1
|
Chen J, Yu H, Tan X, Mok SWF, Xie Y, Wang Y, Jiang X, Macrae VE, Lan L, Fu X, Zhu D. PFKFB3-driven vascular smooth muscle cell glycolysis promotes vascular calcification via the altered FoxO3 and lactate production. FASEB J 2023; 37:e23182. [PMID: 37682013 DOI: 10.1096/fj.202300900r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
A link between increased glycolysis and vascular calcification has recently been reported, but it remains unclear how increased glycolysis contributes to vascular calcification. We therefore investigated the role of PFKFB3, a critical enzyme of glycolysis, in vascular calcification. We found that PFKFB3 expression was upregulated in calcified mouse VSMCs and arteries. We showed that expression of miR-26a-5p and miR-26b-5p in calcified mouse arteries was significantly decreased, and a negative correlation between Pfkfb3 mRNA expression and miR-26a-5p or miR-26b-5p was seen in these samples. Overexpression of miR-26a/b-5p significantly inhibited PFKFB3 expression in VSMCs. Intriguingly, pharmacological inhibition of PFKFB3 using PFK15 or knockdown of PFKFB3 ameliorated vascular calcification in vD3 -overloaded mice in vivo or attenuated high phosphate (Pi)-induced VSMC calcification in vitro. Consistently, knockdown of PFKFB3 significantly reduced glycolysis and osteogenic transdifferentiation of VSMCs, whereas overexpression of PFKFB3 in VSMCs induced the opposite effects. RNA-seq analysis and subsequent experiments revealed that silencing of PFKFB3 inhibited FoxO3 expression in VSMCs. Silencing of FoxO3 phenocopied the effects of PFKFB3 depletion on Ocn and Opg expression but not Alpl in VSMCs. Pyruvate or lactate supplementation, the product of glycolysis, reversed the PFKFB3 depletion-mediated effects on ALP activity and OPG protein expression in VSMCs. Our results reveal that blockade of PFKFB3-mediated glycolysis inhibits vascular calcification in vitro and in vivo. Mechanistically, we show that FoxO3 and lactate production are involved in PFKFB3-driven osteogenic transdifferentiation of VSMCs. PFKFB3 may be a promising therapeutic target for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Jiaxin Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hongjiao Yu
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| | - Xiao Tan
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Simon Wing Fai Mok
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Yuchen Xie
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yueheng Wang
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xueyan Jiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Vicky E Macrae
- Functional Genetics and Development, The Royal (Dick) School of Veterinary Studies and The Roslin Institute, University of Edinburgh, Midlothian, UK
| | - Lan Lan
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaodong Fu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Xu K, Saaoud F, Shao Y, Lu Y, Wu S, Zhao H, Chen K, Vazquez-Padron R, Jiang X, Wang H, Yang X. Early hyperlipidemia triggers metabolomic reprogramming with increased SAH, increased acetyl-CoA-cholesterol synthesis, and decreased glycolysis. Redox Biol 2023; 64:102771. [PMID: 37364513 PMCID: PMC10310484 DOI: 10.1016/j.redox.2023.102771] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
To identify metabolomic reprogramming in early hyperlipidemia, unbiased metabolome was screened in four tissues from ApoE-/- mice fed with high fat diet (HFD) for 3 weeks. 30, 122, 67, and 97 metabolites in the aorta, heart, liver, and plasma, respectively, were upregulated. 9 upregulated metabolites were uremic toxins, and 13 metabolites, including palmitate, promoted a trained immunity with increased syntheses of acetyl-CoA and cholesterol, increased S-adenosylhomocysteine (SAH) and hypomethylation and decreased glycolysis. The cross-omics analysis found upregulation of 11 metabolite synthetases in ApoE‾/‾ aorta, which promote ROS, cholesterol biosynthesis, and inflammation. Statistical correlation of 12 upregulated metabolites with 37 gene upregulations in ApoE‾/‾ aorta indicated 9 upregulated new metabolites to be proatherogenic. Antioxidant transcription factor NRF2-/- transcriptome analysis indicated that NRF2 suppresses trained immunity-metabolomic reprogramming. Our results have provided novel insights on metabolomic reprogramming in multiple tissues in early hyperlipidemia oriented toward three co-existed new types of trained immunity.
Collapse
Affiliation(s)
- Keman Xu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Fatma Saaoud
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Ying Shao
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Yifan Lu
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Sheng Wu
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Medical Education and Data Science, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Kaifu Chen
- Computational Biology Program, Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Roberto Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33125, USA
| | - Xiaohua Jiang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers of Cardiovascular Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA; Metabolic Disease Research, Thrombosis Research, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
3
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
4
|
ANGPTL4 stabilizes atherosclerotic plaques and modulates the phenotypic transition of vascular smooth muscle cells through KLF4 downregulation. Exp Mol Med 2023; 55:426-442. [PMID: 36782020 PMCID: PMC9981608 DOI: 10.1038/s12276-023-00937-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 02/15/2023] Open
Abstract
Atherosclerosis, the leading cause of death, is a vascular disease of chronic inflammation. We recently showed that angiopoietin-like 4 (ANGPTL4) promotes cardiac repair by suppressing pathological inflammation. Given the fundamental contribution of inflammation to atherosclerosis, we assessed the role of ANGPTL4 in the development of atherosclerosis and determined whether ANGPTL4 regulates atherosclerotic plaque stability. We injected ANGPTL4 protein twice a week into atherosclerotic Apoe-/- mice and analyzed the atherosclerotic lesion size, inflammation, and plaque stability. In atherosclerotic mice, ANGPTL4 reduced atherosclerotic plaque size and vascular inflammation. In the atherosclerotic lesions and fibrous caps, the number of α-SMA(+), SM22α(+), and SM-MHC(+) cells was higher, while the number of CD68(+) and Mac2(+) cells was lower in the ANGPTL4 group. Most importantly, the fibrous cap was significantly thicker in the ANGPTL4 group than in the control group. Smooth muscle cells (SMCs) isolated from atherosclerotic aortas showed significantly increased expression of CD68 and Krüppel-like factor 4 (KLF4), a modulator of the vascular SMC phenotype, along with downregulation of α-SMA, and these changes were attenuated by ANGPTL4 treatment. Furthermore, ANGPTL4 reduced TNFα-induced NADPH oxidase 1 (NOX1), a major source of reactive oxygen species, resulting in the attenuation of KLF4-mediated SMC phenotypic changes. We showed that acute myocardial infarction (AMI) patients with higher levels of ANGPTL4 had fewer vascular events than AMI patients with lower levels of ANGPTL4 (p < 0.05). Our results reveal that ANGPTL4 treatment inhibits atherogenesis and suggest that targeting vascular stability and inflammation may serve as a novel therapeutic strategy to prevent and treat atherosclerosis. Even more importantly, ANGPTL4 treatment inhibited the phenotypic changes of SMCs into macrophage-like cells by downregulating NOX1 activation of KLF4, leading to the formation of more stable plaques.
Collapse
|
5
|
Zhou Y, Jiang R, Jiang Y, Fu Y, Manafhan Y, Zhu J, Jia E. Exploration of N6-Methyladenosine Profiles of mRNAs and the Function of METTL3 in Atherosclerosis. Cells 2022; 11:cells11192980. [PMID: 36230944 PMCID: PMC9563305 DOI: 10.3390/cells11192980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives: N6-methylladenosine (m6A) modification has not been fully studied in atherosclerosis. The objectives of this study were to investigate differentially expressed m6A methylated peaks and mRNAs, along with the regulatory role of methyltransferase 3 (METTL3) in pathological processes of atherosclerosis. Methods: The pathological models of human coronary artery smooth muscle cells (HCASMCs) were induced in vitro. The differentially expressed mRNAs and m6A peaks were identified by RNA-Seq and meRIP-Seq. The potential mechanisms were analyzed via bioinformatic assays. Methylases expression was tested by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) in HCASMCs, and by immunohistochemical assays in 40 human coronary arteries. The knockdown of METTL3 expression in cells was performed by siRNA transfection, and cell proliferation and migration were detected after transfection. Results: We identified 5121 m6A peaks and 883 mRNAs that were expressed differentially in the pathological processes of HCASMCs. Bioinformatic analyses showed that the different m6A peaks were associated with cell growth and cell adhesion, and the 883 genes showed that the extracellular matrix and PI3K/AKT pathway regulate the processes of HCASMCs. Additionally, 10 hub genes and 351 mRNAs with differential methylation and expression levels were found. METTL3 was upregulated in the arteries with atherosclerotic lesions and in the proliferation and migration model of HCASMCs, and pathological processes of HCASMCs could be inhibited by the knockdown of METTL3. The mechanisms behind regulation of migration and proliferation reduced by siMETTL3 are concerned with protein synthesis and energy metabolism. Conclusions: These results revealed a new m6A epigenetic method to regulate the progress of atherosclerosis, which suggest approaches for potential therapeutic interventions that target METTL3 for the prevention and treatment of coronary artery diseases.
Collapse
Affiliation(s)
- Yaqing Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Rongli Jiang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Yali Jiang
- The Friendship Hospital of Ili Kazakh Autonomous Prefecture,Ili & Jiangsu Joint Institute of Health, Yining 835000, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
| | - Yerbolat Manafhan
- Department of Hypertension, Yili Friendship Hospital, Stalin Road 92, Yining 835000, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| | - Jinfu Zhu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing 210029, China
- Correspondence: (Y.M.); (J.Z.); (E.J.); Tel.: +86-13951623205 (E.J.); +86-13809049659 (J.Z.); +86-13899798859 (Y.M.)
| |
Collapse
|
6
|
von Ehr A, Bode C, Hilgendorf I. Macrophages in Atheromatous Plaque Developmental Stages. Front Cardiovasc Med 2022; 9:865367. [PMID: 35548412 PMCID: PMC9081876 DOI: 10.3389/fcvm.2022.865367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Atherosclerosis is the main pathomechanism leading to cardiovascular diseases such as myocardial infarction or stroke. There is consensus that atherosclerosis is not only a metabolic disorder but rather a chronic inflammatory disease influenced by various immune cells of the innate and adaptive immune system. Macrophages constitute the largest population of inflammatory cells in atherosclerotic lesions. They play a critical role in all stages of atherogenesis. The heterogenous macrophage population can be subdivided on the basis of their origins into resident, yolk sac and fetal liver monocyte-derived macrophages and postnatal monocyte-derived, recruited macrophages. Recent transcriptomic analyses revealed that the major macrophage populations in atherosclerosis include resident, inflammatory and foamy macrophages, representing a more functional classification. The aim of this review is to provide an overview of the trafficking, fate, and functional aspects of the different macrophage populations in the "life cycle" of an atheromatous plaque. Understanding the chronic inflammatory state in atherosclerotic lesions is an important basis for developing new therapeutic approaches to abolish lesion growth and promote plaque regression in addition to general cholesterol lowering.
Collapse
Affiliation(s)
- Alexander von Ehr
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Pothen L, Verdoy R, De Mulder D, Esfahani H, Farah C, Michel LYM, Dei Zotti F, Bearzatto B, Ambroise J, Bouzin C, Dessy C, Balligand JL. Sustained Downregulation of Vascular Smooth Muscle Acta2 After Transient Angiotensin II Infusion: A New Model of "Vascular Memory". Front Cardiovasc Med 2022; 9:854361. [PMID: 35360022 PMCID: PMC8964264 DOI: 10.3389/fcvm.2022.854361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Background Activation of the renin-angiotensin-aldosterone system (RAAS) plays a critical role in the development of hypertension. Published evidence on a putative "memory effect" of AngII on the vascular components is however scarce. Aim To evaluate the long-term effects of transient exposure to AngII on the mouse heart and the arterial tissue. Methods Blood pressure, cardiovascular tissue damage and remodeling, and systemic oxidative stress were evaluated in C57/B6/J mice at the end of a 2-week AngII infusion (AngII); 2 and 3 weeks after the interruption of a 2-week AngII treatment (AngII+2W and AngII +3W; so-called "memory" conditions) and control littermate (CTRL). RNAseq profiling of aortic tissues was used to identify potential key regulated genes accounting for legacy effects on the vascular phenotype. RNAseq results were validated by RT-qPCR and immunohistochemistry in a reproduction cohort of mice. Key findings were reproduced in a homotypic cell culture model. Results The 2 weeks AngII infusion induced cardiac hypertrophy and aortic damage that persisted beyond AngII interruption and despite blood pressure normalization, with a sustained vascular expression of ICAM1, infiltration by CD45+ cells, and cell proliferation associated with systemic oxidative stress. RNAseq profiling in aortic tissue identified robust Acta2 downregulation at transcript and protein levels (α-smooth muscle actin) that was maintained beyond interruption of AngII treatment. Among regulators of Acta2 expression, the transcription factor Myocardin (Myocd), exhibited a similar expression pattern. The sustained downregulation of Acta2 and Myocd was associated with an increase in H3K27me3 in nuclei of aortic sections from mice in the "memory" conditions. A sustained downregulation of ACTA2 and MYOCD was reproduced in the cultured human aortic vascular smooth muscle cells upon transient exposure to Ang II. Conclusion A transient exposure to Ang II produces prolonged vascular remodeling with robust ACTA2 downregulation, associated with epigenetic imprinting supporting a "memory" effect despite stimulus withdrawal.
Collapse
Affiliation(s)
- Lucie Pothen
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Roxane Verdoy
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Delphine De Mulder
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Hrag Esfahani
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Charlotte Farah
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lauriane Y. M. Michel
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Flavia Dei Zotti
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Bertrand Bearzatto
- Institute of Experimental and Clinical Research (IREC), Centre des Technologies Moléculaires Appliquées (CTMA), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jerome Ambroise
- Institute of Experimental and Clinical Research (IREC), Centre des Technologies Moléculaires Appliquées (CTMA), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Caroline Bouzin
- Institute of Experimental and Clinical Research (IREC), Imaging Platform (2IP), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Chantal Dessy
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Jean-Luc Balligand
- Institute of Experimental and Clinical Research (IREC), Pole of Pharmacology and Therapeutics (FATH), Cliniques Universitaires St-Luc and Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
8
|
Samara VA, Das S, Reddy MA, Tanwar VS, Stapleton K, Leung A, Abdollahi M, Ganguly R, Lanting L, Natarajan R. Angiotensin II-Induced Long Non-Coding RNA Alivec Regulates Chondrogenesis in Vascular Smooth Muscle Cells. Cells 2021; 10:2696. [PMID: 34685676 PMCID: PMC8535098 DOI: 10.3390/cells10102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play key roles in Angiotensin II (AngII) signaling but their role in chondrogenic transformation of vascular smooth muscle cells (VSMCs) is unknown. We describe a novel AngII-induced lncRNA Alivec (Angiotensin II-induced lncRNA in VSMCs eliciting chondrogenic phenotype) implicated in VSMC chondrogenesis. In rat VSMCs, Alivec and the nearby gene Acan, a chondrogenic marker, were induced by growth factors AngII and PDGF and the inflammatory cytokine TNF-α. AngII co-regulated Alivec and Acan through the activation of AngII type1 receptor signaling and Sox9, a master transcriptional regulator of chondrogenesis. Alivec knockdown with GapmeR antisense-oligonucleotides attenuated the expression of AngII-induced chondrogenic marker genes, including Acan, and inhibited the chondrogenic phenotype of VSMCs. Conversely, Alivec overexpression upregulated these genes and promoted chondrogenic transformation. RNA-pulldown coupled to mass-spectrometry identified Tropomyosin-3-alpha and hnRNPA2B1 proteins as Alivec-binding proteins in VSMCs. Furthermore, male rats with AngII-driven hypertension showed increased aortic expression of Alivec and Acan. A putative human ortholog ALIVEC, was induced by AngII in human VSMCs, and this locus was found to harbor the quantitative trait loci affecting blood pressure. Together, these findings suggest that AngII-regulated lncRNA Alivec functions, at least in part, to mediate the AngII-induced chondrogenic transformation of VSMCs implicated in vascular dysfunction and hypertension.
Collapse
MESH Headings
- Aggrecans/genetics
- Aggrecans/metabolism
- Angiotensin II/pharmacology
- Animals
- Aorta/metabolism
- Blood Pressure/drug effects
- Blood Pressure/genetics
- Chondrogenesis/drug effects
- Chondrogenesis/genetics
- Enhancer Elements, Genetic/genetics
- Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism
- Humans
- Male
- Muscle Contraction/genetics
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Osteogenesis/drug effects
- Osteogenesis/genetics
- Phenotype
- Quantitative Trait Loci/genetics
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- SOX9 Transcription Factor/metabolism
- Tropomyosin/metabolism
- Up-Regulation/drug effects
- Up-Regulation/genetics
- src-Family Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Vishnu Amaram Samara
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Sadhan Das
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Marpadga A. Reddy
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Vinay Singh Tanwar
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Kenneth Stapleton
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Amy Leung
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Maryam Abdollahi
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Rituparna Ganguly
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Linda Lanting
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolism Research Institute, Duarte, CA 91010, USA; (V.A.S.); (S.D.); (M.A.R.); (V.S.T.); (K.S.); (A.L.); (M.A.); (R.G.); (L.L.)
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
9
|
Zingg JM, Vlad A, Ricciarelli R. Oxidized LDLs as Signaling Molecules. Antioxidants (Basel) 2021; 10:antiox10081184. [PMID: 34439432 PMCID: PMC8389018 DOI: 10.3390/antiox10081184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Levels of oxidized low-density lipoproteins (oxLDLs) are usually low in vivo but can increase whenever the balance between formation and scavenging of free radicals is impaired. Under normal conditions, uptake and degradation represent the physiological cellular response to oxLDL exposure. The uptake of oxLDLs is mediated by cell surface scavenger receptors that may also act as signaling molecules. Under conditions of atherosclerosis, monocytes/macrophages and vascular smooth muscle cells highly exposed to oxLDLs tend to convert to foam cells due to the intracellular accumulation of lipids. Moreover, the atherogenic process is accelerated by the increased expression of the scavenger receptors CD36, SR-BI, LOX-1, and SRA in response to high levels of oxLDL and oxidized lipids. In some respects, the effects of oxLDLs, involving cell proliferation, inflammation, apoptosis, adhesion, migration, senescence, and gene expression, can be seen as an adaptive response to the rise of free radicals in the vascular system. Unlike highly reactive radicals, circulating oxLDLs may signal to cells at more distant sites and possibly trigger a systemic antioxidant defense, thus elevating the role of oxLDLs to that of signaling molecules with physiological relevance.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| | - Adelina Vlad
- Physiology Department, “Carol Davila” UMPh, 020021 Bucharest, Romania;
| | - Roberta Ricciarelli
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence: (J.-M.Z.); (R.R.); Tel.: +1-(305)-2433531 (J.-M.Z.); +39-010-3538831 (R.R.)
| |
Collapse
|
10
|
Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol 2020; 319:H613-H631. [PMID: 32762559 DOI: 10.1152/ajpheart.00220.2020] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the fundamental component of the medial layer of arteries and are essential for arterial physiology and pathology. It is becoming increasingly clear that VSMCs can alter their metabolism to fulfill the bioenergetic and biosynthetic requirements. During vascular injury, VSMCs switch from a quiescent "contractile" phenotype to a highly migratory and proliferative "synthetic" phenotype. Recent studies have found that the phenotype switching of VSMCs is driven by a metabolic switch. Metabolic pathways, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, have distinct, indispensable roles in normal and dysfunctional vasculature. VSMCs metabolism is also related to the metabolism of endothelial cells. In the present review, we present a brief overview of VSMCs metabolism and how it regulates the progression of several vascular diseases, including atherosclerosis, systemic hypertension, diabetes, pulmonary hypertension, vascular calcification, and aneurysms, and the effect of the risk factors for vascular disease (aging, cigarette smoking, and excessive alcohol drinking) on VSMC metabolism to clarify the role of VSMCs metabolism in the key pathological process.
Collapse
Affiliation(s)
- Jia Shi
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anying Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Allahverdian S, Chaabane C, Boukais K, Francis GA, Bochaton-Piallat ML. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 2019; 114:540-550. [PMID: 29385543 DOI: 10.1093/cvr/cvy022] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Current knowledge suggests that intimal smooth muscle cells (SMCs) in native atherosclerotic plaque derive mainly from the medial arterial layer. During this process, SMCs undergo complex structural and functional changes giving rise to a broad spectrum of phenotypes. Classically, intimal SMCs are described as dedifferentiated/synthetic SMCs, a phenotype characterized by reduced expression of contractile proteins. Intimal SMCs are considered to have a beneficial role by contributing to the fibrous cap and thereby stabilizing atherosclerotic plaque. However, intimal SMCs can lose their properties to such an extent that they become hard to identify, contribute significantly to the foam cell population, and acquire inflammatory-like cell features. This review highlights mechanisms of SMC plasticity in different stages of native atherosclerotic plaque formation, their potential for monoclonal or oligoclonal expansion, as well as recent findings demonstrating the underestimated deleterious role of SMCs in this disease.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| | - Kamel Boukais
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| |
Collapse
|
12
|
Zhang YN, Xie BD, Sun L, Chen W, Jiang SL, Liu W, Bian F, Tian H, Li RK. Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145. J Cell Mol Med 2016; 20:1049-61. [PMID: 26992033 PMCID: PMC4882986 DOI: 10.1111/jcmm.12825] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/04/2016] [Indexed: 12/22/2022] Open
Abstract
Switching of vascular smooth muscle cells (VSMCs) from a contractile phenotype to an adverse proliferative phenotype is a hallmark of atherosclerosis or vascular restenosis. However, the genetic modulators responsible for this switch have not been fully elucidated in humans nor have they been correlated with clinical abnormalities. This study investigated genetic mechanisms involved in phenotypic switching of VSMCs at non-defect areas of the aorta in patients with atherosclerosis. Aortic wall samples were obtained from patients with (N = 53) and without (N = 27) atherosclerosis undergoing cardiovascular surgery. Vascular smooth muscle cell cultures were generated, and expression of microRNA-145 (miR-145), its target gene Kruppel-Like Factor 5 (KLF5) and Myocardin (MYOCD, a smooth muscle-specific transcriptional coactivator) were analysed using RT-qPCR, along with expression of relevant proteins. Vascular smooth muscle cells were transduced with miR-145 inhibitor and mimic to determine the effect of miR-145 expression on VSMC proliferation. miR-145 expression decreased while KLF5 expression increased in atherosclerotic aortas. Atherosclerotic samples and VSMCs had decreased expression of contractile markers calponin and alpha smooth muscle actin (α-SMA) and MYOCD. miR-145 inhibitor-transduced VSMCs from non-atherosclerotic patients showed decreased expression of calponin and α-SMA and increased proliferation compared with non-transduced controls, and these levels were close to those of atherosclerotic patients. miR-145 mimic-transduced VSMCs from atherosclerotic patients showed increased expression of calponin and α-SMA and decreased proliferation compared with non-transduced controls, and these levels were close to those found in non-atherosclerotic patients. These data demonstrate that miR-145 modulates the phenotypic switch of VSMCs from a contractile to a proliferative state via KLF5 and MYOCD in atherosclerosis.
Collapse
Affiliation(s)
- Yu-Nan Zhang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Bao-Dong Xie
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Lu Sun
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Wei Chen
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Shu-Lin Jiang
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Wei Liu
- Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Fei Bian
- Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Hai Tian
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratories of Myocardial Ischemia Mechanism and Treatment, Harbin Medical University, Ministry of Education, Harbin, China
| | - Ren-Ke Li
- Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Keire PA, Bressler SL, Mulvihill ER, Starcher BC, Kang I, Wight TN. Inhibition of versican expression by siRNA facilitates tropoelastin synthesis and elastic fiber formation by human SK-LMS-1 leiomyosarcoma smooth muscle cells in vitro and in vivo. Matrix Biol 2015; 50:67-81. [PMID: 26723257 DOI: 10.1016/j.matbio.2015.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 12/23/2022]
Abstract
Versican is an extracellular matrix (ECM) molecule that interacts with other ECM components to influence ECM organization, stability, composition, and cell behavior. Versican is known to increase in a number of cancers, but little is known about how versican influences the amount and organization of the ECM components in the tumor microenvironment. In the present study, we modulated versican expression using siRNAs in the human leiomyosarcoma (LMS) smooth muscle cell line SK-LMS-1, and observed the formation of elastin and elastic fibers in vitro and also in vivo in a nude mouse tumor model. Constitutive siRNA-directed knockdown of versican in LMS cells resulted in increased levels of elastin, as shown by immunohistochemical staining of the cells in vitro, and by mRNA and protein analyses. Moreover, versican siRNA LMS cells, when injected into nude mice, generated smaller tumors that had significantly greater immunohistochemical and histochemical staining for elastin when compared to control tumors. Additionally, microarray analyses were used to determine the influence of versican isoform modulation on gene expression profiles, and to identify genes that influence and relate to the process of elastogenesis. cDNA microarray analysis and TaqMan low density array validation identified previously unreported genes associated with downregulation of versican and increased elastogenesis. These results highlight an important role for the proteoglycan versican in regulating the expression and assembly of elastin and the phenotype of LMS cells.
Collapse
Affiliation(s)
- Paul A Keire
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Steven L Bressler
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Eileen R Mulvihill
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Barry C Starcher
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
14
|
Jacob SS, Hassan M, Yacoub MH. Utility of mass spectrometry for the diagnosis of the unstable coronary plaque. Glob Cardiol Sci Pract 2015; 2015:25. [PMID: 26535224 PMCID: PMC4614337 DOI: 10.5339/gcsp.2015.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/30/2015] [Indexed: 11/04/2022] Open
Abstract
Mass spectrometry is a powerful technique that is used to identify unknown compounds, to quantify known materials, and to elucidate the structure and chemical properties of molecules. Recent advances in the accuracy and speed of the technology have allowed data acquisition for the global analysis of lipids from complex samples such as blood plasma or serum. Here, mass spectrometry as a tool is described, its limitations explained and its application to biomarker discovery in coronary artery disease is considered. In particular an application of mass spectrometry for the discovery of lipid biomarkers that may indicate plaque morphology that could lead to myocardial infarction is elucidated.
Collapse
Affiliation(s)
| | | | - Magdi H Yacoub
- Qatar Cardiovascular Research Centre, Doha, Qatar ; Imperial College, London, United Kingdom
| |
Collapse
|
15
|
Role of Girdin in intimal hyperplasia in vein grafts and efficacy of atelocollagen-mediated application of small interfering RNA for vein graft failure. J Vasc Surg 2014; 60:479-489.e5. [DOI: 10.1016/j.jvs.2013.06.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/19/2013] [Accepted: 06/29/2013] [Indexed: 12/14/2022]
|
16
|
Cai X. Regulation of smooth muscle cells in development and vascular disease: current therapeutic strategies. Expert Rev Cardiovasc Ther 2014; 4:789-800. [PMID: 17173496 DOI: 10.1586/14779072.4.6.789] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle cells (SMCs) exhibit extensive phenotypic diversity and rapid growth during embryonic development, but maintain a quiescent, differentiated state in adult. The pathogenesis of vascular proliferative diseases involves the proliferation and migration of medial vascular SMCs into the vessel intima, possibly reinstating their embryonic gene expression programs. Multiple mitogenic stimuli induce vascular SMC proliferation through cell cycle progression. Therapeutic strategies targeting cell cycle progression and mitogenic stimuli have been developed and evaluated in animal models of atherosclerosis and vascular injury, and several clinical studies. Recent discoveries on the recruitment of vascular progenitor cells to the sites of vascular injury suggest new therapeutic potentials of progenitor cell-based therapies to accelerate re-endothelialization and prevent engraftment of SMC-lineage progenitor cells. Owing to the complex and multifactorial nature of SMC regulation, combinatorial antiproliferative approaches are likely to be used in the future in order to achieve maximal efficacy and reduce toxicity.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cellular Senescence
- Clinical Trials as Topic
- Disease Progression
- Drug Delivery Systems
- Gene Expression
- Genetic Therapy
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Stents
- Vascular Diseases/drug therapy
- Vascular Diseases/genetics
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
Collapse
Affiliation(s)
- Xinjiang Cai
- Duke University Medical Center, Departments of Medicine (Cardiology) & Cell Biology, Durham, North Carolina 27710, USA.
| |
Collapse
|
17
|
Affiliation(s)
- Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| |
Collapse
|
18
|
Zhou S, Fang X, Xin H, Li W, Qiu H, Guan S. Osteoprotegerin inhibits calcification of vascular smooth muscle cell via down regulation of the Notch1-RBP-Jκ/Msx2 signaling pathway. PLoS One 2013; 8:e68987. [PMID: 23874840 PMCID: PMC3711585 DOI: 10.1371/journal.pone.0068987] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/03/2013] [Indexed: 01/06/2023] Open
Abstract
Objective Vascular calcification is a common pathobiological process which occurs among
the elder population and in patients with diabetes and chronic kidney
disease. Osteoprotegerin, a secreted glycoprotein that regulates bone mass,
has recently emerged as an important regulator of the development of
vascular calcification. However, the mechanism is not fully understood. The
purpose of this study is to explore novel signaling mechanisms of
osteoprotegerin in the osteoblastic differentiation in rat aortic vascular
smooth muscle cells (VSMCs). Methods and Results VSMCs were isolated from thoracic aorta of Sprague Dawley rats. Osteoblastic
differentiation of VSMCs was induced by an osteogenic medium. We confirmed
by Von Kossa staining and direct cellular calcium measurement that
mineralization was significantly increased in VSMCs cultured in osteogenic
medium; consistent with an enhanced alkaline phosphatase activity. This
osteoblastic differentiation in VSMCs was significantly reduced by the
addition of osteoprotegerin in a dose responsive manner. Moreover, we
identified, by real-time qPCR and western blotting, that expression of
Notch1 and RBP-Jκ were significantly up-regulated in VSMCs cultured in
osteogenic medium at both the mRNA and protein levels, these effects were
dose-dependently abolished by the treatment of osteoprotegerin. Furthermore,
we identified that Msx2, a downstream target of the Notch1/RBP-Jκ signaling,
was markedly down-regulated by the treatment of osteoprotegerin. Conclusion Osteoprotegerin inhibits vascular calcification through the down regulation
of the Notch1-RBP-Jκ signaling pathway.
Collapse
Affiliation(s)
- Shaoqiong Zhou
- Department of Gerontology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Xing Fang
- Department of Gerontology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Huaping Xin
- Department of Gerontology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Gerontology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
| | - Hongyu Qiu
- Department of Cell Biology and Molecular Medicine, New Jersey Medical
School, University of Medicine and Dentistry of New Jersey (UMDNJ), Newark, New
Jersey, United States of America
- * E-mail:
(SG); (HQ)
| | - Siming Guan
- Department of Gerontology, Union Hospital, Tongji Medical College,
Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
(SG); (HQ)
| |
Collapse
|
19
|
El Akoum S, Cloutier I, Tanguay JF. Vascular smooth muscle cell alterations triggered by mice adipocytes: role of high-fat diet. J Atheroscler Thromb 2012; 19:1128-41. [PMID: 23047600 DOI: 10.5551/jat.13482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Inherent mechanisms leading to vascular smooth muscle cells (VSMC) alterations in obesitylinked type 2 diabetes (T2D) situation remain to be clarified. This study evaluates the impact of supernatant of adipocytes extracted from mice fed high-fat-diets (HFD) on the proliferation and apoptosis of VSMC. METHODS Adipocytes were extracted from visceral white fat pads of male and female C57Bl6 mice showing different stages of metabolic alterations after 20 weeks of vegetal or animal HFD feeding. These cells were stimulated or not with insulin or glucose to condition VSMC media. After 24h of stimulation with adipocyte supernatants (AdS), VSMC proliferation and sustainability were assessed in the absence and presence of AdS. CD36 and insulin receptor mRNA levels were also evaluated. RESULTS Proliferation and viability of VSMC were significantly modulated by the nature of the AdS used and the gender of mice from which adipocytes have been extracted. The most extensive effects on VSMC were triggered by adipocytes from males fed animal HFD and females fed vegetal HFD. These effects were concurrent with increased leptin concentration and decreased adiponectin levels in AdS. In addition, adipocytes of HFD-fed mice increased caspase-3 activity and apoptosis in VSMC. Significant up-regulation of CD36 mRNA was also found in these cells. CONCLUSION Adipocytes of HFD-fed mice induce VSMC alterations. These changes involved mouse gender, most probably correlated to the diet-induced adipocyte secretion profile. Greater sensitivity to AdS effects in VSMC raises concerns about the more frequent cardiovascular events associated with obesity in the presence of T2D, which impairs adipocyte activity.
Collapse
|
20
|
Perrotta I, Sciangula A, Perrotta E, Donato G, Cassese M. Ultrastructural analysis and electron microscopic localization of Nox4 in healthy and atherosclerotic human aorta. Ultrastruct Pathol 2010; 35:1-6. [PMID: 20925598 DOI: 10.3109/01913123.2010.510261] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During diverse pathological conditions, vascular smooth muscle cells (SMCs) characteristically change from a quiescent, contractile phenotype to a proliferative, synthetic state, migrate toward the intima, and synthesize excess extracellular matrix. Although reactive oxygen species (ROS) are generally considered to be toxic to cells, recent evidence suggests that they may also modulate multiple signaling pathways. The vascular system contains several sources of ROS, among which NADPH oxidases (NOXes) have been shown to take an important part in the regulation of cell function, with effects on growth and proliferation. In the present study, the authors investigate the ultrastructural features of SMCs and the expression profile of Nox4 in healthy and atherosclerotic human aorta to explore the possibility of a relationship between Nox4 and SMCs differentiation state. The data extend at the level of immunoelectron microscopy previous observations, demonstrating for the first time the precise distribution and the differential expression of Nox4 in the morphologically distinct SMC types of healthy and diseased human aorta.
Collapse
Affiliation(s)
- Ida Perrotta
- Department of Ecology, University of Calabria, Arcavacata di Rende, Cosenza, Italy.
| | | | | | | | | |
Collapse
|
21
|
Weakley SM, Jiang J, Kougias P, Lin PH, Yao Q, Brunicardi FC, Gibbs RA, Chen C. Role of somatic mutations in vascular disease formation. Expert Rev Mol Diagn 2010; 10:173-85. [PMID: 20214536 DOI: 10.1586/erm.10.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Coronary artery disease, cerebrovascular disease, pulmonary artery hypertension and Alzheimer's disease all lead to substantial morbidity and mortality, and we currently lack effective treatments for these vascular diseases. Since the discovery, decades ago, that atherosclerotic lesions display clonal growth, atherosclerosis and other vascular diseases have been postulated to be neoplastic processes, arising through a series of critical somatic mutations. There is conflicting evidence supporting this but studies of DNA damage and mutagenesis, both genomic and mitochondrial, in atherosclerotic and vascular lesions, have yielded evidence that somatic mutations are involved in atherogenesis and vascular disease development. The roles of mitochondrial DNA damage, oxidative stress and signaling by members of the TGF-beta receptor family are implicated. With the increasing convenience and cost-effectiveness of genome sequencing, it is feasible to continue to seek specific genetic targets in the pathogenesis of these devastating diseases, with the hope of developing personalized genomic medicine in the future.
Collapse
Affiliation(s)
- Sarah M Weakley
- Michael E DeBakey Department of Surgery, Molecular Surgeon Research Center, Baylor College of Medicine, One Baylor Plaza, Mail Stop: BCM391, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Curci JA. Digging in the "soil" of the aorta to understand the growth of abdominal aortic aneurysms. Vascular 2009; 17 Suppl 1:S21-9. [PMID: 19426606 DOI: 10.2310/6670.2008.00085] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extensive studies into the etiology of aortic aneurysm disease have focused on the characteristic and unique inflammatory infiltration and elaboration of products of inflammatory cells which can result in matrix degradation. While these changes clearly have a significant impact on the development of aneurysm disease, little attention has been paid to the changes in the parenchymal cells of the aorta. Under normal conditions, the vascular smooth muscle cells which populate the aortic wall are responsible for the maintenance of the matrix components of the media, particularly the elastic fibers. As our understanding of the mechanisms of aneurysm formation and normal arterial anatomy become more sophisticated, it is clear that specific changes to these smooth muscle cells make them active participants in the medial matrix destruction characteristic of aneurysm disease. As others have described for intimal arterial disease, this is the "soil" from which aortic aneurysms grow.
Collapse
Affiliation(s)
- John A Curci
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Common signatures for gene expression in postnatal patients with patent arterial ducts and stented arteries. Cardiol Young 2009; 19:352-9. [PMID: 19538825 DOI: 10.1017/s1047951109004260] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The detailed molecular processes associated with postnatal remodelling of blood vessels are presently not understood. To characterize the response of the patients undergoing stenting of the patent arterial duct, we harvested samples of vascular tissue during surgical repair. Histological analysis of explanted ducts confirmed the patency of the ducts immediately after birth. As expected, a previously unstented duct that was examined 7 months after birth had become closed and ligamentous. Whole genome expression profiling of these samples showed that a large fraction, over 10%, of the gene sequences examined were expressed differentially between the samples taken from patients with open as opposed to the ligamentous duct. Interestingly, in 2 patients in whom closure was prevented by insertion of stents, one showed an expression profile that was similar to that of the patient initially having an unstented open duct, whereas the other was more closely related to the profile of the patient with a duct that had become ligamentous. Moreover, in 2 specimens obtained from patients with stented pulmonary arteries, a large fraction of the genes that were differentially expressed were identical to the pattern seen in the samples from the patients with open ducts. The gene regulation appeared to be independent of the nature of the respective malformations, and the site of implantation of the stents. These findings suggest that a set of differentially expressed genes are indicative for a transcriptional programme in neonatal remodelling of the arterial duct, which may also take place in patients in whom ductal closure is prevented by stents, or in those with stented pulmonary arteries. The differentially expressed genes included a significant number of extracellular matrix synthetic genes, and could therefore be predictive for vascular remodelling and neointimal formation.
Collapse
|
24
|
Minta JO, Yun JJ, Kabiawu O, Jones J. mRNA differential display identification of vascular smooth muscle early response genes regulated by PDGF. Mol Cell Biochem 2009; 281:63-75. [PMID: 16328958 DOI: 10.1007/s11010-006-0524-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 06/29/2005] [Indexed: 11/28/2022]
Abstract
The modulation of vascular smooth muscle cells (VSMCs) from the quiescent phenotype to the proliferative and migratory phenotype is a critical event in the pathogenesis of atherosclerosis. To-date several growth factors, including platelet-derived growth factor, PDGF, have been shown to induce VSMC proliferation and migration. To further understand the mechanism of PDGF-induced VSMC activation, quiescent human coronary artery SMC were treated with PDGF, and the genes that displayed transcriptional changes within 3 and 8 h were identified using differential display RT-PCR, real-time PCR, nucleotide sequencing and bioinformatics. Eleven genes that were highly upregulated or down-regulated at 3 and/or 8 h by PDGF, designated growth-factor regulated VSMC genes (GRSG1-11), were analyzed. GRSG5 and GRSG9-1 were identified as cortactin and cytochrome c oxidase subunit II, respectively. The remaining nine GRSGs were novel. GRSG3, 4, 5 and 9-2 showed wide tissue distribution whereas GRSG10-1, 10-2, and 11 were tissue specific. Cortactin was localized by immunohistochemical staining to the neointima and fibrous cap of human coronary artery atherosclerotic plaques. Domain analysis of open reading frames suggest that the novel GRSGs may participate in signaling, metabolic, translational or migrational processes during PDGF-induced VSMC activation.
Collapse
Affiliation(s)
- Joe O Minta
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada M5S 1A8.
| | | | | | | |
Collapse
|
25
|
Morrow D, Guha S, Sweeney C, Birney Y, Walshe T, O’Brien C, Walls D, Redmond EM, Cahill PA. Notch and Vascular Smooth Muscle Cell Phenotype. Circ Res 2008; 103:1370-82. [PMID: 19059839 DOI: 10.1161/circresaha.108.187534] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Notch signaling pathway is critical for cell fate determination during embryonic development, including many aspects of vascular development. An emerging paradigm suggests that the Notch gene regulatory network is often recapitulated in the context of phenotypic modulation of vascular smooth muscle cells (VSMC), vascular remodeling, and repair in adult vascular disease following injury. Notch ligand receptor interactions lead to cleavage of receptor, translocation of the intracellular receptor (Notch IC), activation of transcriptional CBF-1/RBP-Jκ–dependent and –independent pathways, and transduction of downstream Notch target gene expression. Hereditary mutations of Notch components are associated with congenital defects of the cardiovascular system in humans such as Alagille syndrome and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Recent loss- or gain-of-function studies have provided insight into novel Notch-mediated CBF-1/RBP-Jκ–dependent and –independent signaling and cross-regulation to other molecules that may play a critical role in VSMC phenotypic switching. Notch receptors are critical for controlling VSMC differentiation and dictating the phenotypic response following vascular injury through interaction with a triad of transcription factors that act synergistically to regulate VSMC differentiation. This review focuses on the role of Notch receptor ligand interactions in dictating VSMC behavior and phenotype and presents recent findings on the molecular interactions between the Notch components and VSMC-specific genes to further understand the function of Notch signaling in vascular tissue and disease.
Collapse
Affiliation(s)
- David Morrow
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| | - Shaunta Guha
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| | - Catherine Sweeney
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| | - Yvonne Birney
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| | - Tony Walshe
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| | - Colm O’Brien
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| | - Dermot Walls
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| | - Eileen M. Redmond
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| | - Paul A. Cahill
- From the Vascular Health Research Centre (D.M., S.G., C.S., Y.B., T.W., P.A.C.), Faculty of Science and Health; and School of Biotechnology (D.W.), National Centre for Sensor Research, Dublin City University, Ireland; Department of Surgery (D.M., E.M.R.), University of Rochester, NY; Schepens Eye Research Institute (T.W.), Harvard Medical School, Boston, Mass; and Mater Misericordiae Hospital (C.O.), Institute of Ophthalmology, The Conway Institute of Biomolecular and Biomedical Research, Dublin,
| |
Collapse
|
26
|
Panchenko MP, Silva N, Stone JR. Up-regulation of a hydrogen peroxide-responsive pre-mRNA binding protein in atherosclerosis and intimal hyperplasia. Cardiovasc Pathol 2008; 18:167-72. [PMID: 18508286 DOI: 10.1016/j.carpath.2008.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/28/2008] [Accepted: 03/16/2008] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Multiple lines of investigation have implicated hydrogen peroxide (H(2)O(2)) as an important endogenous mediator of cell proliferation in the vessel wall. Heterogeneous nuclear ribonucleoprotein C (hnRNP-C), a nuclear pre-mRNA binding protein that plays roles in vertebrate cell proliferation and differentiation, has been identified as a component of a vascular cell signaling pathway activated by low physiologic levels of H(2)O(2). The expression of hnRNP-C in human arteries has not previously been assessed. METHODS Segments of human proximal internal carotid arteries were evaluated for the expression of hnRNP-C by immunohistochemistry. RESULTS In normal proximal internal carotid arteries, hnRNP-C is expressed predominantly by the endothelium, with significantly lower expression by medial smooth muscle. In preatherosclerotic intimal hyperplasia, hnRNP-C is up-regulated in the artery wall, due to the robust expression by the intimal smooth muscle cells, without up-regulation in the medial smooth muscle cells. In arteries with atherosclerotic lesions, there is strong expression of hnRNP-C not only by intimal cells but also by medial smooth muscle cells. CONCLUSIONS The H(2)O(2) responsive pre-mRNA binding protein hnRNP-C is up-regulated in atherosclerosis and in preatherosclerotic intimal hyperplasia in humans, supporting the hypothesis that H(2)O(2) is a regulator of vascular cell proliferation in these conditions. These data also suggest that hnRNP-C may be useful as a marker of vascular cell activation.
Collapse
Affiliation(s)
- Mikhail P Panchenko
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
27
|
Yao Z, Jaeger JC, Ruzzo WL, Morale CZ, Emond M, Francke U, Milewicz DM, Schwartz SM, Mulvihill ER. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts. BMC Genomics 2007; 8:319. [PMID: 17850668 PMCID: PMC2174953 DOI: 10.1186/1471-2164-8-319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 09/12/2007] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Marfan syndrome (MFS) is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. RESULTS We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. CONCLUSION Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value < 3 x 10-6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status). An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.
Collapse
Affiliation(s)
- Zizhen Yao
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Jochen C Jaeger
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
- Hamilton Robotics, Via Crusch 8, Bonaduz, Switzerland
| | - Walter L Ruzzo
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Cecile Z Morale
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
- Trubion Pharmaceuticals Inc., Seattle, Washington 98121, USA
| | - Mary Emond
- Department of Biostatistics, University of Washington, Seattle Washington 98195, USA
| | - Uta Francke
- Departments of Genetics and Pediatrics, Stanford University, Stanford, CA 94305-5323, USA
| | - Dianna M Milewicz
- University of Texas Medical School at Houston, 6431 Fannin, MSB 1.614, Houston, TX 77030, USA
| | - Stephen M Schwartz
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Eileen R Mulvihill
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
- PO Box 33, Villanueva, NM 87583, USA
| |
Collapse
|
28
|
Munteanu A, Zingg JM. Cellular, molecular and clinical aspects of vitamin E on atherosclerosis prevention. Mol Aspects Med 2007; 28:538-90. [PMID: 17825403 DOI: 10.1016/j.mam.2007.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 02/07/2023]
Abstract
Randomised clinical trials and epidemiologic studies addressing the preventive effects of vitamin E supplementation against cardiovascular disease reported both positive and negative effects, and recent meta-analyses of the clinical studies were rather disappointing. In contrast to that, many animal studies clearly show a preventive action of vitamin E in several experimental settings, which can be explained by the molecular and cellular effects of vitamin E observed in cell cultures. This review is focusing on the molecular effects of vitamin E on the cells playing a role during atherosclerosis, in particular on the endothelial cells, vascular smooth muscle cells, monocytes/macrophages, T cells, and mast cells. Vitamin E may act by normalizing aberrant signal transduction and gene expression in antioxidant and non-antioxidant manners; in particular, over-expression of scavenger receptors and consequent foam cell formation can be prevented by vitamin E. In addition to that, the cellular effects of alpha-tocopheryl phosphate and of EPC-K1, a composite molecule between alpha-tocopheryl phosphate and l-ascorbic acid, are summarized.
Collapse
Affiliation(s)
- Adelina Munteanu
- Physiology Department, Faculty of Medicine, University of Medicine and Pharmacy Bucharest, Romania
| | | |
Collapse
|
29
|
Chaturvedi N, Coady E, Mayet J, Wright AR, Shore AC, Byrd S, McG Thom SA, Kooner JS, Schalkwijk CG, Hughes AD. Indian Asian men have less peripheral arterial disease than European men for equivalent levels of coronary disease. Atherosclerosis 2007; 193:204-12. [PMID: 16860806 DOI: 10.1016/j.atherosclerosis.2006.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2006] [Revised: 06/06/2006] [Accepted: 06/14/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Indian Asians have high rates of heart disease and stroke, but risks of peripheral arterial disease appear to be low. This paradox, and reasons for it, have not been explored. We compared ethnic differences in peripheral arterial disease for a given level of coronary disease. METHODS We studied 83 European and 84 Indian Asian men with a range of coronary disease. Extent of coronary atheroma was quantified by coronary artery calcification score on multislice CT. Femoral intima-media thickness (IMT) was measured by ultrasound. RESULTS Femoral IMT was 1.58, 2.06, 2.12, and 2.69 mm in Europeans, and 0.61, 1.41, 1.81 and 2.29 in Indian Asians by increasing categories of coronary atheroma (p=0.003 for ethnic difference, adjusted for age and lumen diameter). Adjustment for smoking and systolic blood pressure, the only risk factors adversely distributed in Europeans, only partly accounted for this ethnic difference (p=0.05). Other risk factors, including lipids, obesity, insulin and glycaemic status, more adversely distributed in Indian Asians, could not account for ethnic differences. Prevalence of abnormal ankle brachial index and lower limb atherosclerotic plaque was also greater in Europeans. CONCLUSIONS For a given level of coronary disease, Indian Asians have less lower limb atherosclerosis than Europeans, unexplained by established risk factors. Further study of these populations would help tease out relative contributions of risk factors to atherosclerosis in different vessel beds.
Collapse
Affiliation(s)
- Nish Chaturvedi
- NHLI Division, Faculty of Medicine, Imperial College London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Shirvani SM, Mookanamparambil L, Ramoni MF, Chin MT. Transcription factor CHF1/Hey2 regulates the global transcriptional response to platelet-derived growth factor in vascular smooth muscle cells. Physiol Genomics 2007; 30:61-8. [PMID: 17327490 DOI: 10.1152/physiolgenomics.00277.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The cardiovascular restricted transcription factor CHF1/Hey2 has been previously shown to regulate the smooth muscle response to growth factors. To determine how CHF1/Hey2 affects the smooth muscle response to growth factors, we performed a genomic screen for transcripts that are differentially expressed in wild-type and knockout smooth muscle cells after stimulation with platelet-derived growth factor. We screened 45,101 probes representing >39,000 transcripts derived from at least 34,000 genes, at eight different time points. We analyzed the expression data utilizing an algorithm based on Bayesian statistics to derive the best polynomial clustering model to fit the expression data. We found that in a total of 9,827 transcripts the normalized ratio of knockout to wild-type expression diverged more than threefold from baseline in at least one time point, and these transcripts separated into 17 distinct clusters. Further analysis of each cluster revealed distinct alterations in gene expression patterns for immediate early genes, transcription factors, matrix metalloproteinases, signaling molecules, and other molecules important in vascular biology. Our findings demonstrate that CHF1/Hey2 profoundly affects vascular smooth muscle phenotype by altering both the absolute expression level of a variety of genes and the kinetics of growth factor-induced gene expression.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Cells, Cultured
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oligonucleotide Array Sequence Analysis
- Platelet-Derived Growth Factor/pharmacology
- Repressor Proteins/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Shervin M Shirvani
- Vascular Medicine Research, Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
31
|
Dupasquier CMC, Weber AM, Ander BP, Rampersad PP, Steigerwald S, Wigle JT, Mitchell RW, Kroeger EA, Gilchrist JSC, Moghadasian MM, Lukas A, Pierce GN. Effects of dietary flaxseed on vascular contractile function and atherosclerosis during prolonged hypercholesterolemia in rabbits. Am J Physiol Heart Circ Physiol 2006; 291:H2987-96. [PMID: 16844912 DOI: 10.1152/ajpheart.01179.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dietary flaxseed has significant anti-atherogenic effects. However, the limits of this action and its effects on vascular contractile function are not known. We evaluated the effects of flaxseed supplementation on atherosclerosis and vascular function under prolonged hypercholesterolemic conditions in New Zealand White rabbits assigned to one of four groups for 6, 8, or 16 wk of feeding: regular diet (RG), 10% flaxseed-supplemented diet (FX), 0.5% cholesterol-supplemented diet (CH), and 0.5% cholesterol- and 10% flaxseed-supplemented diet (CF). Cholesterol feeding resulted in elevated plasma cholesterol levels and the development of atherosclerosis. The CF group had significantly less atherosclerotic lesions in the aorta and carotid arteries after 6 and 8 wk than the CH animals. However, the anti-atherogenic effect of flaxseed supplementation was completely attenuated by 16 wk. Maximal tension induced in aortic rings either by KCl or norepinephrine was not impaired by dietary cholesterol until 16 wk. This functional impairment was not prevented by including flaxseed in the high-cholesterol diet. Aortic rings from the cholesterol-fed rabbits exhibited an impaired relaxation response to acetylcholine at all time points examined. Including flaxseed in the high-cholesterol diet completely normalized the relaxation response at 6 and 8 wk and partially restored it at 16 wk. No significant changes in the relaxation response induced by sodium nitroprusside were observed in any of the groups. In summary, dietary flaxseed is a valuable strategy to limit cholesterol-induced atherogenesis as well as abnormalities in endothelial-dependent vasorelaxation. However, these beneficial effects were attenuated during prolonged hypercholesterolemic conditions.
Collapse
Affiliation(s)
- C M C Dupasquier
- Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
BACKGROUND Changes in the proteoglycan metabolism of the intima of arteries belong to the initial lesions of atherosclerosis (AS). The accumulation of proteoglycans, alterations of pericellular glycoproteins and modulations of collagen turnover also play a fundamental role in the progression of AS. They influence lipid retention, cell behavior and calcinosis. The decisive role played by the matrix metalloproteinases (MMPs) and their inhibiting factors (tissue inhibitors of metalloproteinases [TIMPs]) in these processes is not yet fully understood and therefore the subject of this overview. The causes of the abrupt change of a long-term existing stabile AS to a vulnerable plaque as well as the participation of age-related vascular wall remodeling in the progression of AS also remain open questions. DISCUSSION Apart from the well-known risk factors for AS, less well-known influences like the disturbances of gene expression in vascular smooth muscle cells affect an MMP/TIMP imbalance. The various consequences of this imbalance range from intima cell proliferation as an early change in AS as well as accelerated progression to the destabilization of fibrous plaques by increased collagenolysis as well as the formation of aneurysms. Infectious or toxic influences may trigger these mechanisms; an involvement of age-related vessel wall changes should also be considered. The prognostic significance of circulating MMP concentrations for the existence of instabile plaques are of great interest, as is the plaque stabilizing effect of statins by suppression of MMPs. CONCLUSIONS MMPs navigate the behavior of vascular wall cells in different AS stages, in adaptive remodeling, in normal aging and in non-atherosclerotic vessel disease. The clinical relevance of a disturbance in the MMP/TIMP balance is demonstrated firstly by the initiation of AS due to migration and proliferation of intima cells and secondly in the collagenolysis, necrotic transformation and apoptosis of existing fibrous lesions resulting in instabile rupture proned plaques. Investigations into the genetic typing of MMPs and the results of experimental gene deficiency models have significantly contributed to the clarification of these facts.
Collapse
|
33
|
Matschke K, Babiychuk EB, Monastyrskaya K, Draeger A. Phenotypic conversion leads to structural and functional changes of smooth muscle sarcolemma. Exp Cell Res 2006; 312:3495-503. [PMID: 16930591 DOI: 10.1016/j.yexcr.2006.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 11/26/2022]
Abstract
Continuous changes in the length of smooth muscles require a highly organized sarcolemmal structure. Yet, smooth muscle cells also adapt rapidly to altered environmental cues. Their sarcolemmal plasticity must lead to profound changes which affect transmembrane signal transduction as well as contractility. We have established porcine vascular and human visceral smooth muscle cultures of epithelioid and spindle-shaped morphology and determined their plasma membrane properties. Epithelioid cells from both sources contain a higher ratio of cholesterol to glycerophospholipids, and express a less diverse range of lipid-associated annexins. These findings point to a reduction in efficiency of membrane segregation in epithelioid cells. Moreover, compared to spindle-shaped cells, cholesterol is more readily extracted from epithelioid cells with methyl-beta-cyclodextrin and its synthesis is more susceptible to inhibition with lovastatin. The inability of epithelioid cells to process vasoactive metabolites, such as angiotensin or nucleotides further indicates that contractile properties are impaired. Phenotypic plasticity extends beyond the loss of smooth muscle cell marker genes. The plasma membrane has undergone profound functional changes which are incompatible with cyclic foreshortening, but might be important in the development of vascular disease.
Collapse
Affiliation(s)
- Katharina Matschke
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012 Bern, Switzerland
| | | | | | | |
Collapse
|
34
|
Weis-Müller BT, Modlich O, Drobinskaya I, Unay D, Huber R, Bojar H, Schipke JD, Feindt P, Gams E, Müller W, Goecke T, Sandmann W. Gene expression in acute Stanford type A dissection: a comparative microarray study. J Transl Med 2006; 4:29. [PMID: 16824202 PMCID: PMC1557406 DOI: 10.1186/1479-5876-4-29] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 07/06/2006] [Indexed: 11/21/2022] Open
Abstract
Background We compared gene expression profiles in acutely dissected aorta with those in normal control aorta. Materials and methods Ascending aorta specimen from patients with an acute Stanford A-dissection were taken during surgery and compared with those from normal ascending aorta from multiorgan donors using the BD Atlas™ Human1.2 Array I, BD Atlas™ Human Cardiovascular Array and the Affymetrix HG-U133A GeneChip®. For analysis only genes with strong signals of more than 70 percent of the mean signal of all spots on the array were accepted as being expressed. Quantitative real-time polymerase chain reaction (RT-PCR) was used to confirm regulation of expression of a subset of 24 genes known to be involved in aortic structure and function. Results According to our definition expression profiling of aorta tissue specimens revealed an expression of 19.1% to 23.5% of the genes listed on the arrays. Of those 15.7% to 28.9% were differently expressed in dissected and control aorta specimens. Several genes that encode for extracellular matrix components such as collagen IV α2 and -α5, collagen VI α3, collagen XIV α1, collagen XVIII α1 and elastin were down-regulated in aortic dissection, whereas levels of matrix metalloproteinases-11, -14 and -19 were increased. Some genes coding for cell to cell adhesion, cell to matrix signaling (e.g., polycystin1 and -2), cytoskeleton, as well as several myofibrillar genes (e.g., α-actinin, tropomyosin, gelsolin) were found to be down-regulated. Not surprisingly, some genes associated with chronic inflammation such as interleukin -2, -6 and -8, were up-regulated in dissection. Conclusion Our results demonstrate the complexity of the dissecting process on a molecular level. Genes coding for the integrity and strength of the aortic wall were down-regulated whereas components of inflammatory response were up-regulated. Altered patterns of gene expression indicate a pre-existing structural failure, which is probably a consequence of insufficient remodeling of the aortic wall resulting in further aortic dissection.
Collapse
Affiliation(s)
- Barbara Theresia Weis-Müller
- Department of Vascular Surgery and Kidney Transplantation, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Olga Modlich
- Department of Chemical Oncology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Irina Drobinskaya
- Department of Chemical Oncology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Derya Unay
- Department of Chemical Oncology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Rita Huber
- Department of Vascular Surgery and Kidney Transplantation, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Hans Bojar
- Department of Chemical Oncology, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Jochen D Schipke
- Research Group Experimental Surgery, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Peter Feindt
- Department of Thoracic and Cardiovascular Surgery, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Emmeran Gams
- Department of Thoracic and Cardiovascular Surgery, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Wolfram Müller
- Pathology Starnberg, private pathological practice, Starnberg, Germany
| | - Timm Goecke
- Institute of Human Genetics, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Sandmann
- Department of Vascular Surgery and Kidney Transplantation, Heinrich-Heine-University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
35
|
Bujo H, Saito Y. Modulation of Smooth Muscle Cell Migration by Members of the Low-Density Lipoprotein Receptor Family. Arterioscler Thromb Vasc Biol 2006; 26:1246-52. [PMID: 16574889 DOI: 10.1161/01.atv.0000219692.78477.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-density lipoprotein receptor family members (LRs) play a key role in the catabolism of many membrane-associated proteins, such as complexes between proteinases and their receptors, in addition to being involved in lipoprotein metabolism as suspected by the hitherto well-established functions of low-density lipoprotein receptor, in a variety of tissues. Recent studies using receptor-deficient or -overexpressing animals and cells have suggested that certain LRs are important regulators of the migration (and proliferation) of vascular smooth muscle cells (SMCs). LR expression is markedly induced in intimal or medial SMCs during the formation of atherosclerotic lesions. Because LRs can modulate the activity of the urokinase-type plasminogen activator (uPA) receptor and possibly of the platelet-derived growth factor (PDGF) receptor, LRs may influence the migration of SMCs through functional modulation of these membrane receptors. Therefore, SMC migration may be regulated by time-restricted expression of LRs. In agreement with the concept of functional interaction between LRs and membrane signaling receptors, a negative regulator of uPA receptor protein catabolism, LR11, has been identified. Statins modulate the PDGF-induced migration of intimal SMCs via the LR11/uPA receptor cascade. Selective modification of the LRs/uPA receptor/PDGF receptor systems in SMCs may be important for suppression of atherosclerotic plaque formation as well as for preventing intimal thickening after angioplasty.
Collapse
Affiliation(s)
- Hideaki Bujo
- Department of Genome Research and Clinical Application, Chiba University Graduate School of Medicine, Japan.
| | | |
Collapse
|
36
|
Liu D, Hou J, Hu X, Wang X, Xiao Y, Mou Y, De Leon H. Neuronal chemorepellent Slit2 inhibits vascular smooth muscle cell migration by suppressing small GTPase Rac1 activation. Circ Res 2006; 98:480-9. [PMID: 16439689 DOI: 10.1161/01.res.0000205764.85931.4b] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Slits are secreted proteins with roles in axonal guidance and leukocyte migration. On binding to Robo receptors, Slit2 repels developing axons and inhibits leukocyte chemotaxis. Slit2 is cleaved into Slit2-N, a protein tightly binding to cell membranes, and Slit2-C, a diffusible fragment. In the present study, we characterized the functional role of Slit2-N in vascular smooth muscle cells (VSMCs) and the cell association properties of 2 truncated versions of Slit2-N. Here, we document for the first time that Slit2-N is a chemorepellent of VSMCs. Intact blood vessels expressed Slit2 and Robo receptors as demonstrated by immunohistochemistry and quantitative real time PCR. Recombinant Slit2-N prevented the platelet-derived growth factor (PDGF)-stimulated migration of VSMCs. Slit2-N also abrogated PDGF-mediated activation of small guanosine triphosphatase (GTPase) Rac1, a member of the Rho GTPase superfamily of proteins involved in regulating the actin cytoskeleton. Furthermore, Slit2-N inhibited the PDGF-induced formation of lamellipodia, a crucial cytoskeletal reorganization event for cell motility. Slit2-N had no effect on the PDGF-mediated increase in DNA synthesis determined by [3H]thymidine uptake, suggesting that VSMC growth is unaffected by Slit2. Analysis of 2 engineered Slit2-N fragments (Slit2-N/1118 and Slit2-N/1121) indicated that 3 amino acids upstream of the putative cleavage site (Arg1121, Thr1122) are involved in the association of Slit2-N to the cell membrane. Our data assign a novel functional role to Slit2 in vascular function and show that cell guidance mechanisms that operate in the developing central nervous system are conserved in VSMCs.
Collapse
Affiliation(s)
- Dong Liu
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Han M, Wen JK, Zheng B, Cheng Y, Zhang C. Serum deprivation results in redifferentiation of human umbilical vascular smooth muscle cells. Am J Physiol Cell Physiol 2006; 291:C50-8. [PMID: 16467401 DOI: 10.1152/ajpcell.00524.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phenotypic change of vascular smooth muscle cells (VSMCs) from a differentiated to a dedifferentiated state accompanies the early stage of atherosclerosis and restenosis. Although much progress has been made in determining the molecular mechanisms involved in VSMC dedifferentiation, research on VSMC redifferentiation is hindered by the lack of an appropriate complete redifferentiation model. We established an in vitro model of redifferentiation by using postconfluent VSMCs from human umbilical artery. We demonstrated that serum-deprived VSMCs are capable of complete redifferentiation. After serum deprivation, postconfluent cultured human umbilical VSMCs became elongated and spindle shaped, with elevation of myofilament density, and reacquired contraction. Expressions of VSMC-specific contractile proteins, such as smooth muscle (SM) alpha-actin, SM-myosin heavy chain, calponin, and SM 22alpha, were increased and reached the levels in differentiated cells after serum deprivation. To determine the molecular mechanism of the phenotypic reversion, the levels of expression, phosphorylation, and binding activity of serum response factor (SRF), a key phenotypic modulator for VSMCs, were measured. The results showed that SRF binding activity with CArG motif was significantly increased after serum deprivation, whereas no changes were found in SRF expression and phosphorylation. The increased SRF binding activity was accompanied by an increase in expression of its coactivators such as myocardin. Furthermore, the phenotypic reversion was markedly inhibited by decoy double-strand oligodeoxynucleotides containing SM alpha-actin CArG motif, which was able to competitively bind to SRF. The results suggested that serum deprivation results in redifferentiation of human umbilical VSMCs. This novel model of VSMC phenotypic reversion should be valuable for research on vascular disease.
Collapse
Affiliation(s)
- Mei Han
- Department of Biochemistry and Molecular Biology, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, China
| | | | | | | | | |
Collapse
|
38
|
King JY, Ferrara R, Tabibiazar R, Spin JM, Chen MM, Kuchinsky A, Vailaya A, Kincaid R, Tsalenko A, Deng DXF, Connolly A, Zhang P, Yang E, Watt C, Yakhini Z, Ben-Dor A, Adler A, Bruhn L, Tsao P, Quertermous T, Ashley EA. Pathway analysis of coronary atherosclerosis. Physiol Genomics 2005; 23:103-18. [PMID: 15942018 DOI: 10.1152/physiolgenomics.00101.2005] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-scale gene expression studies provide significant insight into genes differentially regulated in disease processes such as cancer. However, these investigations offer limited understanding of multisystem, multicellular diseases such as atherosclerosis. A systems biology approach that accounts for gene interactions, incorporates nontranscriptionally regulated genes, and integrates prior knowledge offers many advantages. We performed a comprehensive gene level assessment of coronary atherosclerosis using 51 coronary artery segments isolated from the explanted hearts of 22 cardiac transplant patients. After histological grading of vascular segments according to American Heart Association guidelines, isolated RNA was hybridized onto a customized 22-K oligonucleotide microarray, and significance analysis of microarrays and gene ontology analyses were performed to identify significant gene expression profiles. Our studies revealed that loss of differentiated smooth muscle cell gene expression is the primary expression signature of disease progression in atherosclerosis. Furthermore, we provide insight into the severe form of coronary artery disease associated with diabetes, reporting an overabundance of immune and inflammatory signals in diabetics. We present a novel approach to pathway development based on connectivity, determined by language parsing of the published literature, and ranking, determined by the significance of differentially regulated genes in the network. In doing this, we identify highly connected "nexus" genes that are attractive candidates for therapeutic targeting and followup studies. Our use of pathway techniques to study atherosclerosis as an integrated network of gene interactions expands on traditional microarray analysis methods and emphasizes the significant advantages of a systems-based approach to analyzing complex disease.
Collapse
Affiliation(s)
- Jennifer Y King
- Donald W. Reynolds Cardiovascular Research Center, Division of Cardiovascular Medicine, Falk Cardiovascular Research Center, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arvanitis DA, Flouris GA, Spandidos DA. Genomic rearrangements on VCAM1, SELE, APEG1and AIF1 loci in atherosclerosis. J Cell Mol Med 2005; 9:153-9. [PMID: 15784173 PMCID: PMC6741330 DOI: 10.1111/j.1582-4934.2005.tb00345.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The inflammatory nature of atherosclerosis has been well established. However, the initial steps that trigger this response in the arterial intima remain obscure. Previous studies reported a significant rate of genomic alterations in human atheromas. The accumulation of genomic rearrangements in vascular endothelium and smooth muscle cells may be important for disease development. To address this issue, 78 post-mortem obtained aortic atheromas were screened for microsatellite DNA alterations versus correspondent venous blood. To evaluate the significance of these observations, 33 additional histologically normal aortic specimens from age and sex-matched cases were examined. Loss of heterozygosity (LOH) was found in 47,4% of the cases and in 18,2% of controls in at least one locus. The LOH occurrence in aortic tissue is associated to atherosclerosis risk (OR 4,06, 95% CI 1,50 to 10,93). Significant genomic alterations were found on 1p32-p31, 1q22-q25, 2q35 and 6p21.3 where VCAM1, SELE, APEG1 and AIF1 genes have been mapped respectively. Our data implicate somatic DNA rearrangements, on loci associated to leukocyte adhesion, vascular smooth muscle cells growth, differentiation and migration, to atherosclerosis development as an inflammatory condition.
Collapse
Affiliation(s)
- D A Arvanitis
- Department of Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | | |
Collapse
|
40
|
Abstract
For 3 decades, terms such as synthetic phenotype and contractile phenotype have been used to imply the existence of a specific mechanism for smooth muscle cell (SMC) responses to injury. In this issue of the JCI, Hendrix et al. offer a far more precise approach to examining the mechanisms of SMC responses to injury, focused not on general changes in phenotype but on effects of injury on a single promoter element, the CArG [CC(A/T)6GG] box, in a single gene encoding smooth muscle (SM) alpha-actin. Since CArG box structures are present in some, but not all, SMC genes, these data suggest that we may be progressing toward establishing a systematic, molecular classification of both SMC subsets and the response of SMCs to different injuries.
Collapse
Affiliation(s)
- William M Mahoney
- Department of Pathology, University of Washington, Seattle, Washington 98195-7335, USA
| | | |
Collapse
|