1
|
Vuu YM, Kadar Shahib A, Rastegar M. The Potential Therapeutic Application of Simvastatin for Brain Complications and Mechanisms of Action. Pharmaceuticals (Basel) 2023; 16:914. [PMID: 37513826 PMCID: PMC10385015 DOI: 10.3390/ph16070914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Statins are common drugs that are clinically used to reduce elevated plasma cholesterol levels. Based on their solubility, statins are considered to be either hydrophilic or lipophilic. Amongst them, simvastatin has the highest lipophilicity to facilitate its ability to cross the blood-brain barrier. Recent studies have suggested that simvastatin could be a promising therapeutic option for different brain complications and diseases ranging from brain tumors (i.e., medulloblastoma and glioblastoma) to neurological disorders (i.e., Alzheimer's disease, Parkinson's disease, and Huntington's disease). Specific mechanisms of disease amelioration, however, are still unclear. Independent studies suggest that simvastatin may reduce the risk of developing certain neurodegenerative disorders. Meanwhile, other studies point towards inducing cell death in brain tumor cell lines. In this review, we outline the potential therapeutic effects of simvastatin on brain complications and review the clinically relevant molecular mechanisms in different cases.
Collapse
Affiliation(s)
| | | | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
2
|
The Pathogenic Role of Very Low Density Lipoprotein on Atrial Remodeling in the Metabolic Syndrome. Int J Mol Sci 2020; 21:ijms21030891. [PMID: 32019138 PMCID: PMC7037013 DOI: 10.3390/ijms21030891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022] Open
Abstract
Atrial fibrillation (AF) is the most common persistent arrhythmia, and can lead to systemic thromboembolism and heart failure. Aging and metabolic syndrome (MetS) are major risks for AF. One of the most important manifestations of MetS is dyslipidemia, but its correlation with AF is ambiguous in clinical observational studies. Although there is a paradoxical relationship between fasting cholesterol and AF incidence, the benefit from lipid lowering therapy in reduction of AF is significant. Here, we reviewed the health burden from AF and MetS, the association between two disease entities, and the metabolism of triglyceride, which is elevated in MetS. We also reviewed scientific evidence for the mechanistic links between very low density lipoproteins (VLDL), which primarily carry circulatory triglyceride, to atrial cardiomyopathy and development of AF. The effects of VLDL to atria suggesting pathogenic to atrial cardiomyopathy and AF include excess lipid accumulation, direct cytotoxicity, abbreviated action potentials, disturbed calcium regulation, delayed conduction velocities, modulated gap junctions, and sarcomere protein derangements. The electrical remodeling and structural changes in concert promote development of atrial cardiomyopathy in MetS and ultimately lead to vulnerability to AF. As VLDL plays a major role in lipid metabolism after meals (rather than fasting state), further human studies that focus on the effects/correlation of postprandial lipids to atrial remodeling are required to determine whether VLDL-targeted therapy can reduce MetS-related AF. On the basis of our scientific evidence, we propose a pivotal role of VLDL in MetS-related atrial cardiomyopathy and vulnerability to AF.
Collapse
|
3
|
Increased Cellular Uptake of Polyunsaturated Fatty Acids and Phytosterols from Natural Micellar Oil. Nutrients 2020; 12:nu12010150. [PMID: 31948089 PMCID: PMC7019862 DOI: 10.3390/nu12010150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
The transport of hydrophobic compounds to recipient cells is a critical step in nutrient supplementation. Here, we tested the effect of phospholipid-based emulsification on the uptake of hydrophobic compounds into various tissue culture cell lines. In particular, the uptake of ω-3 fatty acids from micellar or nonmicellar algae oil into cell models for enterocytes, epithelial cells, and adipocytes was tested. Micellization of algae oil did not result in adverse effects on cell viability in the target cells. In general, both micellar and nonmicellar oil increased intracellular docosahexaenoic acid (DHA) levels. However, micellar oil was more effective in terms of augmenting the intracellular levels of total polyunsaturated fatty acids (PUFAs) than nonmicellar oil. These effects were rather conserved throughout the cells tested, indicating that fatty acids from micellar oils are enriched by mechanisms independent of lipases or lipid transporters. Importantly, the positive effect of emulsification was not restricted to the uptake of fatty acids. Instead, the uptake of phytosterols from phytogenic oils into target cells also increased after micellization. Taken together, phospholipid-based emulsification is a straightforward, effective, and safe approach to delivering hydrophobic nutrients, such as fatty acids or phytosterols, to a variety of cell types in vitro. It is proposed that this method of emulsification is suitable for the effective supplementation of numerous hydrophobic nutrients.
Collapse
|
4
|
Li Z, Liu H, Xu B, Wang Y. Enterotoxigenic Escherichia coli Interferes FATP4-Dependent Long-Chain Fatty Acid Uptake of Intestinal Epithelial Enterocytes via Phosphorylation of ERK1/2-PPARγ Pathway. Front Physiol 2019; 10:798. [PMID: 31281267 PMCID: PMC6596317 DOI: 10.3389/fphys.2019.00798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022] Open
Abstract
Sufficient fatty acid (FA) uptake from jejunal lumen is closely associated with pediatric growth. Enterotoxigenic Escherichia coli (ETEC), which poses a big threat to young mammals’ health, is also targeted on the jejunum, however, the effects on FA uptake is not understood yet. To explore the impacts of ETEC on the FA uptake ability of jejunum epithelial enterocytes during early life, we orally gavaged weaning piglets with ETEC K88 and found intestinal inflammation combined with compromised uptake of LCFA (C16:0, C18:0, C20:3, C20:4) except for C14:0 whose chain length is similar to medium chain fatty acid (MCFA). Furthermore, we observed reduced protein expression of TJs, fatty acid transport protein 4 (FATP4), peroxisome proliferator-activated receptor γ (PPARγ), phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2), and upregulated expression of p-PPARγ. In the in vitro study, we challenged polarized porcine intestine jejunum cell line IPEC-J2 with ETEC K88 and discovered similar results on intestinal barrier and expression of associated genes combined with morphological changes. Based on the constructed cellular model, we then determined lower uptake of BODIPY-labeled C16:0 without any difference in the uptake of BODIPY-labeled C12:0. The content of intracellular triglyceride which was mainly synthesized by LCFA concomitantly lowered down. Using gene knock down and overexpression, FATP4 was confirmed to be responsible for LCFA uptake. Moreover, ERK1/2 inhibitor U0126 and PPARγ antagonist T0070907 revealed ETEC could initiate cascaded phosphorylation of ERK1/2 and PPARγ resulting in hindered expression of FATP4. These results indicate ETEC challenge will cause dysfunction in FATP4-dependent LCFA uptake by phosphorylation of ERK1/2 and PPARγ. Furthermore, intestinal uptake of MCFA is in a FATP4-independent manner which is not easily disturbed by ETEC.
Collapse
Affiliation(s)
- Zhi Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Heyuan Liu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Bocheng Xu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Pan X, Schwartz GJ, Hussain MM. Oleoylethanolamide differentially regulates glycerolipid synthesis and lipoprotein secretion in intestine and liver. J Lipid Res 2018; 59:2349-2359. [PMID: 30369486 DOI: 10.1194/jlr.m089250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/26/2018] [Indexed: 01/13/2023] Open
Abstract
Dietary fat absorption takes place in the intestine, and the liver mobilizes endogenous fat to other tissues by synthesizing lipoproteins that require apoB and microsomal triglyceride transfer protein (MTP). Dietary fat triggers the synthesis of oleoylethanolamide (OEA), a regulatory fatty acid that signals satiety to reduce food intake mainly by enhancing neural PPARα activity, in enterocytes. We explored OEA's roles in the assembly of lipoproteins in WT and Ppara -/- mouse enterocytes and hepatocytes, Caco-2 cells, and human liver-derived cells. In differentiated Caco-2 cells, OEA increased synthesis and secretion of triacylglycerols, apoB secretion in chylomicrons, and MTP expression in a dose-dependent manner. OEA also increased MTP activity and triacylglycerol secretion in WT and knockout primary enterocytes. In contrast to its intestinal cell effects, OEA reduced synthesis and secretion of triacylglycerols, apoB secretion, and MTP expression and activity in human hepatoma Huh-7 and HepG2 cells. Also, OEA reduced MTP expression and triacylglycerol secretion in WT, but not knockout, primary hepatocytes. These studies indicate differential effects of OEA on lipid synthesis and lipoprotein assembly: in enterocytes, OEA augments glycerolipid synthesis and lipoprotein assembly independent of PPARα. Conversely, in hepatocytes, OEA reduces MTP expression, glycerolipid synthesis, and lipoprotein secretion through PPARα-dependent mechanisms.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY .,Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY
| | - Gary J Schwartz
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, NY
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY .,Diabetes and Obesity Research Center, New York University Winthrop Hospital, Mineola, NY.,Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY
| |
Collapse
|
6
|
Mao Y, Feng S, Li S, Zhao Q, Di D, Liu Y, Wang S. Chylomicron-pretended nano-bio self-assembling vehicle to promote lymphatic transport and GALTs target of oral drugs. Biomaterials 2018; 188:173-186. [PMID: 30359884 DOI: 10.1016/j.biomaterials.2018.10.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/05/2023]
Abstract
Lymphatic transport of oral drugs allows extraordinary gains in bioavailability and efficacy through avoidance of first-pass hepatic metabolism and preservation of drugs at lymphatic tissues against lymph-mediated diseases. Chylomicrons can transport dietary lipids absorbed from the intestine to the tissues through lymphatic circulation. Herein, we engineered for the first time a chylomicron-pretended mesoporous silica nanocarrier that utilizes the digestion, re-esterification, and lymphatic transport process of dietary triglyceride to promote lymphatic transport of oral drugs. Taking lopinavir (LNV) as a model antiretroviral drug with disadvantages such as poor solubility, high first-pass effect and off-target deposition, this vehicle exhibited several properties belonging to ideal nanocarriers, including high drug load, amorphous dispersion and controlled release in the gastrointestinal tract. Additionally, a nano-bio interaction was demonstrated between nanoparticles and a key protein involved in chylomicron assembly; this biochemical reaction in cellular was utilized for the first time to promote lymphatic transport of nanocarriers for oral delivery. As a result, the chylomicron-pretended nanocarrier afforded 10.6-fold higher oral bioavailability compared with free LNV and effectively delivered LNV to gut-associated lymphoid tissues, where HIV persists and actively evolves. This approach not only promises a potential application to HIV-infected individuals but also opens a new avenue to other lymph-mediated pathologies such as autoimmune diseases and lymphatic tumor metastasis.
Collapse
Affiliation(s)
- Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shuang Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Shuai Li
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, PR China
| | - Yanfeng Liu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
7
|
Sun F, Adrian M, Beztsinna N, van den Dikkenberg JB, Maas-Bakker RF, van Hasselt PM, van Steenbergen MJ, Su X, Kapitein LC, Hennink WE, van Nostrum CF. Influence of PEGylation of Vitamin-K-Loaded Mixed Micelles on the Uptake by and Transport through Caco-2 Cells. Mol Pharm 2018; 15:3786-3795. [PMID: 30063364 PMCID: PMC6150738 DOI: 10.1021/acs.molpharmaceut.8b00258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the study is to investigate the uptake by and transport through Caco-2 cells of two mixed micelle formulations (based on egg phosphatidylcholine and glycocholic acid) of vitamin K, i.e., with and without DSPE-PEG2000. The uptake of vitamin K and fluorescently labeled mixed micelles with and without PEG coating showed similar kinetics and their uptake ratio remained constant over time. Together with the fact that an inhibitor of scavenger receptor B1 (BLT-1) decreased cellular uptake of vitamin K by ∼80% compared to the uptake in the absence of this inhibitor, we conclude that both types of micelles loaded with vitamin K can be taken up intactly by Caco-2 cells via this scavenger receptor. The amount of vitamin K in chylomicrons fraction from Caco-2 cell monolayers further indicates that mixed micelles (with or without PEGylation) are likely packed into chylomicrons after internalization by Caco-2 cells. Uptake of vitamin K from PEGylated mixed micelles increased four- to five-fold at simulated gastrointestinal conditions. In conclusion, PEGylated mixed micelles are stable upon exposure to simulated gastric conditions, and as a result, they do show overall a higher cellular uptake efficiency of vitamin K as compared to mixed micelles without PEG coating.
Collapse
Affiliation(s)
- Feilong Sun
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Max Adrian
- Cell Biology, Department of Biology, Faculty of Science , Utrecht University , 3584 CH Utrecht , The Netherlands
| | - Nataliia Beztsinna
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Joep B van den Dikkenberg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Roel F Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Peter M van Hasselt
- Department of Pediatrics, Wilhelmina Children's Hospital , University Medical Center Utrecht , Lundlaan 6 , 3584 EA Utrecht , The Netherlands
| | - Mies J van Steenbergen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Xiangjie Su
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Department of Biology, Faculty of Science , Utrecht University , 3584 CH Utrecht , The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences , Utrecht University , 3584 CG Utrecht , The Netherlands
| |
Collapse
|
8
|
Sirwi A, Hussain MM. Lipid transfer proteins in the assembly of apoB-containing lipoproteins. J Lipid Res 2018; 59:1094-1102. [PMID: 29650752 DOI: 10.1194/jlr.r083451] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 11/20/2022] Open
Abstract
A better understanding of intracellular lipoprotein assembly may help identify proteins with important roles in lipid disorders. apoB-containing lipoproteins (B-lps) are macromolecular lipid and protein micelles that act as specialized transport vehicles for hydrophobic lipids. They are assembled predominantly in enterocytes and hepatocytes to transport dietary and endogenous fat, respectively, to different tissues. Assembly occurs in the endoplasmic reticulum (ER) and is dependent on lipid resynthesis in the ER and on a chaperone, namely, microsomal triglyceride transfer protein (MTTP). Precursors for lipid synthesis are obtained from extracellular sources and from cytoplasmic lipid droplets. MTTP is the major and essential lipid transfer protein that transfers phospholipids and triacylglycerols to nascent apoB for the assembly of lipoproteins. Assembly is aided by cell death-inducing DFF45-like effector B and by phospholipid transfer protein, which may facilitate additional deposition of triacylglycerols and phospholipids, respectively, to apoB. Here, we summarize the current understanding of the different steps in the assembly of B-lps and discuss the role of lipid transfer proteins in these steps to help identify new clinical targets for lipid-associated disorders, such as heart disease.
Collapse
Affiliation(s)
- Alaa Sirwi
- School of Graduate Studies, Molecular and Cell Biology Program, State University of New York Downstate Medical Center, Brooklyn, NY
| | - M Mahmood Hussain
- New York University Winthrop Hospital, Mineola, NY and Veterans Affairs New York Harbor Healthcare System, Brooklyn, NY
| |
Collapse
|
9
|
Poquet L, Wooster TJ. Infant digestion physiology and the relevance of in vitro biochemical models to test infant formula lipid digestion. Mol Nutr Food Res 2017; 60:1876-95. [PMID: 27279140 DOI: 10.1002/mnfr.201500883] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 01/30/2023]
Abstract
Lipids play an important role in the diet of preterm and term infants providing a key energy source and essential lipid components for development. While a lot is known about adult lipid digestion, our understanding of infant digestion physiology is still incomplete, the greatest gap being on the biochemistry of the small intestine, particularly the activity and relative importance of the various lipases active in the intestine. The literature has been reviewed to identify the characteristics of lipid digestion of preterm and term infants, but also to better understand the physiology of the infant gastrointestinal tract compared to adults that impacts the absorption of lipids. The main differences are a higher gastric pH, submicellar bile salt concentration, a far more important role of gastric lipases as well as differences at the level of the intestinal barrier. Importantly, the consequences of improper in vitro replication of gastric digestions conditions (pH and lipase specificity) are demonstrated using examples from the most recent of studies. It is true that some animal models could be adapted to study infant lipid digestion physiology, however the ethical relevance of such models is questionable, hence the development of accurate in vitro models is a must. In vitro models that combine up to date knowledge of digestion biochemistry with intestinal cells in culture are the best choice to replicate digestion and absorption in infant population, this would allow the adaptation of infant formula for a better digestion and absorption of dietary lipids by preterm and term infants.
Collapse
Affiliation(s)
- Laure Poquet
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne 26, Switzerland
| | - Tim J Wooster
- Nestlé Research Center, Vers-Chez-Les-Blanc, Lausanne 26, Switzerland
| |
Collapse
|
10
|
Sasaki A, Hiwatashi K, Kumagai M, Hata K, Kobayashi M. Relationships between the expression of hepatocyte nuclear factors and factors essential for lipoprotein production in a human mesenchymal stem cell line, UE7T-13. Biosci Biotechnol Biochem 2017; 81:262-270. [DOI: 10.1080/09168451.2016.1254530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
To clarify the mechanisms regulating lipoprotein production by hepatocyte nuclear factors (HNFs), we generated four kinds of transfectants in human bone marrow mesenchymal stem cells: UE7T-13, stably expressing FOXA2 (also known as HNF3β), HNF4α, HNF1α or co-expressing HNF4α, and HNF1α (HNF4α/HNF1α). In HNF4α/HNF1α transfectants, cellular contents of triglycerides (TG) and cholesterol were markedly higher than in UE7T-13 cells and comparable to those in human hepatoma HepG2 cells. However, TG and cholesterol, which are secreted from cells as components of lipoproteins, were hardly detected in the medium for any of the transfectants. ApoB100 and MTP, which are essential for the formation and secretion of lipoproteins, were undetectable and detected at low levels, respectively, in HNF4α/HNF1α transfectants. We suggest that enforced co-expression of HNF4α and HNF1α is effective for cellular lipid accumulation, while additional factors are probably required for lipoprotein formation and secretion.
Collapse
Affiliation(s)
- Akira Sasaki
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, Japan
- Food Processing Research Station, Akita Research Institute of Food and Brewing, Akita, Japan
| | - Kazuyuki Hiwatashi
- Food Processing Research Station, Akita Research Institute of Food and Brewing, Akita, Japan
| | - Masanori Kumagai
- Food Processing Research Station, Akita Research Institute of Food and Brewing, Akita, Japan
| | - Keishi Hata
- Food Processing Research Station, Akita Research Institute of Food and Brewing, Akita, Japan
| | - Masayuki Kobayashi
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
11
|
Shimizu M, Li J, Inoue J, Sato R. Quercetin represses apolipoprotein B expression by inhibiting the transcriptional activity of C/EBPβ. PLoS One 2015; 10:e0121784. [PMID: 25875015 PMCID: PMC4398426 DOI: 10.1371/journal.pone.0121784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
Quercetin is one of the most abundant polyphenolic flavonoids found in fruits and vegetables and has anti-oxidative and anti-obesity effects. Because the small intestine is a major absorptive organ of dietary nutrients, it is likely that highly concentrated food constituents, including polyphenols, are present in the small intestinal epithelial cells, suggesting that food factors may have a profound effect in this tissue. To identify novel targets of quercetin in the intestinal enterocytes, mRNA profiling using human intestinal epithelial Caco-2 cells was performed. We found that mRNA levels of some apolipoproteins, particularly apolipoprotein B (apoB), are downregulated in the presence of quercetin. On the exposure of Caco-2 cells to quercetin, both mRNA and protein levels of apoB were decreased. Promoter analysis of the human apoB revealed that quercetin response element is localized at the 5′-proximal promoter region, which contains a conserved CCAAT enhancer-binding protein (C/EBP)-response element. We found that quercetin reduces the promoter activity of apoB, driven by the enforced expression of C/EBPβ. Quercetin had no effect on either mRNA or protein levels of C/EBPβ. In contrast, we found that quercetin inhibits the transcriptional activity of C/EBPβ but not its recruitment to the apoB promoter. On the exposure of Caco-2 cells to quercetin 3-O-glucuronide, which is in a cell-impermeable form, no notable change in apoB mRNA was observed, suggesting an intracellular action of quercetin. In vitro interaction experiments using quercetin-conjugated beads revealed that quercetin binds to C/EBPβ. Our results describe a novel regulatory mechanism of transcription of apolipoprotein genes by quercetin in the intestinal enterocytes.
Collapse
Affiliation(s)
- Makoto Shimizu
- Department of Applied Biological Chemistry, The University of Tokyo 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Juan Li
- Department of Applied Biological Chemistry, The University of Tokyo 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Jun Inoue
- Department of Applied Biological Chemistry, The University of Tokyo 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
| | - Ryuichiro Sato
- Department of Applied Biological Chemistry, The University of Tokyo 1-1-1 Yayoi, Bunkyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
12
|
Effects of eicosapentaenoic acid and docosahexaenoic acid on chylomicron and VLDL synthesis and secretion in Caco-2 cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:684325. [PMID: 24987699 PMCID: PMC4058467 DOI: 10.1155/2014/684325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/19/2014] [Indexed: 11/18/2022]
Abstract
The present research was undertaken to determine the effects of EPA (20 : 5 n-3) and DHA (22 : 6 n-3) on chylomicron and VLDL synthesis and secretion by Caco-2 cells. Cells were incubated for 12 to 36 h with 400 μM OA, EPA, and DHA; then 36 h was chosen for further study because EPA and DHA decreased de novo triglycerides synthesis in a longer incubation compared with OA (P < 0.01). Neither the uptake nor oxidation was different in response to the respective fatty acids (P > 0.05). Compared with OA, intercellular and secreted nascent apolipoprotein B48 and B100 were decreased by EPA and DHA (P < 0.01). Both DHA and EPA resulted in a lower secretion of chylomicron and VLDL (P < 0.01). In contrast to OA, EPA and DHA were preferentially incorporated into phospholipids instead of triacylglycerols (P < 0.01). These discoveries demonstrated that exposure of DHA and EPA reduced the secretion of chylomicron and VLDL partly by regulating the synthesis of TG and apoB.
Collapse
|
13
|
Bakillah A. Nitrated apolipoprotein A-I, a potential new cardiovascular marker, is markedly increased in low high-density lipoprotein cholesterol subjects. Clin Chem Lab Med 2009; 47:60-9. [DOI: 10.1515/cclm.2009.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Rava P, Hussain MM. Acquisition of triacylglycerol transfer activity by microsomal triglyceride transfer protein during evolution. Biochemistry 2007; 46:12263-74. [PMID: 17924655 DOI: 10.1021/bi700762z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Microsomal triglyceride transfer protein (MTP) is essential for the assembly of neutral-lipid-rich apolipoprotein B (apoB) lipoproteins. Previously we reported that the Drosophila MTP transfers phospholipids but does not transfer triglycerides. In contrast, human MTP transfers both lipids. To explore the acquisition of triglyceride transfer activity by MTP, we evaluated amino acid sequences, protein structures, and the biochemical and cellular properties of various MTP orthologues obtained from species that diverged during evolution. All MTP orthologues shared similar secondary and tertiary structures, associated with protein disulfide isomerase, localized to the endoplasmic reticulum, and supported apoB secretion. While vertebrate MTPs transferred triglyceride, invertebrate MTPs lacked this activity. Thus, triglyceride transfer activity was acquired during the transition from invertebrates to vertebrates. Within vertebrates, fish, amphibians, and birds displayed 27%, 40%, and 100% triglyceride transfer activity compared to mammals. We conclude that MTP triglyceride transfer activity first appeared in fish and speculate that the acquisition of triglyceride transfer activity by MTP provided for a significant advantage in the evolution of larger and more complex organisms.
Collapse
Affiliation(s)
- Paul Rava
- Molecular and Cellular Biology Program, School of Graduate Studies, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | |
Collapse
|
15
|
Pan X, Hussain FN, Iqbal J, Feuerman MH, Hussain MM. Inhibiting proteasomal degradation of microsomal triglyceride transfer protein prevents CCl4-induced steatosis. J Biol Chem 2007; 282:17078-89. [PMID: 17405876 DOI: 10.1074/jbc.m701742200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carbon tetrachloride (CCl(4)) interferes with triglyceride secretion and causes steatosis, fibrosis, and necrosis. In mice, CCl(4) decreased plasma triglyceride-rich lipoproteins, increased cellular lipids, and reduced microsomal triglyceride transfer protein (MTP) without diminishing mRNA levels. Similarly, CCl(4) decreased apoB-lipoprotein production and MTP activity but had no effect on mRNA levels in primary enterocytes and colon carcinoma and hepatoma cells. CCl(4) did not affect MTP synthesis but induced post-translational degradation involving ubiquitinylation and proteasomes in McA-RH7777 cells. By contrast, MTP inhibitor increased cellular lipids without affecting MTP protein. MTP was covalently modified when cells were incubated with (14)CCl(4). This modification was prevented by the inhibition of P450 oxygenases, indicating that CCl(3)(.) generated by these enzymes targets MTP for degradation. To determine whether inhibition of proteolysis could prevent CCl(4) toxicity, mice were fed with CCl(4) with or without lactacystin. Lactacystin increased ubiquitinylated MTP and prevented lipid accumulation in tissues. Thus, CCl(4) induces post-translational degradation without affecting lipid transfer activity, whereas MTP antagonist inhibits lipid transfer activity without causing its destruction. These studies identify MTP as a major target of CCl(4) and its degradation as a novel mechanism involved in the onset of steatosis, suggesting that inhibition of proteolysis may prevent some forms of steatosis.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Anatomy, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | |
Collapse
|
16
|
Lewis GF, Uffelman K, Naples M, Szeto L, Haidari M, Adeli K. Intestinal lipoprotein overproduction, a newly recognized component of insulin resistance, is ameliorated by the insulin sensitizer rosiglitazone: studies in the fructose-fed Syrian golden hamster. Endocrinology 2005; 146:247-55. [PMID: 15486228 DOI: 10.1210/en.2004-1143] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated whether intestinal lipoprotein overproduction in a fructose-fed, insulin-resistant hamster model is prevented with insulin sensitization. Syrian Golden hamsters were fed either chow, 60% fructose for 5 wk, chow for 5 wk with the insulin sensitizer rosiglitazone added for the last 3 wk, or 60% fructose plus rosiglitazone. In vivo Triton studies showed a 2- to 3-fold increase in the large (Svedberg unit > 400) and smaller (Sf 100-400) triglyceride-rich lipoprotein particle apolipoprotein B48 (apoB48) but not triglyceride secretion with fructose feeding in the fasted state (P < 0.01) and partial normalization with rosiglitazone in fructose-fed hamsters. Ex vivo pulse-chase labeling of enterocytes confirmed the oversecretion of apoB48 lipoproteins with fructose feeding. Intestinal lipoprotein oversecretion was associated with increased expression of microsomal triglyceride transfer protein expression. With rosiglitazone treatment of fructose-fed hamsters, there was approximately 50% reduction in apoB48 secretion from primary cultured enterocytes and amelioration of the elevated microsomal triglyceride transfer protein mass and activity in fructose-fed hamsters. In contrast, in the postprandial state, the major differences between nutritional and drug intervention protocols were evident in triglyceride-rich lipoprotein triglyceride and not apoB48 secretion rates. The data suggest that intestinal lipoprotein overproduction can be ameliorated with the insulin sensitizer rosiglitazone.
Collapse
Affiliation(s)
- Gary F Lewis
- Department of Medicine, Division of Endocrinology and Metabolism, Hospital for Sick Children, Univeristy of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
17
|
Singh K, Batuman OA, Akman HO, Kedees MH, Vakil V, Hussain MM. Differential, tissue-specific, transcriptional regulation of apolipoprotein B secretion by transforming growth factor beta. J Biol Chem 2002; 277:39515-24. [PMID: 12177061 DOI: 10.1074/jbc.m205513200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Apolipoprotein B (apoB) is required for the assembly and secretion of triglyceride-rich lipoproteins. ApoB synthesis is constitutive, and post-translational mechanisms modulate its secretion. Transforming growth factor beta (TGF-beta) increased apoB secretion in both differentiated and nondifferentiated Caco-2 cells and decreased secretion in HepG2 cells without affecting apolipoprotein A-I secretion. TGF-beta altered apoB secretion by changing steady-state mRNA levels and protein synthesis. Expression of SMAD3 and SMAD4 differentially regulated apoB secretion in these cells. Thus, SMADs mediate dissimilar secretion of apoB in both the cell lines by affecting gene transcription. We identified a 485-bp element, 55 kb upstream of the apob gene that contains a SMAD binding motif. This motif increased the expression of chloramphenicol acetyltransferase in Caco-2 cells treated with TGF-beta or transfected with SMADs. Hence, TGF-beta activates SMADs that bind to the 485-bp intestinal enhancer element in the apob gene and increase its transcription and secretion in Caco-2 cells. This is the first example showing differential transcriptional regulation of the apob gene by cytokines and dissimilar regulation of one gene in two different cell lines by TGF-beta. In this regulation, the presence of cytokine-responsive motif in the tissue-specific enhancer element confers cell-specific response.
Collapse
Affiliation(s)
- Karnail Singh
- Department of Anatomy and Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | | | | | | | |
Collapse
|
18
|
Haidari M, Leung N, Mahbub F, Uffelman KD, Kohen-Avramoglu R, Lewis GF, Adeli K. Fasting and postprandial overproduction of intestinally derived lipoproteins in an animal model of insulin resistance. Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and ApoB48-containing lipoprotein overproduction. J Biol Chem 2002; 277:31646-55. [PMID: 12070142 DOI: 10.1074/jbc.m200544200] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin-resistant states are characterized by hypertriglyceridemia, predominantly because of overproduction of hepatic very low density lipoprotein particles. The additional contribution of intestinal lipoprotein overproduction to the dyslipidemia of insulin-resistant states has not been previously appreciated. Here, we have investigated intestinal lipoprotein production in a fructose-fed hamster model of insulin resistance previously documented to have whole body and hepatic insulin resistance, and hepatic very low density lipoprotein overproduction. Chronic fructose feeding for 3 weeks induced significant oversecretion of apolipoprotein B48 (apoB48)-containing lipoproteins in the fasting state and during steady state fat feeding, based on (a) in vivo Triton WR1339 studies of apoB48 production as well as (b) ex vivo pulse-chase labeling of intestinal enterocytes from fasted and fed hamsters. ApoB48 particle overproduction was accompanied by increased intracellular apoB48 stability, enhanced lipid synthesis, higher abundance of microsomal triglyceride transfer protein mass, and a significant shift toward the secretion of larger chylomicron-like particles. ApoB48 particle overproduction was not observed with short-term fructose feeding or in vitro incubation of enterocytes with fructose. Secretion of intestinal apoB48 and triglyceride was closely linked to intestinal enterocyte de novo lipogenesis, which was up-regulated in fructose-fed hamsters. Inhibition of fatty acid synthesis by cerulenin, a fatty acid synthase inhibitor, resulted in a dose-dependent decrease in intestinal apoB48 secretion. Overall, these findings further suggest that intestinal overproduction of apoB48 lipoproteins should also be considered as a major contributor to the fasting and postprandial dyslipidemia observed in response to chronic fructose feeding and development of an insulin-resistant state.
Collapse
Affiliation(s)
- Mehran Haidari
- Department of Laboratory Medicine and Pathobiology, Hospital for Sick Children, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Ho SY, Storch J. Common mechanisms of monoacylglycerol and fatty acid uptake by human intestinal Caco-2 cells. Am J Physiol Cell Physiol 2001; 281:C1106-17. [PMID: 11546646 DOI: 10.1152/ajpcell.2001.281.4.c1106] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Free fatty acids (FFA) and sn-2-monoacylglycerol (sn-2-MG), the two hydrolysis products of dietary triacylglycerol, are absorbed from the lumen into polarized enterocytes that line the small intestine. Intensive studies regarding FFA transport across the brush-border membrane of the enterocyte are available; however, little is known about sn-2-MG transport. We therefore studied the kinetics of sn-2-MG transport, compared with those of long-chain FFA (LCFA), by human intestinal Caco-2 cells. To mimic postprandial luminal and plasma environments, we examined the uptake of taurocholate-mixed lipids and albumin-bound lipids at the apical (AP) and basolateral (BL) surfaces of Caco-2 cells, respectively. The results demonstrate that the uptake of sn-2-monoolein at both the AP and BL membranes appears to be a saturable function of the monomer concentration of sn-2-monoolein. Furthermore, trypsin preincubation inhibits sn-2-monoolein uptake at both AP and BL poles of cells. These results suggest that sn-2-monoolein uptake may be a protein-mediated process. Competition studies also support a protein-mediated mechanism and indicate that LCFA and LCMG may compete through the same membrane protein(s) at the AP surface of Caco-2 cells. The plasma membrane fatty acid-binding protein (FABP(pm)) is known to be expressed in Caco-2, and here we demonstrate that fatty acid transport protein (FATP) is also expressed. These putative plasma membrane LCFA transporters may be involved in the uptake of sn-2-monoolein into Caco-2 cells.
Collapse
Affiliation(s)
- S Y Ho
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey 08901-8525, USA
| | | |
Collapse
|
20
|
Bakillah A, Hussain MM. Binding of microsomal triglyceride transfer protein to lipids results in increased affinity for apolipoprotein B: evidence for stable microsomal MTP-lipid complexes. J Biol Chem 2001; 276:31466-73. [PMID: 11427523 DOI: 10.1074/jbc.m100390200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein B (apoB) and microsomal triglyceride transfer protein (MTP) are known to interact with each other. We evaluated the effect of different lipids on the protein-protein interactions between MTP and apoB100 or its C-terminally truncated forms. Negatively charged lipids decreased protein-protein interactions between apoB and MTP. In contrast, zwitterionic phospholipids enhanced (2-4-fold) the binding of apoB100 to MTP by increasing affinity (1.5-3-fold) between these proteins without affecting the number of binding sites. Similarly, phospholipids augmented (1.5-4-fold) the binding of various C-terminally truncated apoB peptides to MTP. The increased binding was greater for apoB peptides containing lipid-binding domains, such as apoB28 and apoB42. Surprisingly, preincubation of apoB28 with lipid vesicles had no effect on MTP binding. In contrast, incubation of MTP with lipid vesicles resulted in a stable association of MTP with vesicles, and MTP-lipid vesicles bound better (5-fold increase) to LDL than did lipid-free MTP. To determine whether MTP exists stably associated with lipids in cells, microsomal contents from COS cells expressing MTP, HepG2 cells, and mouse liver were ultracentrifuged, and MTP was visualized in different density fractions. MTP was found associated and unassociated with lipids. In contrast, apoB17 and apoB:270-570 were present unassociated with lipids in COS cells. These studies show that the binding of MTP to lipids results in increased affinity for apoB and that stable MTP-lipid complexes exist in the lumen of the endoplasmic reticulum. Protein-protein interactions between apoB and MTP may juxtapose lipids associated with MTP to lipid-binding domains of apoB and facilitate hydrophobic interactions leading to enhance affinity. We speculate that MTP-lipid complexes may serve as nuclei to form "primordial lipoproteins" and may also play a role in the bulk addition of lipids during the "core expansion" of these lipoproteins.
Collapse
Affiliation(s)
- A Bakillah
- Department of Biochemistry, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
21
|
Engle MJ, Mahmood A, Alpers DH. Regulation of surfactant-like particle secretion by Caco-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:369-80. [PMID: 11286980 DOI: 10.1016/s0005-2736(01)00296-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Surfactant-like particle (SLP) is a phosphatidylcholine (PC)-rich membrane produced in the small intestine, and its secretion is increased by fat feeding. In Caco-2 cells known to produce SLP, preincubation with [(3)H]palmitate labelled the SLP and was used as a marker for newly secreted membrane. SLP-associated PC and protein (d=1.07-1.08 g/ml in a linear non-equilibrium NaBr gradient) were secreted in parallel with triacylglycerols (TG) and at a rate about twice the control rate in response to feeding cells with an oleate/egg PC mixture. Cholesterol and apolipoprotein A-I identified only a small peak corresponding to high-density lipoprotein (HDL), but the largest peak corresponded with SLP (d=1.07-1.08). Palmitate incorporation into PC showed a similar small peak migrating at the density of HDL, but most labelled PC secreted from the cells was due to SLP. PC secretion, alkaline phosphatase activity, and newly synthesized immunoprecipitated SLP proteins from conditioned serum-free media migrated together at a density of >/=1.21 g/ml in a lipoprotein NaBr step gradient, and represented SLP. Glycerol incorporated into TG migrated at a peak density of 1.12 g/ml, consistent with HDL secretion from cells incubated in serum-free media. These data confirm that the secreted PC in SLP is distinct from lipoprotein particles. Incorporation of [(3)H]palmitate into the PC fraction of either whole cell homogenate or isolated brush border membranes was not affected by oleate/egg PC feeding. Both Pluronic L-81, an inhibitor of chylomicron secretion, and BMS-197636-02, a microsomal triglyceride transfer protein inhibitor, blocked the secretion of both TG and PC. Elevation of intracellular cAMP levels that stimulate surfactant secretion from type II pneumocytes caused a 50% reduction in SLP and TG secretion from Caco-2 cells. These results confirm the SLP response to fat feeding found in vivo, further supporting a role for SLP in TG secretion from the enterocyte, and show that the regulation of SLP secretion differs from that of pulmonary surfactant.
Collapse
Affiliation(s)
- M J Engle
- Department of Internal Medicine, Division of Gastroenterology, Washington University School of Medicine, P.O. Box 8124, 660 S. Euclid Ave., 63110, St. Louis, MO, USA
| | | | | |
Collapse
|
22
|
Nayak N, Harrison EH, Hussain MM. Retinyl ester secretion by intestinal cells: a specific and regulated process dependent on assembly and secretion of chylomicrons. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31689-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Abstract
The intestine synthesizes very low density lipoproteins (VLDL) and chylomicrons (CM) to transport fat and fat-soluble vitamins into the blood. VLDL assembly occurs constitutively whereas CM assembly is a characteristic property of the enterocytes during the postprandial state. The secretion of CM is specifically inhibited by Pluronic L81. CM are very heterogeneously-sized particles that consist of a core of triglycerides (TG) and cholesterol esters and a monolayer of phospholipids (PL), cholesterol and proteins. The fatty acid composition of TG, but not PL, in CM mirrors the fatty acid composition of fat in the diet. CM assembly is deficient in abetalipoproteinemia and CM retention disease. Abetalipoproteinemia results due to mutation in the mttp gene and is characterized by the virtual absence of apoB-containing lipoproteins in the plasma. Patients suffer from neurologic disorders, visual impairment, and exhibit acanthocytosis. CM retention disease, an inherited recessive disorder, is characterized by chronic diarrhea with steatorrhea in infancy, abdominal distention and failure to thrive. It is caused by a specific defect in the secretion of intestinal lipoproteins; secretion of lipoproteins by the liver is not affected. Besides human disorders, mice that do not assemble intestinal lipoproteins have been developed. These mice are normal at birth, but defective in fat and fat-soluble vitamin absorption, and fail to thrive. Thus, fat and fat-soluble vitamin transport by the intestinal lipoproteins is essential for proper growth and development of neonates. Recently, differentiated Caco-2 cells and rabbit primary enterocytes have been described that synthesize and secrete CM. These cells can be valuable in distinguishing between the two different models proposed for the assembly of CM. In the first model, the assembly of VLDL and CM is proposed to occur by two 'independent' pathways. Second, CM assembly is proposed to be a product of 'core expansion' that results in the synthesis of lipoproteins of different sizes. According to this model, intestinal lipoprotein assembly begins with the synthesis of 'primordial' lipoprotein particles and involves release of the nascent apoB with PL derived from the endoplasmic reticulum (ER) membrane. In addition, TG-rich 'lipid droplets' of different sizes are formed independent of apoB synthesis. The fusion of lipid droplets and primordial lipoproteins results in the formation of different size lipoproteins due to the 'core expansion' of the primordial lipoproteins.
Collapse
Affiliation(s)
- M M Hussain
- Department of Biochemistry, School of Medicine, MCP Hahnemann University, Philadelphia, PA 19129, USA.
| |
Collapse
|
24
|
Tietge UJ, Bakillah A, Maugeais C, Tsukamoto K, Hussain M, Rader DJ. Hepatic overexpression of microsomal triglyceride transfer protein (MTP) results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32437-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Luchoomun J, Hussain MM. Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem 1999; 274:19565-72. [PMID: 10391890 DOI: 10.1074/jbc.274.28.19565] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To develop a cell culture model for chyclomicron (CM) assembly, the apical media of differentiated Caco-2 cells were supplemented with oleic acid (OA) together with either albumin or taurocholate (TC). The basolateral media were subjected to sequential density gradient ultracentrifugations to obtain large CM, small CM, and very low density lipoproteins (VLDL), and the distribution of apoB in these fractions was quantified. In the absence of OA, apoB was secreted as VLDL/LDL size particles. Addition of OA (>/=0.8 mM) with TC, but not with albumin, resulted in the secretion of one-third of apoB as CM. Lipid analysis revealed that half of the secreted phospholipids (PL) and triglycerides (TG) were associated with CM. In CM, TG were 7-11-fold higher than PL indicating that CM were TG-rich particles. Secreted CM contained apoB100, apoB48, and other apolipoproteins. Secretion of large CM was specifically inhibited by Pluronic L81, a detergent known to inhibit CM secretion in animals. These studies demonstrate that differentiated Caco-2 cells assemble and secrete CM in a manner similar to enterocytes in vivo. Next, experiments were performed to identify the sources of lipids used for lipoprotein assembly. Cells were labeled with [3H]glycerol for 12 h, washed, and supplemented with OA, TC, and [14C] glycerol for various times to induce CM assembly and to radiolabel nascent lipids. TG and PL were extracted from cells and media and the association of preformed and nascent lipids with lipoproteins was determined. All the lipoproteins contained higher amounts of preformed PL compared with nascent PL. VLDL contained equal amounts of nascent and preformed TG, whereas CM contained higher amounts of nascent TG even when nascent TG constituted a small fraction of the total cellular pool. These studies indicate that nascent TG and preformed PL are preferentially used for CM assembly and provide a molecular explanation for the in vivo observations that the fatty acid composition of TG, but not PL, of secreted CM reflects the composition of dietary fat. It is proposed that in the intestinal cells the preformed PL from the endoplasmic reticulum bud off with apoB as primordial particles and the assembly of larger lipoproteins is dependent on the synthesis and delivery of nascent TG to these particles.
Collapse
Affiliation(s)
- J Luchoomun
- Department of Biochemistry, School of Medicine, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
26
|
Gedde-Dahl A, Bakillah A, Hussain MM, Rustan AC. Tetradecylthioacetic acid (a 3-thia fatty acid) impairs secretion of oleic acid-induced triacylglycerol-rich lipoproteins in CaCo-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1438:73-84. [PMID: 10216282 DOI: 10.1016/s1388-1981(99)00040-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fatty acid analogue tetradecylthioacetic acid (TTA) has previously been shown to decrease triacylglycerol secretion in CaCo-2 cells (Gedde-Dahl et al., J. Lipid Res. 36 (1995) 535-543). The present study was designed to further elucidate the effect of TTA on lipoprotein production in CaCo-2 cells. TTA did not affect oleic acid-induced triacylglycerol synthesis, but it significantly decreased secretion of newly synthesized triacylglycerol when compared to cells incubated with oleic acid alone or oleic acid in combination with palmitic acid. In contrast, pulse-chase experiments showed no difference in the amount of labeled triacylglycerol secreted from cells exposed to either fatty acid combination during the chase period, indicating that TTA did not affect the secretory process in general. Cells incubated with TTA alone secreted triacylglycerol present at 1.025<rho<1.073 g/ml, corresponding to the low density lipoprotein/intermediate density lipoprotein density range. In contrast, cells supplemented with oleic acid or oleic acid in combination with TTA secreted triacylglycerol mainly in the very low density lipoprotein/chylomicron density range (rho<1.006 g/ml). Despite a marked decrease in triacylglycerol secretion, TTA treatment did not change secretion of apolipoprotein B nor the activity of microsomal triacylglycerol transfer protein (MTP) in the cells. Furthermore, the presence of TTA in cellular triacylglycerol had no effect on the ability of purified MTP to transfer triacylglycerol from donor to acceptor vesicles. Together, the above observations suggest that TTA interferes with other MTP-independent factors that regulate the intestinal lipoprotein secretion.
Collapse
Affiliation(s)
- A Gedde-Dahl
- Department of Pharmacology, School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, N-0316, Oslo, Norway
| | | | | | | |
Collapse
|
27
|
Abstract
Synthesis and secretion of chylomicrons by the intestine is essential to transport dietary fats in the circulation and to deliver these fats to the appropriate peripheral tissues. The assembly of chylomicrons within the enterocyte and the subsequent secretion of these lipoprotein particles into the lymph is a complex, multi-step process that includes absorption of lipids by the enterocytes, cellular lipid (re)synthesis and translocation of cellular lipid pools, synthesis and post-translational modification of various apolipoproteins and, finally, the assembly of lipid and lipoprotein components into a chylomicron. The key process in chylomicron synthesis is the intracellular association of apolipoprotein (apo)B48, the structural protein of chylomicrons, with lipids.
Collapse
Affiliation(s)
- M M van Greevenbroek
- Laboratory for Molecular Metabolism and Endocrinology, Maastricht University, The Netherlands
| | | |
Collapse
|
28
|
Hussain MM, Bakillah A, Nayak N, Shelness GS. Amino acids 430-570 in apolipoprotein B are critical for its binding to microsomal triglyceride transfer protein. J Biol Chem 1998; 273:25612-5. [PMID: 9748226 DOI: 10.1074/jbc.273.40.25612] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several studies have demonstrated protein-protein interactions between microsomal triglyceride transfer protein (MTP) and apolipoprotein B (apoB). However, the binding sites involved in these interactions have not been elucidated. To identify an MTP binding site in apoB, we have expressed several apoB sequences as fusion proteins with the eight-amino acid FLAG peptide. The chimeras were transiently expressed in COS cells, and conditioned media were used to study the binding of these sequences to either immobilized or soluble MTP. A polypeptide containing amino acids 270-570 (B:270-570), but not 1-300, bound to MTP. AGI-S17, an antagonist of apoB-MTP binding, inhibited the binding of B:270-570 to MTP but not to M2, a monoclonal antibody that recognizes the FLAG peptide. These data indicated that B:270-570 contains an MTP binding site. Next, sequences within 270-570 were subjected to C-terminal truncations at natural proline residues. B:270-509 bound less efficiently than B:270-570, whereas, B:270-430 and other shorter chimeras did not bind to MTP. Furthermore, truncations at amino acids 502 and 509 decreased MTP binding by 73 and 42%, respectively. These data indicate that B:430-570 in the alpha1-globular domain of apoB plays a crucial role in MTP binding and presumably in the initiation and maturation of apoB-containing lipoproteins.
Collapse
Affiliation(s)
- M M Hussain
- Departments of Pathology and Biochemistry, Allegheny University of the Health Sciences, MCP-Hahnemann School of Medicine, Philadelphia, Pennsylvania 19129, USA.
| | | | | | | |
Collapse
|
29
|
Daniel H, Morse E, Adibi S. Determinants of substrate affinity for the oligopeptide/H+ symporter in the renal brush border membrane. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50128-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|