity and ADAMTS-13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) level in the development of neonatal thrombotic microangiopathy. Finally, we discuss the basic principles of prevented neonatal thrombosis by using low molecular weight heparins.
Collapse
Affiliation(s)
| | | | | | | | | | - G. Rizzo
- Sechenov University; University of Rome Tor Vergata
| | - G. C. Di Renzo
- Sechenov University; Center for Prenatal and Reproductive Medicine, University of Perugia
| | - D. V. Blinov
- Institute for Preventive and Social Medicine; Lapino Clinic Hospital, MD Medical Group
| | - L. L. Pankratyeva
- Vorokhobov City Clinical Hospital № 67, Moscow Healthcare Department; Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Health Ministry of Russian Federation
| | - V. I. Tsibizova
- Almazov National Medical Research Centre, Health Ministry of Russian Federation
| |
Collapse
|
7
|
Age-Dependent Control of Collagen-Dependent Platelet Responses by Thrombospondin-1-Comparative Analysis of Platelets from Neonates, Children, Adolescents, and Adults. Int J Mol Sci 2021; 22:ijms22094883. [PMID: 34063076 PMCID: PMC8124951 DOI: 10.3390/ijms22094883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
Platelet function is developmentally regulated. Healthy neonates do not spontaneously bleed, but their platelets are hypo-reactive to several agonists. The mechanisms underlying immature platelet function in neonates are incompletely understood. This critical issue remains challenging for the establishment of age-specific reference ranges. In this study, we evaluated platelet reactivity of five pediatric age categories, ranging from healthy full-term neonates up to adolescents (11–18 years) in comparison to healthy adults (>18 years) by flow cytometry. We confirmed that platelet hypo-reactivity detected by fibrinogen binding, P-selectin, and CD63 surface expression was most pronounced in neonates compared to other pediatric age groups. However, maturation of platelet responsiveness varied with age, agonist, and activation marker. In contrast to TRAP and ADP, collagen-induced platelet activation was nearly absent in neonates. Granule secretion markedly remained impaired at least up to 10 years of age compared to adults. We show for the first time that neonatal platelets are deficient in thrombospondin-1, and exogenous platelet-derived thrombospondin-1 allows platelet responsiveness to collagen. Platelets from all pediatric age groups normally responded to the C-terminal thrombospondin-1 peptide RFYVVMWK. Thus, thrombospondin-1 deficiency of neonatal platelets might contribute to the relatively impaired response to collagen, and platelet-derived thrombospondin-1 may control distinct collagen-induced platelet responses.
Collapse
|
8
|
Observational Study on Variation of Longitudinal Platelet Counts in Calves over the First 14 Days of Life and Reference Intervals from Cross-Sectional Platelet and Leukocyte Counts in Dairy Calves up to Two Months of Age. Animals (Basel) 2021; 11:ani11020347. [PMID: 33573024 PMCID: PMC7911096 DOI: 10.3390/ani11020347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary To define a healthy animal in an experimental setting or to differentiate and backup a diagnosis in cattle practice, reference intervals (RIs) in haematology diagnostics are necessary. The RIs in calves for blood cell counts, such as platelets and white blood cells, differ from RIs in adult cattle and are not widely studied. Blood results from dairy calves in the Netherlands were used to study the variation in platelet counts in young calves and to calculate an RI for platelet and white blood cell counts. In new-born calves up to six days of age, platelet counts were lower than in calves older than five days. From six days of age until 60 days of age we propose an RI platelet count of 287–1372 × 109/L and for the first 60 days of life an RI for leukocyte count of 4.0–18.9 × 109/L. Abstract Platelet and leukocyte count reference intervals (RIs) for cattle differ by age and while adult RIs are known, RIs for calves are studied less. The aims of this observational study are to evaluate variation of platelet counts of Holstein Friesian calves over the first 14 days of life and to propose RIs for platelet and leukocyte counts of Holstein Friesian calves aged 0–60 days. In a longitudinal study, 19 calves were blood sampled 17 times, in the first 14 days of their lives. Blood was collected in a citrate blood tube and platelet counts were determined. We assessed the course of platelet counts. In a field study, 457 healthy calves were blood sampled once. Blood was collected in an EDTA blood tube and platelet and leukocyte counts were determined. The RIs were calculated by the 2.5 and 97.5 percentiles. Platelet counts started to increase 24 h after birth (mean platelet count 381 × 109/L ± 138 × 109/L) and stabilized after five days (mean platelet count 642 × 109/L ± 265 × 109/L). In calves up to six days of age, platelet counts were lower than in calves older than five days. In conclusion, the RIs of platelet and leukocyte counts in calves were wider in range than the RIs for adult cattle, therefore, calf specific RIs for platelet and leukocyte counts should be used. From 6 until 60 days of age, we propose an RI for platelet counts of 287–1372 × 109/L and for the first 60 days of life an RI for leukocyte counts of 4.0–18.9 × 109/L.
Collapse
|
9
|
Cui D, Hou Y, Feng L, Li G, Zhang C, Huang Y, Fan J, Hu Q. Capillary blood reference intervals for platelet parameters in healthy full-term neonates in China. BMC Pediatr 2020; 20:471. [PMID: 33038919 PMCID: PMC7547422 DOI: 10.1186/s12887-020-02373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/06/2020] [Indexed: 12/02/2022] Open
Abstract
Background No consensus has been reached on capillary blood reference intervals for platelet parameters in full-term neonates. We aimed to establish neonatal capillary blood reference intervals for platelet parameters and evaluate influences of sex, gestational age and postnatal age on platelet parameters. Methods This study was a prospective investigation and implemented in 594 healthy full-term neonates from 12 to 84 h of age, using SYSMEX XN-9000 haematology automatic analyser by means of capillary blood. Reference intervals for platelet parameters were defined by an interval of 2.5th − 97.5th percentiles. Results Capillary reference interval for platelet count was (152–464) × 109/L. No significance was found between sex-divided reference intervals for platelet parameters. The values of platelet count changed minimally across gestational age (37–41 weeks) and postnatal age (12–84 h). Reference intervals for other platelet parameters were affected by these factors to a different extent. Conclusions We established capillary blood reference intervals for platelet parameters in the first days after birth of full-term neonates in China.
Collapse
Affiliation(s)
- Dongyan Cui
- Department of Paediatric Haematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yan Hou
- Department of Paediatrics, Xiangyang Central Hospital, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Ling Feng
- Department of Gynaecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Guo Li
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Chi Zhang
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China
| | - Yanli Huang
- Department of Gynaecology and Obstetrics, Xiangyang Central Hospital, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Jiubo Fan
- Department of Clinical Laboratory, Xiangyang Central Hospital, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Qun Hu
- Department of Paediatric Haematology and Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
10
|
Wang YP, Feng JN, Li ZY, Lyu XM, Jiang QL, Wu H. [Reference ranges of platelet and related parameters within 24 hours after birth in preterm infants with different gestational ages]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:696-700. [PMID: 32669163 PMCID: PMC7389608 DOI: 10.7499/j.issn.1008-8830.2001036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/12/2020] [Indexed: 05/31/2023]
Abstract
OBJECTIVE To study the reference ranges of platelet and related parameters within 24 hours after birth in preterm infants with different gestational ages. METHODS According to the inclusion and exclusion criteria, a retrospective analysis was performed for the chart review data of 1 070 preterm infants with a gestational age of 23-36+6 weeks who were admitted to the neonatal intensive care unit from January to December in 2018. The reference ranges of platelet parameters were calculated for the preterm infants within 24 hours after birth. RESULTS There were no significant differences in platelet count (PLT) and plateletcrit (PCT) among the preterm infants with different gestational ages (P>0.05). The late preterm infants (34-36+6 weeks; n=667) had significantly lower mean platelet volume (MPV) and platelet distribution width (PDW) than the extremely preterm infants (23-27+6 weeks; n=36) and the early preterm infants (28-33+6 weeks; n=367) (P<0.05). There were no significant differences in these platelet parameters between the preterm infants with different sexes (P>0.05). The reference ranges of platelet parameters in preterm infants were calculated based on gestational age. The reference ranges of PLT and PCT were (92-376)×109/L and 0.1%-0.394% respectively, for the preterm infants with a gestational age of 23-36+6 weeks. The reference ranges of MPV and PDW were 9.208-12.172 fl and 8.390%-16.407% respectively, for the preterm infants with a gestational age of 23-36+6 weeks; the reference ranges of MPV and PDW were 9.19-11.95 fl and 9.046%-15.116% respectively, for the preterm infants with a gestational age of 34-36+6 weeks. CONCLUSIONS The MPV and PDW of preterm infants with different gestational age are different within 24 hours after birth, and it is more helpful for clinical practice to formulate the reference range of MPV and PDW according to gestational age.
Collapse
Affiliation(s)
- You-Ping Wang
- Department of Neonatology, Bethune First Hospital of Jilin University, Changchun 130000, China.
| | | | | | | | | | | |
Collapse
|
11
|
Esiaba I, Mousselli I, M. Faison G, M. Angeles D, S. Boskovic D. Platelets in the Newborn. NEONATAL MEDICINE 2019. [DOI: 10.5772/intechopen.86715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Grases-Pintó B, Torres-Castro P, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ, Franch À. A Preterm Rat Model for Immunonutritional Studies. Nutrients 2019; 11:nu11050999. [PMID: 31052461 PMCID: PMC6566403 DOI: 10.3390/nu11050999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
Neonates are born with an immature immune system, which develops during the first stages of life. This early immaturity is more acute in preterm newborns. The aim of the present study was to set up a preterm rat model, in which representative biomarkers of innate and adaptive immunity maturation that could be promoted by certain dietary interventions are established. Throughout the study, the body weight was registered. To evaluate the functionality of the intestinal epithelial barrier, in vivo permeability to dextrans was measured and a histomorphometric study was performed. Furthermore, the blood cell count, phagocytic activity of blood leukocytes and plasmatic immunoglobulins (Ig) were determined. Preterm rats showed lower erythrocyte and platelet concentration but a higher count of leukocytes than the term rats. Although there were no changes in the granulocytes’ ability to phagocytize, preterm monocytes had lower phagocytic activity. Moreover, lower plasma IgG and IgM concentrations were detected in preterm rats compared to full-term rats, without affecting IgA. Finally, the intestinal study revealed lower permeability in preterm rats and reduced goblet cell size. Here, we characterized a premature rat model, with differential immune system biomarkers, as a useful tool for immunonutritional studies aimed at boosting the development of the immune system.
Collapse
Affiliation(s)
- Blanca Grases-Pintó
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Paulina Torres-Castro
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Mar Abril-Gil
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - María J Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Francisco J Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain.
- Nutrition and Food Safety Research Institute (INSA·UB), 08921 Santa Coloma de Gramenet, Spain.
| |
Collapse
|
13
|
The Role of Platelets in Antimicrobial Host Defense. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
14
|
Beltempo M, Viel-Thériault I, Thibeault R, Julien AS, Piedboeuf B. C-reactive protein for late-onset sepsis diagnosis in very low birth weight infants. BMC Pediatr 2018; 18:16. [PMID: 29382319 PMCID: PMC5791164 DOI: 10.1186/s12887-018-1002-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Late-onset sepsis in very low birth weight (VLBW) infants is a diagnostic challenge. We aimed to evaluate the diagnostic utility of the C-Reactive protein (CRP) and the complete blood count (CBC) for late-onset sepsis in VLBW infants. METHODS In a 5-year retrospective cohort of 416 VLBW infants born at less than 1500 g, there were 590 separate late-onset sepsis evaluations. CRP and CBC were drawn at time of initial blood culture (T0), at 16-24 h (T24) and 40-48 h (T48) after. The positive cut-off values for abnormal values were the following: CRP ≥10 mg/L and CBC with at least one anomaly, including white blood cell count < 5000/mm3, immature neutrophil/total neutrophil ratio > 0.10, or platelet count < 100,000/uL. Sensitivity and specificity for predicting late-onset sepsis were calculated for each laboratory test and their combinations. Receiver operating characteristics curves were obtained for each test and for the absolute change from T0 to T24 in the laboratory value of CRP, white blood cell count and immature neutrophil/total neutrophil. RESULTS At T0, combining the CBC and the CRP had the highest sensitivity of 66% (95% confidence interval [CI], 58-73) compared to both individual tests for predicting late onset sepsis. At T24, CRP's sensitivity was 84% (95% CI, 78-89) and was statistically higher than the CBC's 59% (95% CI, 51-67). The combination of CBC at T0 and CRP at T24 offered the greatest sensitivity of 88% (95% CI, 82-92) and negative predictive value 93% (95% CI, 89-96), with fewer samples, compared to any other combination of tests. The area under the curve for the change in the white blood cell count from T0 to T24 was 0.82. CONCLUSION At initial sepsis evaluation (T0), both CBC and CRP should be performed to increase sensitivity. A highly negative predictive value is reachable with only two tests: a CBC at T0 and a CRP a T24.
Collapse
Affiliation(s)
- Marc Beltempo
- McGill University Health Centre, Montreal, QC, Canada
| | - Isabelle Viel-Thériault
- Département de pédiatrie, Centre Mère-Enfant Soleil du CHU de Québec, Université Laval, 2705 Boulevard Laurier, QC, Québec, G1V 4G2, Canada.
| | - Roseline Thibeault
- Département de pédiatrie, Centre Mère-Enfant Soleil du CHU de Québec, Université Laval, 2705 Boulevard Laurier, QC, Québec, G1V 4G2, Canada
| | - Anne-Sophie Julien
- Centre de recherche du CHU de Québec, Université Laval, QC, Québec, Canada
| | - Bruno Piedboeuf
- Département de pédiatrie, Centre Mère-Enfant Soleil du CHU de Québec, Université Laval, 2705 Boulevard Laurier, QC, Québec, G1V 4G2, Canada.,Centre de recherche du CHU de Québec, Université Laval, QC, Québec, Canada
| |
Collapse
|
15
|
Andres O, Henning K, Strauß G, Pflug A, Manukjan G, Schulze H. Diagnosis of platelet function disorders: A standardized, rational, and modular flow cytometric approach. Platelets 2017; 29:347-356. [DOI: 10.1080/09537104.2017.1386297] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Katja Henning
- Laboratory for Paediatric Molecular Biology, Charité – University Medicine Berlin, Berlin, Germany
| | - Gabriele Strauß
- Clinic for Paediatric Oncology and Haematology, Charité – University Medicine Berlin, Berlin, Germany
- Department for Paediatric Oncology and Haematology, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Annerose Pflug
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Georgi Manukjan
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Human milk oligosaccharides: The role in the fine-tuning of innate immune responses. Carbohydr Res 2016; 432:62-70. [PMID: 27448325 DOI: 10.1016/j.carres.2016.07.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/12/2023]
Abstract
In order to secure the health of newborns over the period of immune immaturity during the first months of life, a mother provides her offspring with passive protection: bioactive molecules transferred through the placenta and breast milk. It is well known that human milk contains immunoglobulins (Ig), immune cells and diverse cytokines, which affect newborn directly or indirectly and contribute to the maturation of the immune system. However, in addition to the above-stated molecules, human milk oligosaccharides (HMOs), a complex mixture of free indigestible carbohydrates with multiple functions, play exceptional roles in the functioning of the infants' immune system. These biological molecules have been studied over decades, however, interest in HMOs does not seem to have abated. Although biological activities of oligosaccharides from human milk have been explicitly reviewed, information regarding the role of HMOs in inflammation remains rather fragmented. The purpose of this review is to compile existing knowledge about the role of certain species of HMOs, including fucosylated, galactosylated and sialylated oligosaccharides, and their signaling pathways in immunity and inflammation. The advances in applying this information to the treatment of diseases in infants as well as adults were also reviewed here.
Collapse
|
17
|
Molyneux E, Gest A. Neonatal sepsis: an old issue needing new answers. THE LANCET. INFECTIOUS DISEASES 2015; 15:503-5. [PMID: 25932574 DOI: 10.1016/s1473-3099(15)70143-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Elizabeth Molyneux
- Paediatric Department, College of Medicine, Queen Elizabeth Central Hospital, Box 360, Blantyre, Malawi.
| | - Al Gest
- Department of Pediatric Medicine, Neonatology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|