1
|
Piqueras L, Sanz MJ. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways. Free Radic Biol Med 2020; 157:38-54. [PMID: 32057992 DOI: 10.1016/j.freeradbiomed.2020.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Inflammation and activation of the immune system are key molecular and cellular events in the pathogenesis of cardiovascular diseases, including atherosclerosis, hypertension-induced target-organ damage, and abdominal aortic aneurysm. Angiotensin II (Ang-II) is the main effector peptide hormone of the renin-angiotensin system. Beyond its role as a potent vasoconstrictor and regulator of blood pressure and fluid homeostasis, Ang-II is intimately involved in the development of vascular lesions in cardiovascular diseases through the activation of different immune cells. The migration of leukocytes from circulation to the arterial subendothelial space is a crucial immune response in lesion development that is mediated through a sequential and coordinated cascade of leukocyte-endothelial cell adhesive interactions involving an array of cell adhesion molecules present on target leukocytes and endothelial cells and the generation and release of chemoattractants that activate and guide leukocytes to sites of emigration. In this review, we outline the key events of Ang-II participation in the leukocyte recruitment cascade, the underlying mechanisms implicated, and the corresponding redox-signaling pathways. We also address the use of inhibitor drugs targeting the effects of Ang-II in the context of leukocyte infiltration in these cardiovascular pathologies, and examine the clinical data supporting the relevance of blocking Ang-II-induced vascular inflammation.
Collapse
Affiliation(s)
- Laura Piqueras
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; Institute of Health Research INCLIVA University Clinic Hospital of Valencia, Valencia, Spain; CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Spanish Ministry of Health, Madrid, Spain.
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; Institute of Health Research INCLIVA University Clinic Hospital of Valencia, Valencia, Spain; CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Spanish Ministry of Health, Madrid, Spain.
| |
Collapse
|
2
|
TNF-α inhibition decreases MMP-2 activity, reactive oxygen species formation and improves hypertensive vascular hypertrophy independent of its effects on blood pressure. Biochem Pharmacol 2020; 180:114121. [PMID: 32592722 DOI: 10.1016/j.bcp.2020.114121] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Systemic arterial hypertension is a public health problem associated with an increased risk of cardiovascular disease. Matrix metalloproteinases (MMP) are endopeptidases that participate in hypertension-induced cardiovascular remodeling, which may be activated by oxidative stress. Angiotensin II (Ang II), a potent hypertrophic and vasoconstrictor peptide, increases oxidative stress, MMP-2 activity and tumor necrosis factor (TNF-α) expression. In vitro studies have shown that TNF-α is essential for Ang II-induced MMP-2 expression. Thus, this study evaluated whetherTNF-α inhibition decreases the development of hypertension-induced vascular remodeling via reduction of MMP-2 activity and reactive oxygen species (ROS) formation. Two distinct pharmacological approaches were used in the present study: Pentoxifylline (PTX), a non-selective inhibitor of phosphodiesterases that exerts anti- inflammatory effects via inhibition of TNF-α, and Etanercept (ETN), a selective TNF-α inhibitor. 2-kidney and 1-Clip (2K1C). 2-kidney and 1-Clip (2K1C) and Sham rats were treated with Vehicle, PTX (50 mg/Kg and 100 mg/kg daily) or ETN (0.3 mg/Kg and 1 mg/kg; three times per week). Systolic blood pressure (SBP) was measured weekly by tail cuff plethysmography. Plasma TNF-α and IL-1β levels were evaluated by enzyme-linked immunosorbent assay (ELISA) technique. The vascular hypertrophy was examined in the aorta sections stained with hematoxylin/eosin. ROS in aortas was evaluated by dihydroethidium and chemiluminescence lucigenin assay. Aortic MMP-2 levels and activity were evaluated by gel zymography and in situ zymography, respectively. The 2K1C animals showed a progressive increase in SBP levels and was accompanied by significant vascular hypertrophy (p < 0.05 vs Sham). Treatment with PTX at higher doses decreased SBP and vascular remodeling in 2K1C animals (p < 0.05 vs 2K1C vehicle). Although the highest dose of ETN treatment did not reduce blood pressure, the vascular hypertrophy was significantly attenuated in 2K1C animals treated with ETN1 (p < 0.05). The increased cytokine levels and ROS formation were reversed by the highest doses of both PTX and ETN. The increase in MMP-2 levels and activity in 2K1C animals were reduced by PTX100 and ETN1 treatments (p < 0.05 vs vehicle 2K1C). Lower doses of PTX and ETN did not affect any of the evaluated parameters in this study, except for a small reduction in TNF-α levels. The findings of the present study suggest that PTX and ETN treatment exerts immunomodulatory effects, blunted excessive ROS formation, and decreased renovascular hypertension-induced MMP-2 up-regulation, leading to improvement ofvascular remodeling typically found in 2K1C hypertension. Therefore, strategies using anti-hypertensive drugs in combination with TNF alpha inhibitors could be an attractive therapeutic approach to tackle hypertension and its associated vascular remodeling.
Collapse
|
3
|
Jalkanen J, Hollmén M, Maksimow M, Jalkanen S, Hakovirta H. Serum cytokine levels differ according to major cardiovascular risk factors in patients with lower limb atherosclerosis. Cytokine 2019; 114:74-80. [DOI: 10.1016/j.cyto.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/10/2018] [Accepted: 11/02/2018] [Indexed: 11/29/2022]
|
4
|
Harwani SC. Macrophages under pressure: the role of macrophage polarization in hypertension. Transl Res 2018; 191:45-63. [PMID: 29172035 PMCID: PMC5733698 DOI: 10.1016/j.trsl.2017.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/30/2017] [Indexed: 02/06/2023]
Abstract
Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Sailesh C Harwani
- Department of Internal Medicine, Iowa City, IA; Center for Immunology and Immune Based Diseases, Iowa City, IA; Abboud Cardiovascular Research Center, Iowa City, Io.
| |
Collapse
|
5
|
Nour-Eldine W, Ghantous CM, Zibara K, Dib L, Issaa H, Itani HA, El-Zein N, Zeidan A. Adiponectin Attenuates Angiotensin II-Induced Vascular Smooth Muscle Cell Remodeling through Nitric Oxide and the RhoA/ROCK Pathway. Front Pharmacol 2016; 7:86. [PMID: 27092079 PMCID: PMC4823273 DOI: 10.3389/fphar.2016.00086] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/16/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Adiponectin (APN), an adipocytokine, exerts protective effects on cardiac remodeling, while angiotensin II (Ang II) induces hypertension and vascular remodeling. The potential protective role of APN on the vasculature during hypertension has not been fully elucidated yet. Here, we evaluate the molecular mechanisms of the protective role of APN in the physiological response of the vascular wall to Ang II. METHODS AND RESULTS Rat aortic tissues were used to investigate the effect of APN on Ang II-induced vascular remodeling and hypertrophy. We investigated whether nitric oxide (NO), the RhoA/ROCK pathway, actin cytoskeleton remodeling, and reactive oxygen species (ROS) mediate the anti-hypertrophic effect of APN. Ang II-induced protein synthesis was attenuated by pre-treatment with APN, NO donor S-nitroso-N-acetylpenicillamine (SNAP), or cGMP. The hypertrophic response to Ang II was associated with a significant increase in RhoA activation and vascular force production, which were prevented by APN and SNAP. NO was also associated with inhibition of Ang II-induced phosphorylation of cofilin. In addition, immunohistochemistry revealed that 24 h Ang II treatment increased the F- to G-actin ratio, an effect that was inhibited by SNAP. Ang II-induced ROS formation and upregulation of p22(phox) mRNA expression were inhibited by APN and NO. Both compounds failed to inhibit Nox1 and p47(phox) expression. CONCLUSION Our results suggest that the anti-hypertrophic effects of APN are due, in part, to NO-dependent inhibition of the RhoA/ROCK pathway and ROS formation.
Collapse
Affiliation(s)
- Wared Nour-Eldine
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese UniversityBeirut, Lebanon
| | - Crystal M Ghantous
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese University Beirut, Lebanon
| | - Leila Dib
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| | - Hawraa Issaa
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of BeirutBeirut, Lebanon; ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese UniversityBeirut, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Nabil El-Zein
- ER045, Laboratory of Stem Cells, Department of Biology, Faculty of Sciences, The Lebanese University Beirut, Lebanon
| | - Asad Zeidan
- Cardiovascular Physiology Lab, Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut Beirut, Lebanon
| |
Collapse
|
6
|
Wysocki J, Ye M, Batlle D. Plasma and Kidney Angiotensin Peptides: Importance of the Aminopeptidase A/Angiotensin III Axis. Am J Hypertens 2015; 28:1418-26. [PMID: 25968123 DOI: 10.1093/ajh/hpv054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/23/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The renin-angiotensin system is a complex regulatory hormonal network with a main biological peptide and therapeutic target, angiotensin (Ang) II (1-8). There are other potentially important Ang peptides that have not been well evaluated. METHODS Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used for concurrent evaluation of multiple Angs downstream of Ang I (1-10) and Ang II (1-8) in kidney and plasma from wild-type (WT) mice. Angiotensin converting enzyme 2 knockout (ACE2KO) was also used as a way to examine the Angs profile in the absence of ACE2, an enzyme that cleaves both Ang I (1-10) and Ang II (1-8). RESULTS In plasma from both WT and ACE2KO, levels of Ang I (1-10), Ang III (2-8), and Ang (2-10) were the highest of all the renin-angiotensin system (RAS) peptides. The latter two peptides are products of aminopeptidase A cleavage of Ang II (1-8) and Ang I (1-10), respectively. In contrast, plasma levels of Ang II (1-8), and Ang (1-7), the product of Ang II (1-8) cleavage by ACE2, were low. In kidney from both WT and ACE2KO, Ang II (1-8) levels were high as compared to plasma levels. In the ACE2KO mice, a significant increase in either Ang II (1-8) or a decrease in Ang (1-7) was not observed in plasma or in the kidney. CONCLUSION RAS-focused peptidomic approach revealed major differences in Ang peptides between mouse plasma and kidney. These Ang peptide profiles show the dominance of the aminopeptidase A/Ang (2-10) and aminopeptidase A/Ang III (2-8) pathways in the metabolism of Ang I (1-10) and Ang II (1-8) over the ACE2/Ang (1-7) axis. Ang III (2-8) and other peptides formed from aminopeptidase A cleavage may be important therapeutic RAS targets.
Collapse
Affiliation(s)
- Jan Wysocki
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Minghao Ye
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Daniel Batlle
- Division of Nephrology & Hypertension, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
7
|
Ellinsworth DC. Arsenic, Reactive Oxygen, and Endothelial Dysfunction. J Pharmacol Exp Ther 2015; 353:458-64. [DOI: 10.1124/jpet.115.223289] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/17/2015] [Indexed: 01/06/2023] Open
|
8
|
Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol Sin 2013; 34:901-11. [PMID: 23645013 DOI: 10.1038/aps.2013.24] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/27/2013] [Indexed: 12/17/2022] Open
Abstract
AIM To investigate whether curcumin (Cur) suppressed lipopolysaccharide (LPS)-induced inflammation in vascular smooth muscle cells (VSMCs) of rats, and to determine its molecular mechanisms. METHODS Primary rat VSMCs were treated with LPS (1 μg/L) and Cur (5, 10, or 30 μmol/L) for 24 h. The levels of MCP-1, TNF-α, and iNOS were measured using ELISA and real-time RT-PCR. NO level was analyzed with the Griess reaction. Western-blotting was used to detect the activation of TLR4, MAPKs, IκBα, NF-κB p65, and the p47(phox) subunit of NADPH oxidase in the cells. RESULTS Treatment of VSMCs with LPS dramatically increased expression of inflammatory cytokines MCP-1 and TNF-α, expression of TLR4 and iNOS, and NO production. LPS also significantly increased phosphorylation of IκBα, nuclear translocation of NF-κB (p65) and phosphorylation of MAPKs in VSMCs. Furthermore, LPS significantly increased production of intracellular ROS, and decreased expression of p47(phox) subunit of NADPH oxidase. Pretreatment with Cur concentration-dependently attenuated all the aberrant changes in LPS-treated VSMCs. The LPS-induced overexpression of MCP-1 and TNF-α, and NO production were attenuated by pretreatment with the ERK inhibitor PD98059, the p38 MAPK inhibitor SB203580, the NF-κB inhibitor PDTC or anti-TLR4 antibody, but not with the JNK inhibitor SP600125. CONCLUSION Cur suppresses LPS-induced overexpression of inflammatory mediators in VSMCs in vitro via inhibiting the TLR4-MAPK/NF-κB pathways, partly due to block of NADPH-mediated intracellular ROS production.
Collapse
|
9
|
Strategies Aimed at Nox4 Oxidase Inhibition Employing Peptides from Nox4 B-Loop and C-Terminus and p22 (phox) N-Terminus: An Elusive Target. Int J Hypertens 2013; 2013:842827. [PMID: 23606947 PMCID: PMC3626398 DOI: 10.1155/2013/842827] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/10/2013] [Indexed: 11/22/2022] Open
Abstract
Although NADPH oxidase 4 (Nox4) is the most abundant Nox isoform in systemic vascular endothelial and smooth muscle cells, its function in the vascular tissue is not entirely known. The literature describes a pathophysiological role for Nox4 in cardiovascular disease; however, some studies have reported that it has a protective role. To date, specific Nox4 inhibitors are not available; hence, the development of a pharmacologic tool to assess Nox4's pathophysiological role garners intense interest. In this study, we selected peptides corresponding to regions in the Nox4 oxidase complex critical to holoenzyme activity and postulated their utility as specific competitive inhibitors. Previous studies in our laboratory yielded selective inhibition of Nox2 using this strategy. We postulated that peptides mimicking the Nox4 B-loop and C-terminus and regions on p22phox inhibit Nox4 activity. To test our hypothesis, the inhibitory activity of Nox4 B-loop and C-terminal peptides as well as N-terminal p22phox peptides was assessed in a reconstituted Nox4 system. Our findings demonstrate that Nox4 inhibition is not achieved by preincubation with this comprehensive array of peptides derived from previously identified active regions. These findings suggest that Nox4 exists in a tightly assembled and active conformation which, unlike other Noxes, cannot be disrupted by conventional means.
Collapse
|
10
|
Abstract
Hypertension is considered the most important risk factor in the development of cardiovascular disease. Considerable evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), plays a key role in the pathogenesis of hypertension. This phenomenon leads to endothelial dysfunction, an imbalance between endothelium-derived relaxing factors, such as nitric oxide (NO), and contracting factors, such as angiotensin-II and endothelin (ET)-1, favoring the latter. Vascular remodeling also takes place; both processes lead to hypertension establishment. Antioxidant therapies have been evaluated in order to decrease ROS production or increase their scavenging. In this line, polyphenols, widespread antioxidants in fruits, vegetables, and wine, have demonstrated their beneficial role in prevention and therapy of hypertension, by acting as free radical scavengers, metal chelators, and in enzyme modulation and expression. Polyphenols activate and enhance endothelial nitric oxide synthase (eNOS) expression by several signaling pathways, increase glutathione (GSH), and inhibit ROS-producing enzymes such as NADPH and xanthine oxidases. These pathways lead to improved endothelial function, subsequent normalization of vascular tone, and an overall antihypertensive effect. In practice, diets as Mediterranean and the "French paradox" phenomenon, the light and moderate red wine consumption, supplementation with polyphenols as resveratrol or quercetin, and also experimental and clinical trials applying the mentioned have coincided in the antihypertensive effect of polyphenols, either in prevention or in therapy. However, further trials are yet needed to fully assess the molecular mechanisms of action and the appearance of adverse reactions, if a more extensive recommendation of polyphenol introduction in diet wants to be made.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular & Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
11
|
Taube A, Schlich R, Sell H, Eckardt K, Eckel J. Inflammation and metabolic dysfunction: links to cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012; 302:H2148-65. [PMID: 22447947 DOI: 10.1152/ajpheart.00907.2011] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abdominal obesity is a major risk factor for cardiovascular disease, and recent studies highlight a key role of adipose tissue dysfunction, inflammation, and aberrant adipokine release in this process. An increased demand for lipid storage results in both hyperplasia and hypertrophy, finally leading to chronic inflammation, hypoxia, and a phenotypic change of the cellular components of adipose tissue, collectively leading to a substantially altered secretory output of adipose tissue. In this review we have assessed the adipo-vascular axis, and an overview of adipokines associated with cardiovascular disease is provided. This resulted in a first list of more than 30 adipokines. A deeper analysis only considered adipokines that have been reported to impact on inflammation and NF-κB activation in the vasculature. Out of these, the most prominent link to cardiovascular disease was found for leptin, TNF-α, adipocyte fatty acid-binding protein, interleukins, and several novel adipokines such as lipocalin-2 and pigment epithelium-derived factor. Future work will need to address the potential role of these molecules as biomarkers and/or drug targets.
Collapse
Affiliation(s)
- Annika Taube
- Paul Langerhans Group, German Diabetes Center, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
12
|
Savoia C, Sada L, Zezza L, Pucci L, Lauri FM, Befani A, Alonzo A, Volpe M. Vascular inflammation and endothelial dysfunction in experimental hypertension. Int J Hypertens 2011; 2011:281240. [PMID: 21915370 PMCID: PMC3170891 DOI: 10.4061/2011/281240] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/12/2011] [Indexed: 12/11/2022] Open
Abstract
Essential hypertension is characterized by increased peripheral vascular resistance to blood flow. The endothelium is a crucial regulator of vascular tone. Its function is impaired in patients with hypertension, with reduced vasodilation, increased vascular tone associated with a proinflammatory and prothrombotic state. Low-grade inflammation localized in vascular tissue is therefore recognized as an important contributor to the pathophysiology of hypertension, to the initiation and progression of atherosclerosis as well as to the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Carmine Savoia
- Cardiology Unit, Clinical and Molecular Medicine Department, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1037/1039, 00189 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Shenoy V, Qi Y, Katovich MJ, Raizada MK. ACE2, a promising therapeutic target for pulmonary hypertension. Curr Opin Pharmacol 2011; 11:150-5. [PMID: 21215698 PMCID: PMC3075309 DOI: 10.1016/j.coph.2010.12.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic lung disease with poor diagnosis and limited therapeutic options. The currently available therapies are ineffective in improving the quality of life and reducing mortality rates. There exists a clear unmet medical need to treat this disease, which necessitates the discovery of novel therapeutic targets/agents for safe and successful therapy. An altered renin–angiotensin system (RAS) has been implicated as a causative factor in the pathogenesis of PAH. Angiotensin II (Ang II), a key effector peptide of the RAS, can exert deleterious effects on the pulmonary vasculature resulting in vasoconstriction, proliferation, and inflammation, all of which contribute to PAH development. Recently, a new member of the RAS, angiotensin converting enzyme 2 (ACE2), was discovered. This enzyme functions as a negative regulator of the angiotensin system by metabolizing Ang II to a putative protective peptide, angiotensin-(1–7). ACE2 is abundantly expressed in the lung tissue and emerging evidence suggests a beneficial role for this enzyme against lung diseases. In this review, we focus on ACE2 in relation to pulmonary hypertension and provide proof of principle for its therapeutic role in PAH.
Collapse
Affiliation(s)
- Vinayak Shenoy
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
14
|
Mizushima T, Sasaki M, Ando T, Wada T, Tanaka M, Okamoto Y, Ebi M, Hirata Y, Murakami K, Mizoshita T, Shimura T, Kubota E, Ogasawara N, Tanida S, Kataoka H, Kamiya T, Alexander JS, Joh T. Blockage of angiotensin II type 1 receptor regulates TNF-alpha-induced MAdCAM-1 expression via inhibition of NF-kappaB translocation to the nucleus and ameliorates colitis. Am J Physiol Gastrointest Liver Physiol 2010; 298:G255-66. [PMID: 19940029 DOI: 10.1152/ajpgi.00264.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) is an important target in the treatment of inflammatory bowel disease (IBD). Recently, treatment of IBD with an antibody to alpha4beta7-integrin, a ligand for MAdCAM-1, has been an intense focus of research. Our aim was to clarify the mechanism by which MAdCAM-1 is regulated via angiotensin II type 1 receptor (AT1R), and to verify if AT1R might be a novel target for IBD treatment. The role of AT1R in the expression of MAdCAM-1 in SVEC (a murine high endothelial venule cell) and MJC-1 (a mouse colonic endothelial cell) was examined following cytokine stimulation. We further evaluated the effect of AT1R on the pathogenesis of immune-mediated colitis using AT1R-deficient (AT1R-/-) mice and a selective AT1R blocker. AT1R blocker significantly suppressed MAdCAM-1 expression induced by TNF-alpha, but did not inhibit phosphorylation of p38 MAPK or of IkappaB that modulate MAdCAM-1 expression. However, NF-kappaB translocation into the nucleus was inhibited by these treatments. In a murine colitis model induced by dextran sulfate sodium, the degree of colitis, judged by body weight loss, histological damage, and the disease activity index, was much milder in AT1R-/- than in wild-type mice. The expression of MAdCAM-1 was also significantly lower in AT1R-/- than in wild-type mice. These results suggest that AT1R regulates the expression of MAdCAM-1 under colonic inflammatory conditions through regulation of the translocation of NF-kappaB into the nucleus. Furthermore, inhibition of AT1R ameliorates colitis in a mouse colitis model. Therefore, AT1R might be one of new therapeutic target of IBD via regulation of MAdCAM-1.
Collapse
Affiliation(s)
- Takashi Mizushima
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Major TC, Olszewski B, Rosebury-Smith WS. A CCR2/CCR5 Antagonist Attenuates an Increase in Angiotensin II-Induced CD11b+ Monocytes from Atherogenic ApoE−/− Mice. Cardiovasc Drugs Ther 2008; 23:113-20. [DOI: 10.1007/s10557-008-6157-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Accepted: 11/17/2008] [Indexed: 12/18/2022]
|
16
|
Doverhag C, Keller M, Karlsson A, Hedtjarn M, Nilsson U, Kapeller E, Sarkozy G, Klimaschewski L, Humpel C, Hagberg H, Simbruner G, Gressens P, Savman K. Pharmacological and genetic inhibition of NADPH oxidase does not reduce brain damage in different models of perinatal brain injury in newborn mice. Neurobiol Dis 2008; 31:133-44. [DOI: 10.1016/j.nbd.2008.04.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 03/31/2008] [Accepted: 04/17/2008] [Indexed: 11/29/2022] Open
|
17
|
Marchesi C, Paradis P, Schiffrin EL. Role of the renin-angiotensin system in vascular inflammation. Trends Pharmacol Sci 2008; 29:367-74. [PMID: 18579222 DOI: 10.1016/j.tips.2008.05.003] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/09/2008] [Accepted: 05/12/2008] [Indexed: 02/07/2023]
Abstract
Angiotensin (Ang) II, the main effector of the renin-angiotensin system (RAS), is one of the major mediators of vascular remodeling in hypertension. Besides being a potent vasoactive peptide, Ang II exerts proinflammatory effects on the vasculature by inducing integrins, adhesion molecules, cytokines and growth and profibrotic mediators through activation of redox-sensitive pathways and transcription factors. Clinical findings suggest that inflammation participates in the mechanisms involved in the pathophysiology of hypertension and its complications. Antagonists of the RAS have been shown to exert cardiovascular protection, in part through their vascular anti-inflammatory effects. However, further studies are needed to better understand whether inflammatory biomarkers might be clinically useful for cardiovascular risk stratification and whether targeting inflammation pharmacologically will improve cardiovascular outcomes beyond blood pressure reduction. The present review addresses recent findings regarding the pathophysiology of vascular inflammation in hypertension, focusing specifically on the role of Ang II.
Collapse
Affiliation(s)
- Chiara Marchesi
- Lady Davis Institute for Medical Research and Department of Medicine, Sir Mortimer B Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
18
|
Savoia C, Schiffrin EL. Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci (Lond) 2007; 112:375-84. [PMID: 17324119 DOI: 10.1042/cs20060247] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
More than 80% of patients with type 2 diabetes mellitus develop hypertension, and approx. 20% of patients with hypertension develop diabetes. This combination of cardiovascular risk factors will account for a large proportion of cardiovascular morbidity and mortality. Lowering elevated blood pressure in diabetic hypertensive individuals decreases cardiovascular events. In patients with hypertension and diabetes, the pathophysiology of cardiovascular disease is multifactorial, but recent evidence points toward the presence of an important component dependent on a low-grade inflammatory process. Angiotensin II may be to a large degree responsible for triggering vascular inflammation by inducing oxidative stress, resulting in up-regulation of pro-inflammatory transcription factors such as NF-kappaB (nuclear factor kappaB). These, in turn, regulate the generation of inflammatory mediators that lead to endothelial dysfunction and vascular injury. Inflammatory markers (e.g. C-reactive protein, chemokines and adhesion molecules) are increased in patients with hypertension and metabolic disorders, and predict the development of cardiovascular disease. Lifestyle modification and pharmacological approaches (such as drugs that target the renin-angiotensin system) may reduce blood pressure and inflammation in patients with hypertension and metabolic disorders, which will reduce cardiovascular risk, development of diabetes and cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Carmine Savoia
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
19
|
De Ciuceis C, Amiri F, Iglarz M, Cohn JS, Touyz RM, Schiffrin EL. Synergistic vascular protective effects of combined low doses of PPARalpha and PPARgamma activators in angiotensin II-induced hypertension in rats. Br J Pharmacol 2007; 151:45-53. [PMID: 17351653 PMCID: PMC2012983 DOI: 10.1038/sj.bjp.0707215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Protective cardiovascular effects of peroxisome proliferator activated receptor (PPAR)alpha and PPARgamma activators have been demonstrated. If used as vasoprotective agents in high risk vascular patients rather than for their metabolic benefits, these agents could be associated with unwanted side effects. As a proof of concept to support the use of combined low doses of PPARalpha and PPARgamma as vascular protective agents in high risk vascular patients, we tested the hypothesis that combined low doses of PPARalpha (fenofibrate) and PPARgamma (rosiglitazone) activators would provide vascular protective benefits similar to full individual doses of these PPAR agonists. EXPERIMENTAL APPROACH Male Sprague-Dawley rats infused with Ang II (120 ng kg(-1) min(-1)) were treated with rosiglitazone (1 or 2 mg kg(-1) day(-1)) alone or concomitantly with fenofibrate (30 mg kg(-1) day(-1)) for 7 days. Thereafter, vessels was assessed on a pressurized myograph, while NAD(P)H oxidase activity was determined by lucigenin chemiluminescence. Inflammation was evaluated using ELISA for NFkappaB and Western blotting for adhesion molecules. KEY RESULTS Ang II-induced blood pressure increase, impaired acetylcholine-induced vasorelaxation, altered vascular structure, and enhanced vascular NAD(P)H oxidase activity and inflammation were significantly reduced by low dose rosiglitazone+fenofibrate. CONCLUSIONS AND IMPLICATIONS Combined low doses of PPARalpha and PPARgamma activators attenuated development of hypertension, corrected vascular structural abnormalities, improved endothelial function, oxidative stress, and vascular inflammation. These agents used in low-dose combination have synergistic vascular protective effects. The clinical effects of combined low-dose PPARalpha and PPARgamma activators as vascular protective therapy, potentially with reduced side-effects and drug interactions, should be assessed.
Collapse
Affiliation(s)
- C De Ciuceis
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital Montreal, Quebec, Canada
| | - F Amiri
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital Montreal, Quebec, Canada
| | - M Iglarz
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital Montreal, Quebec, Canada
| | - J S Cohn
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montreal, University of Montreal Montreal, Quebec, Canada
| | - R M Touyz
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa Ottawa, Ontario, Canada
| | - E L Schiffrin
- Vascular and Hypertension Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B Davis-Jewish General Hospital Montreal, Quebec, Canada
- Author for correspondence:
| |
Collapse
|
20
|
Zemse SM, Hilgers RHP, Webb RC. Interleukin-10 counteracts impaired endothelium-dependent relaxation induced by ANG II in murine aortic rings. Am J Physiol Heart Circ Physiol 2007; 292:H3103-8. [PMID: 17322422 DOI: 10.1152/ajpheart.00456.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ANG II stimulates the production of reactive oxygen species and activates proinflammatory cytokines leading to endothelial dysfunction. We hypothesized that the anti-inflammatory cytokine IL-10 counteracts the impairment in endothelium-dependent ACh relaxation caused by ANG II. Aortic rings of C57BL/6 mice were incubated in DMEM in the presence of vehicle (deionized H(2)O), ANG II (100 nmol/l), recombinant mouse IL-10 (300 ng/ml), or both ANG II and IL-10 for 22 h at 37 degrees C. After incubation, rings were mounted in a wire myograph to assess endothelium-dependent vasorelaxation to cumulative concentrations of ACh. Overnight exposure of aortic rings to ANG II resulted in blunted ACh-induced vasorelaxation compared with that shown in untreated rings (maximal response = 44 +/- 3% vs. 64 +/- 3%, respectively; P<0.05). IL-10 treatment significantly restored this impairment in relaxation (63 +/- 2%). In addition, the NADPH oxidase inhibitor apocynin restored the impairment in relaxation (maximal response = 76 +/- 3%). Western blotting showed increased gp91(phox) expression (a subunit of NADPH oxidase) in response to ANG II. Vessels treated with a combination of ANG II and IL-10 showed decreased expression of gp91(phox). Immunohistochemical analysis showed increased gp91(phox) expression in ANG II-treated vessels compared with those treated with combined ANG II and IL-10. We found that the anti-inflammatory cytokine IL-10 prevents impairment in endothelium-dependent vasorelaxation in response to long-term incubation with ANG II via decreasing NADPH oxidase expression.
Collapse
Affiliation(s)
- Saiprasad M Zemse
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| | | | | |
Collapse
|
21
|
Ko EA, Amiri F, Pandey NR, Javeshghani D, Leibovitz E, Touyz RM, Schiffrin EL. Resistance artery remodeling in deoxycorticosterone acetate-salt hypertension is dependent on vascular inflammation: evidence from m-CSF-deficient mice. Am J Physiol Heart Circ Physiol 2006; 292:H1789-95. [PMID: 17142347 DOI: 10.1152/ajpheart.01118.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deoxycorticosterone acetate (DOCA)-salt hypertension has an important endothelin-1 (ET-1)-dependent component. ET-1-induced vascular damage may be mediated in part by oxidative stress and vascular inflammation. Homozygous osteopetrotic (Op/Op) mice, deficient in macrophage colony-stimulating factor (m-CSF), exhibit reduced inflammation. We investigated in osteopetrotic (Op/Op) mice the effects of DOCA-salt hypertension on vascular structure, function, and oxidative stress, the latter as manifested by reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase activity. Mice were implanted with DOCA (200 mg/mouse, under 5% isofluorane anesthesia) and given saline for 14 days. Systolic blood pressure (mmHg) was significantly increased (146 +/- 2 and 138 +/- 1; P < 0.001 vs. basal 115 +/- 3 and 115 +/- 3, respectively) by DOCA-salt in wild-type (+/+) and heterozygous (Op/+) mice, but not in Op/Op mice (130 +/- 1 vs. basal 125 +/- 3). Norepinephrine contractile response was significantly enhanced, while acetylcholine endothelium-dependent vasodilation was significantly impaired in DOCA-salt-treated +/+ and Op/+ mice compared with control mice. No changes in norepinephrine-induced contraction and acetylcholine-induced relaxation were observed in DOCA-salt Op/Op mice. DOCA-salt +/+ and Op/+ mice had significantly increased mesenteric resistance artery media-to-lumen ratio and media cross-sectional area, neither of which were altered in Op/Op mice. Basal vascular superoxide production and NAD(P)H oxidase activity, vascular cell adhesion molecule-1 expression, and macrophage infiltration were significantly increased only in DOCA-salt +/+ mice. Thus m-CSF-deficient mice developed less endothelial dysfunction, vascular remodeling, and oxidative stress induced by DOCA-salt than +/+ and Op/+ mice, suggesting that inflammation may play a role in DOCA-salt hypertension, a model that results in part from effects of ET-1, which has proinflammatory actions.
Collapse
Affiliation(s)
- Eun A Ko
- 1Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW In this review we summarize the recent evidence that highlights the involvement of low-grade inflammation in the development and pathophysiology of hypertension. RECENT FINDINGS Essential hypertension is characterized by increased peripheral vascular resistance to blood flow, due in large part to vascular remodeling. Vascular changes in hypertension are associated with mechanical and humoral factors that modulate signaling events, resulting in abnormal function, media growth, extracellular matrix deposition and inflammation. Recent evidence suggests that inflammation is present in the vasculature in animal models of hypertension. Inflammatory markers, such as C-reactive protein, are associated with vascular lesions in humans, and are predictive of cardiovascular outcome. In animal and human studies, pro-inflammatory components of the renin-angiotensin-aldosterone system have been demonstrated in large conduit and small arteries in the kidney and heart. Peroxisome proliferator-activated receptor activators are drugs with metabolic properties that have been demonstrated to exert anti-inflammatory effects on the vasculature, and there is now evidence that these actions may be protective for blood vessels. SUMMARY Inflammatory processes are important participants in the pathophysiology of hypertension and cardiovascular disease. The identification of the mechanisms leading to the activation of inflammation should contribute to the development of specific therapeutic approaches to apply in hypertension and its complications.
Collapse
Affiliation(s)
- Carmine Savoia
- Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Hypertension is a major risk factor for vascular diseases such as stroke, myocardial infarction, and renal microvascular disease. The mechanism by which vascular disease develops is complex, and growing evidence suggests that an increase in reactive oxygen species during hypertension is a major contributing factor. NADPH oxidase, the primary source of reactive oxygen species in the cardiovascular system, is a strong candidate for the development of therapeutic agents to ameliorate hypertension and end-organ damage. RECENT FINDINGS Various scavengers and inhibitors of reactive oxygen species have been proposed for use in animal as well as human studies. While many of these agents are effective at lowering tissue reactive oxygen species levels, their specificity is a serious concern. Our laboratory has developed cell-permeant peptidic inhibitors targeting key interactions among the different NAD(P)H oxidase homologues. One of these inhibitors targeting nox2 and p47-phox interaction has proven useful in attenuating target neoplasia and hypertrophy. SUMMARY Strategies aimed at specifically inhibiting NAD(P)H oxidase have proven effective in attenuating cardiovascular oxidative stress. The development of new inhibitors targeting novel oxidase homologues appears to hold significant promise for clarifying the physiologic role of these homologues as well as for the development of new antioxidant therapies.
Collapse
Affiliation(s)
- M Eugenia Cifuentes
- Hypertension and Vascular Research Division, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | |
Collapse
|
24
|
Stewart JM, Glover JL, Medow MS. Increased plasma angiotensin II in postural tachycardia syndrome (POTS) is related to reduced blood flow and blood volume. Clin Sci (Lond) 2006; 110:255-63. [PMID: 16262605 PMCID: PMC4511483 DOI: 10.1042/cs20050254] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
POTS (postural tachycardia syndrome) is associated with low blood volume and reduced renin and aldosterone; however, the role of Ang (angiotensin) II has not been investigated. Previous studies have suggested that a subset of POTS patients with increased vasoconstriction related to decreased bioavailable NO (nitric oxide) have decreased blood volume. Ang II reduces bioavailable NO and is integral to the renin-Ang system. Thus, in the present study, we investigated the relationship between blood volume, Ang II, renin, aldosterone and peripheral blood flow in POTS patients. POTS was diagnosed by 70 degrees upright tilt, and supine calf blood flow, measured by venous occlusion plethysmography, was used to subgroup POTS patients. A total of 23 POTS patients were partitioned; ten with low blood flow, eight with normal flow and five with high flow. There were ten healthy volunteers. Blood volume was measured by dye dilution. All biochemical measurements were performed whilst supine. Blood volume was decreased in low-flow POTS (2.14 +/- 0.12 litres/m2) compared with controls (2.76 +/- 0.20 litres/m2), but not in the other subgroups. PRA (plasma renin activity) was decreased in low-flow POTS compared with controls (0.49 +/- 0.12 compared with 0.90 +/- 0.18 ng of Ang I.ml(-1).h(-1) respectively), whereas plasma Ang II was increased (89 +/- 20 compared with 32 +/- 4 ng/l), but not in the other subgroups. PRA correlated with aldosterone (r = +0.71) in all subjects. PRA correlated negatively with blood volume (r = -0.72) in normal- and high-flow POTS, but positively (r = +0.65) in low-flow POTS. PRA correlated positively with Ang II (r = +0.76) in normal- and high-flow POTS, but negatively (r = -0.83) in low-flow POTS. Blood volume was negatively correlated with Ang II (r = -0.66) in normal- and high-flow POTS and in five low-flow POTS patients. The remaining five low-flow POTS patients had reduced blood volume and increased Ang II which was not correlated with blood volume. The data suggest that plasma Ang II is increased in low-flow POTS patients with hypovolaemia, which may contribute to local blood flow dysregulation and reduced NO bioavailability.
Collapse
Affiliation(s)
- Julian M Stewart
- Center for Pediatric Hypotension, New York Medical College, Valhalla, NY 10595, USA.
| | | | | |
Collapse
|
25
|
De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced Vascular Remodeling, Endothelial Dysfunction, and Oxidative Stress in Resistance Arteries of Angiotensin II–Infused Macrophage Colony-Stimulating Factor–Deficient Mice. Arterioscler Thromb Vasc Biol 2005; 25:2106-13. [PMID: 16100037 DOI: 10.1161/01.atv.0000181743.28028.57] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Angiotensin (Ang) II-induced vascular damage may be partially mediated by reactive oxygen species generation and inflammation. Homozygous osteopetrotic mice (Op/Op), deficient in macrophage colony-stimulating factor (m-CSF), exhibit reduced inflammation. We therefore investigated Ang II effects on vascular structure, function, and oxidant stress generation in this model. METHODS AND RESULTS Adult Op/Op, heterozygous (Op/+), and wild type (+/+) mice underwent 14-day Ang II (1000 ng/kg per minute) or saline infusion. Blood pressure (BP) was assessed by radiotelemetry, mesenteric resistance artery vascular reactivity was studied on a pressurized myograph, and vascular superoxide and NAD(P)H oxidase activity by lucigenin chemiluminescence. Ang II increased BP in Op/+ and +/+ mice but not in Op/Op. Ang II-treated Op/+ and +/+ mice showed reduced acetylcholine-mediated relaxation (maximal relaxation, respectively, 64% and 67% versus 84% and 93% in respective controls; P<0.05), which was unaffected by L-NAME. Ang II-infused Op/Op mice arteries showed significantly less endothelial dysfunction than vehicle-infused counterparts (maximal relaxation 87% versus 96% in shams). Resistance arteries from Ang II-infused +/+ and Op/+ mice had significantly increased media-to-lumen ratio and media thickness, neither of which was altered in Op/Op mice compared with untreated littermates. Vascular media cross-sectional area, NAD(P)H oxidase activity and expression, and vascular cell adhesion molecule (VCAM)-1 expression were significantly increased by Ang II only in +/+ mice (P<0.05). CONCLUSIONS m-CSF-deficient mice (Op/Op) developed less endothelial dysfunction, vascular remodeling, and oxidative stress induced by Ang II than +/+ littermates, suggesting a critical role of m-CSF and proinflammatory mediators in Ang II-induced vascular injury.
Collapse
Affiliation(s)
- Carolina De Ciuceis
- CIHR Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Helkamaa T, Finckenberg P, Louhelainen M, Merasto S, Rauhala P, Lapatto R, Cheng ZJ, Reenilä I, Männistö P, Müller DN, Luft FC, Mervaala EM. Entacapone protects from angiotensin II-induced inflammation and renal injury. J Hypertens 2004; 21:2353-63. [PMID: 14654757 DOI: 10.1097/00004872-200312000-00025] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES AND DESIGN Angiotensin II (Ang II)-induced renal damage is associated with perivascular inflammation and increased oxidative stress. We tested the hypothesis whether entacapone, a catechol-O-methyltransferase (COMT) inhibitor exerting antioxidative and anti-inflammatory properties, protects against the Ang II-induced inflammatory response and end-organ damage. METHODS Samples from double-transgenic rats harbouring human renin and human angiotensinogen genes (dTGR) and normotensive Sprague-Dawley rats (SD) were assessed by light microscopy, immunohistochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR), and high pressure liquid chromatography. The effects of entacapone treatment for 3 weeks were examined in dTGR and SD. RESULTS Entacapone completely prevented cardiovascular mortality and decreased albuminuria by 85% in dTGR. Entacapone ameliorated Ang II-induced vascular and glomerular damage, leucocyte infiltration, and intercellular adhesion molecule-1 (ICAM-1) overexpression in the kidneys. Serum 8-isoprostane concentration, as well as renal nitrotyrosine and 8-hydroxydeoxyguanosine expressions, all markers of oxidative stress, were markedly increased in dTGR and normalized by entacapone. Entacapone also decreased p22phox mRNA expression in the kidney. COMT expression was increased by 500% locally in the renal vascular wall in dTGR; however, COMT activity in the whole kidney remained unchanged. Urinary dopamine excretion, a marker of renal dopaminergic tone, was decreased by 50% in untreated dTGR. Even though entacapone decreased renal COMT activity by 40%, the renal dopaminergic tone remained unchanged in entacapone-treated dTGR. CONCLUSION Our findings suggest that entacapone provides protection against Ang II-induced renal damage through antioxidative and anti-inflammatory mechanisms, rather than by COMT inhibition-induced changes in renal dopaminergic tone.
Collapse
Affiliation(s)
- Teemu Helkamaa
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fortuño A, Oliván S, Beloqui O, San José G, Moreno MU, Díez J, Zalba G. Association of increased phagocytic NADPH oxidase-dependent superoxide production with diminished nitric oxide generation in essential hypertension. J Hypertens 2004; 22:2169-75. [PMID: 15480102 DOI: 10.1097/00004872-200411000-00020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Oxidative stress has been implicated in the pathogenesis of hypertension and its complications through alterations in nitric oxide (NO) metabolism. This study was designed to investigate whether a relationship exists between phagocytic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent superoxide anion (*O2-) production and NO generation in patients with essential hypertension. METHODS Superoxide production was assayed by chemiluminescence under baseline and stimulated conditions on mononuclear cells obtained from hypertensives (n=51) and normotensives (n=43). NO production was evaluated by determining serum NO metabolites, nitrate plus nitrite (NOx). RESULTS Although there were no differences in baseline *O2- production between normotensives and hypertensives, the *O2- production in phorbol myristate acetate (PMA)-stimulated mononuclear cells was increased (P <0.05) in hypertensives compared with normotensives. The PMA-induced *O2- production was completely abolished by apocynin, a specific inhibitor of NADPH oxidase. Moreover, stimulation of *O2- production by angiotensin II and endothelin-1 was higher (P <0.05) in cells from hypertensives than in cells from normotensives. In addition, diminished (P <0.001) serum NOx was detected in hypertensives compared with normotensives. Interestingly, an inverse correlation (r=0.493, P <0.01) was found between *O2- production and NOx in hypertensives. CONCLUSIONS Generation of *O2- mainly dependent on NADPH oxidase is abnormally enhanced in stimulated mononuclear cells from hypertensives. It is suggested that this alteration could be involved in the diminished NO production observed in these patients.
Collapse
Affiliation(s)
- Ana Fortuño
- Area of Cardiovascular Pathophysiology, Center for Applied Medical Research, Department of Internal Medicine, University Clinic, School of Medicine, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|
28
|
Pignatelli P, Sanguigni V, Lenti L, Ferro D, Finocchi A, Rossi P, Violi F. gp91phox-dependent expression of platelet CD40 ligand. Circulation 2004; 110:1326-9. [PMID: 15249506 DOI: 10.1161/01.cir.0000134963.77201.55] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND CD40 ligand (CD40L) expression on platelets is mediated by agonists, but the underlying mechanism is still unclear. METHODS AND RESULTS CD40L expression was measured in platelets from healthy subjects both with and without the addition of antioxidants or a phospholipase A2 (PLA2) inhibitor and in platelets from 2 patients with an inherited deficiency of gp91phox. Immunoprecipitation analysis was also performed to determine whether normal platelets showed gp91phox expression. Unlike catalase and mannitol, superoxide dismutase inhibited agonist-induced platelet CD40L expression in healthy subjects. Immunoprecipitation analysis also showed that platelets from healthy subjects expressed gp91phox. In 2 male patients with inherited gp91phox deficiency, collagen-, thrombin-, and arachidonic acid-stimulated platelets showed an almost complete absence of superoxide anion (O(2)(-)) and CD40L expression. Incubation of platelets from healthy subjects with a PLA2 inhibitor almost completely prevented agonist-induced O(2)(-) and CD40L expression. CONCLUSIONS These data provide the first evidence that platelet CD40L expression occurs via arachidonic acid-mediated gp91phox activation.
Collapse
Affiliation(s)
- P Pignatelli
- Divisione IV Clinica Medica, Dipartimento di Medicina Sperimentale e Patologia, Università di Roma La Sapienza, Policlinico Umberto I, 00185, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Pauschinger M, Chandrasekharan K, Schultheiss HP. Myocardial remodeling in viral heart disease: possible interactions between inflammatory mediators and MMP-TIMP system. Heart Fail Rev 2004; 9:21-31. [PMID: 14739765 DOI: 10.1023/b:hrev.0000011391.81676.3c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Matrix metalloproteinases (MMP), a family of proteases, are involved in the degradation of extracellular matrix proteins and hence in the determination of interstitial architecture. In the heart, MMPs have been found to play a significant role in the development of myocardial remodeling and congestive heart failure. Tissue inhibitors of matrix metalloproteinases (TIMPs) represent a family of proteins which are known to regulate the expression and activity of MMPs. TIMPs are endogenous physiological inhibitors of MMPs and their concomitant downregulation in heart failure suggests the existence of a critical balance between MMPs and TIMPs in the normal maintenance of myocardial interstitial homeostasis. In addition, cytokines regulate expression of both MMPs and TIMPs besides eliciting a direct effect on myocardial cell function. Therefore, myocardial inflammation may also contribute to the development of cardiac remodeling along with other stimuli like mechanical stress and humoral factors. Viral myocarditis, a predisposing factor for dilated cardiomyopathy, is a condition in which extent of intramyocardial inflammation is thought to determine the progression of disease. Inflammatory events in the heart following viral infection are speculated to be responsible for the transition of myocarditis to dilated cardiomyopathy. In viral myocarditis and other inflammatory heart diseases, the inflammatory cells and their battery of cytokines may also alter the myocardial MMP-TIMP system and eventually lead to dilation of the heart and ventricular dysfunction. The objective of this review is to present an overall picture of the inflammatory phase in viral myocarditis and discuss the possible interactions between inflammation and myocardial MMP profiles which may lead to the evolution of dilated cardiomyopathy.
Collapse
Affiliation(s)
- Matthias Pauschinger
- Department of Cardiology, University Hospital Benjamin Franklin, Free University Berlin, Hindenburgdamm 30, D-12200 Berlin, Germany.
| | | | | |
Collapse
|
30
|
|