1
|
Dias CB, Wood LG, Garg ML. Effects of dietary saturated and n-6 polyunsaturated fatty acids on the incorporation of long-chain n-3 polyunsaturated fatty acids into blood lipids. Eur J Clin Nutr 2016; 70:812-8. [PMID: 26757835 DOI: 10.1038/ejcn.2015.213] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/26/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND/OBJECTIVES Omega-3 polyunsaturated fatty acids (n-3PUFA) are better absorbed when they are combined with high-fat meals. However, the role of different dietary fats in modulating the incorporation of n-3PUFA in blood lipids in humans has not been previously explored. Omega-6 polyunsaturated fatty acids (n-6PUFA) are known to compete with n-3PUFA in the metabolic pathways and for the incorporation into phospholipids, whereas saturated fats (SFA) may enhance n-3PUFA incorporation into tissues. SUBJECTS/METHODS In a randomized parallel-design trial, we aimed to investigate the long-term effects of n-3PUFA supplementation in subjects consuming a diet enriched with either SFA or n-6PUFA on fatty acid incorporation into plasma and erythrocytes and on blood lipid profiles (total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides). RESULTS Dietary supplementation with n-3PUFA co-administered with SFA for 6 weeks resulted in a significant rise in total cholesterol (0.46±0.60 mmol/L; P=0.020) and LDL-C (0.48±0.48 mmol/L; P=0.011) in comparison with combination with n-6PUFA. The diet enriched with SFA also induced a greater increase in eicosapentaenoic acid (2.07±0.79 vs 1.15±0.53; P=0.004), a smaller decrease in docosapentaenoic acid (-0.12±0.23 vs -0.30±0.20; P=0.034) and a similar increase in docosahexaenoic acid (3.85±1.14 vs 3.10±1.07; P=0.128) percentage in plasma compared with the diet enriched with n-6PUFA. A similar effect was seen in erythrocytes. N-3PUFA supplementation resulted in similar changes in HDL-C and triglyceride levels. CONCLUSIONS The results suggest that dietary substitution of SFA with n-6PUFA, despite maintaining low levels of circulating cholesterol, hinders n-3PUFA incorporation into plasma and tissue lipids.
Collapse
Affiliation(s)
- C B Dias
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - L G Wood
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - M L Garg
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
2
|
Dias CB, Phang M, Wood LG, Garg ML. Postprandial lipid responses do not differ following consumption of butter or vegetable oil when consumed with omega-3 polyunsaturated fatty acids. Lipids 2015; 50:339-47. [PMID: 25753895 DOI: 10.1007/s11745-015-4003-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/20/2015] [Indexed: 12/25/2022]
Abstract
Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega-3 polyunsaturated fatty acids (n-3PUFA). Therefore, in a randomised cross-over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega-6 polyunsaturated fatty acids (n-6PUFA), in conjunction with n-3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C) and triacylglycerol (TAG)] and n-3PUFA incorporation into plasma lipids over a 6-h period. The incremental area under the curve for plasma cholesterol, LDL-C, HDL-C, TAG and n-3PUFA levels over 6 h was similar in the n-6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n-6PUFA when consumed with n-3PUFA; however, sex-differences in response to dietary fat type are worthy of further attention.
Collapse
Affiliation(s)
- Cintia B Dias
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, 305C Medical Science Building, Callaghan, NSW, 2308, Australia
| | | | | | | |
Collapse
|
3
|
Saturated fat consumption may not be the main cause of increased blood lipid levels. Med Hypotheses 2013; 82:187-95. [PMID: 24365276 DOI: 10.1016/j.mehy.2013.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 12/22/2022]
Abstract
Consumption of foods rich in saturated fatty acids (SFA) has often been associated with elevated blood lipid levels and consequently with risk for chronic diseases, including coronary heart disease. However, epidemiological and interventional studies on this topic are contradictory. While some studies have established a positive link, other studies have failed to show a significant association between saturated fat consumption and blood lipid levels, and others have even found an inverse association. Moreover, studies using animal models have demonstrated that dietary saturated fats raise blood lipid (cholesterol and triglycerides) levels only when the diet is deficient in omega-3 polyunsaturated fatty acids (n-3PUFA). The n-3PUFA are known for their potential in the management of hyperlipidaemia for the prevention of coronary heart disease, as well as for their anti-arrhythmic, anti-aggregatory and anti-inflammatory potential. We believe that with an adequate consumption of n-3PUFA dietary saturated fat may not result in elevated blood lipid levels. Therefore, we critically evaluated the literature regarding saturated fat and blood lipid level, with an emphasis on the role of n-3PUFA on this relationship. Evidence from animal studies and few clinical trials lead to the hypothesis that there are beneficial or neutral effects of saturated fatty acids when combined with recommended levels of n-3PUFA in the diet. However, an intervention focusing on the background fat when the volunteers' diet is supplemented with n-3PUFA is yet to be done. Proving the authenticity of this hypothesis would mean a substantial change in public health messages regarding saturated fats and their health effects; and also a change in the strategies related to prevention of chronic cardiac and artery diseases.
Collapse
|
4
|
Maitin V, Andreo U, Guo L, Fisher EA. Docosahexaenoic acid impairs the maturation of very low density lipoproteins in rat hepatic cells. J Lipid Res 2013; 55:75-84. [PMID: 24136824 DOI: 10.1194/jlr.m043026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One mechanism of the lipid-lowering effects of the fish oil n-3 fatty acids [e.g., docosahexaenoic acid (DHA)] in cell and animal models is induced hepatic apolipoprotein B100 (apoB) presecretory degradation. This degradation occurs post-endoplasmic reticulum, but whether DHA induces it before or after intracellular VLDL formation remains unanswered. We found in McA-RH7777 rat hepatic cells that DHA and oleic acid (OA) treatments allowed formation of pre-VLDL particles and their transport to the Golgi, but, in contrast to OA, with DHA pre-VLDL particles failed to quantitatively assemble into fully lipidated (mature) VLDL. This failure required lipid peroxidation and was accompanied by the formation of apoB aggregates (known to be degraded by autophagy). Preventing the exit of proteins from the Golgi blocked the aggregation of apoB but did not restore VLDL maturation, indicating that failure to fully lipidate apoB preceded its aggregation. ApoB autophagic degradation did not appear to require an intermediate step of cytosolic aggresome formation. Taken with other examples in the literature, the results of this study suggest that pre-VLDL particles that are competent to escape endoplasmic reticulum quality control mechanisms but fail to mature in the Golgi remain subject to quality control surveillance late in the secretory pathway.
Collapse
Affiliation(s)
- Vatsala Maitin
- Departments of Medicine (Leon H. Charney Division of Cardiology) and Cell Biology and the Marc and Ruti Bell Vascular Biology and Disease Program, New York University School of Medicine, New York, NY 10016; and
| | | | | | | |
Collapse
|
5
|
Doellinger J, Schroeder K, Witt N, Heunemann C, Nitsche A. Comparison of real-time PCR and MassTag PCR for the multiplex detection of highly pathogenic agents. Mol Cell Probes 2012; 26:177-81. [PMID: 22819946 DOI: 10.1016/j.mcp.2012.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/06/2012] [Accepted: 07/10/2012] [Indexed: 11/30/2022]
Abstract
Multiplex PCR assays are a cost- as well as labour-effective way to analyse one sample for several pathogens simultaneously. Besides the mutual competition of the individual PCR reactions included in a multiplex PCR assay, their specific read-out displays a limiting factor for the total number of PCR reactions that can be multiplexed. In this study, two PCR systems with different read-out approaches are compared, using a pentaplex PCR assay for the detection of highly pathogenic agents. A pentaplex assay was used since five represents the current limit of real-time PCR multiplexing capacity due to the low resolution of fluorescence emission peaks of the current equipment. In contrast, MassTag PCR as a quite new technique offers the possibility to detect up to 20-30 target sequences from one reaction. After extensive and separate optimisation of the PCR protocol for both platforms, a comparative probit analysis showed good sensitivities for MassTag and real-time PCR detection. Nevertheless, the detection limits of MassTag PCR have been undercut by the real-time PCR for each target. We therefore conclude that MassTag PCR is a useful diagnostic technique for the sensitive screening for pathogens by highly multiplexed PCR assays, but cannot reach the sensitivity of real-time PCR for lower multiplexed PCR assays.
Collapse
Affiliation(s)
- Joerg Doellinger
- Centre for Biological Security, Robert Koch Institute, Berlin, Germany.
| | | | | | | | | |
Collapse
|
6
|
Lu Y, Feskens EJ, Dollé ME, Imholz S, Verschuren WM, Müller M, Boer JM. Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am J Clin Nutr 2010; 92:258-65. [PMID: 20484448 DOI: 10.3945/ajcn.2009.29130] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The delta-5 and delta-6 desaturases, encoded by the FADS1 and FADS2 genes, are rate-limiting enzymes in polyunsaturated fatty acid (PUFA) biosynthesis. Single nucleotide polymorphisms in the FADS gene cluster region have been associated with both PUFA concentrations in plasma or erythrocyte membrane phospholipids and cholesterol concentrations in recent genome-wide association studies. OBJECTIVE We examined whether genetic variations in the FADS gene cluster region interact with dietary intakes of n-3 (omega-3) and n-6 (omega-6) PUFAs to affect plasma total, HDL-, and non-HDL-cholesterol concentrations. DESIGN Dietary intakes of n-3 and n-6 PUFAs, plasma concentrations of total and HDL cholesterol, and rs174546, rs482548, and rs174570 in the FADS gene cluster region were measured in 3575 subjects in the second survey of the Doetinchem Cohort Study. RESULTS Significant associations between rs174546 genotypes and total and non-HDL-cholesterol concentrations were observed in the group with a high intake of n-3 PUFAs (> or =0.51% of total energy; P = 0.006 and 0.047, respectively) but not in the low-intake group (P for interaction = 0.32 and 0.51, respectively). The C allele was associated with high total and non-HDL-cholesterol concentrations. Furthermore, the C allele was significantly associated with high HDL-cholesterol concentrations in the group with a high intake of n-6 PUFAs (> or =5.26% of total energy, P = 0.004) but not in the group with a low intake (P for interaction = 0.02). CONCLUSION Genetic variation in the FADS1 gene potentially interacts with dietary PUFA intakes to affect plasma cholesterol concentrations, which should be investigated further in other studies.
Collapse
Affiliation(s)
- Yingchang Lu
- Division of Human Nutrition, Wageningen University Research Center, Wageningen, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Cheema SK, Cornish ML. Bio F1B hamster: a unique animal model with reduced lipoprotein lipase activity to investigate nutrient mediated regulation of lipoprotein metabolism. Nutr Metab (Lond) 2007; 4:27. [PMID: 18070363 PMCID: PMC2235869 DOI: 10.1186/1743-7075-4-27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 12/10/2007] [Indexed: 11/19/2022] Open
Abstract
Background Bio F1B hamster is an inbred hybrid strain that is highly susceptible to diet-induced atherosclerosis. We previously reported that feeding a high fat fish oil diet to Bio F1B hamster caused severe hyperlipidaemia. In this study we compared the effects of various diets in the Bio F1B hamster and the Golden Syrian hamster, which is an outbred hamster strain to investigate whether genetic background plays an important role in dietary fat mediated regulation of lipoprotein metabolism. We further investigated the mechanisms behind diet-induced hyperlipidaemia in F1B hamster. Methods The Bio F1B and Golden Syrian hamsters, 8 weeks old, were fed high fat diets rich in either monounsaturated fatty acids, an n-6: n-3 ratio of 5 or a fish oil diet for 4 weeks. Animals were fasted overnight and blood and tissue samples were collected. Plasma was fractionated into various lipoprotein fractions and assayed for triacylglycerol and cholesterol concentrations. Plasma lipoprotein lipase activity was measured using radioisotope method. Microsomal triglyceride transfer protein activity was measured in the liver and intestine. Plasma apolipoproteinB48, -B100 and apolipoprotein E was measured using Western blots. Two-way ANOVA was used to determine the effect of diet type and animal strain. Results The fish oil fed F1B hamsters showed milky plasma after a 14-hour fast. Fish oil feeding caused accumulation of apolipoproteinB48 containing lipoprotein particles suggesting hindrance of triglyceride-rich lipoprotein clearance. There was no significant effect of diet or strain on hepatic or intestinal microsomal triglyceride transfer protein activity indicating that hyperlipidaemia is not due to an increase in the assembly or secretion of lipoprotein particles. F1B hamsters showed significantly reduced levels of lipoprotein lipase activity, which was inhibited by fish oil feeding. Conclusion Evidence is presented for the first time that alterations in lipoprotein lipase activity and mRNA levels contribute to varied response of these hamsters to dietary fat, highlighting the importance of genetic background in the regulation of lipid and lipoprotein metabolism by dietary fats. Bio F1B hamster may prove to be an important animal model to investigate nutrient mediated regulation of metabolic parameters under lipoprotein lipase deficiency.
Collapse
|
8
|
Polozova A, Gionfriddo E, Salem N. Effect of docosahexaenoic acid on tissue targeting and metabolism of plasma lipoproteins. Prostaglandins Leukot Essent Fatty Acids 2006; 75:183-90. [PMID: 16837179 DOI: 10.1016/j.plefa.2006.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We examined the effect of the docosahexaenoic acid (DHA) content of lipoproteins on their metabolism in vivo by a radioisotope labeling and tracking method. Purified HDL and LDL were labeled with (3)H-cholesteryl oleate tracer. To mimic dietary-related changes in fatty acid composition of lipoproteins, we incorporated lipids acylated with either DHA, arachidonic (AA) or oleic (OA) acid to phosphatidylcholine (didocosahexaenoylphosphatidylcholine (di22:6-PC), diarachidonoylphosphatidylcholine (di20:4-PC) and dioleoylphosphatidylcholine (di18:0-PC), respectively) into the purified particles. The lipids, at the amount added, did not cause detectable alterations in the morphology of the lipoproteins. Levels of radiotracers in blood and in several target tissues such as brain, heart, liver, muscle and adipose were determined at 1.5, 3 and 24h after intravenous injection into C57Bl/6J mice. No statistically significant differences were detected in the tissue distribution of tracers introduced into HDL enriched in DHA, compared to particles enriched with OA. In contrast, we found a significantly higher proportion of radiolabel associated with LDL enriched in DHA in heart, brown adipose and brain tissues. The uptake of labels associated with DHA containing LDL nearly doubled for heart and brown adipose tissues at 1.5 and 3h, and it was 30% higher for brain tissues at 24h. The tissue distribution of labels from the same particles enriched in AA or OA did not show a statistically significant difference from unaltered control lipoproteins. These findings point to the possible role of DHA in the regulation of LDL metabolism and involvement of the lipoproteins in transport of n-3 PUFA to target organs.
Collapse
Affiliation(s)
- Alla Polozova
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, MD 20892-9410, USA
| | | | | |
Collapse
|
9
|
Dorfman SE, Lichtenstein AH. Dietary fatty acids differentially modulate messenger RNA abundance of low-density lipoprotein receptor, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and microsomal triglyceride transfer protein in Golden-Syrian hamsters. Metabolism 2006; 55:635-41. [PMID: 16631440 DOI: 10.1016/j.metabol.2005.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 12/09/2005] [Indexed: 12/16/2022]
Abstract
Dietary fatty acids modulate plasma and intracellular cholesterol concentrations. Circulating non-high-density lipoprotein cholesterol (nHDL-C) concentration is determined by rates of hepatic very low-density lipoprotein assembly and secretion, and clearance of subsequent metabolic products. The effect of dietary fat (butter, traditional margarine, soybean oil, and canola oil) was assessed with respect to plasma lipids, hepatic lipid composition, and messenger RNA (mRNA) abundance of low-density lipoprotein (LDL) receptor, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, sterol regulatory element-binding protein (SREBP) 2, and microsomal triglyceride transfer protein (MTP) in the Golden-Syrian hamster (Charles River Laboratories, Wilmington, MA). Hamsters were fed with a nonpurified diet (6.25 fat g/100 g) with 0.1 g cholesterol/100 g (control diet) or control diet with an additional 10 g experimental fat/100 g for 12 weeks. Hamsters fed with the control diet, unsaturated fats (canola and soybean oils), and margarine, relative to butter, had significantly lower total cholesterol and nHDL-C and triglyceride concentrations. Additional dietary fat, regardless of fatty acid profile, resulted in higher hepatic cholesterol concentrations. In contrast, relative to the control diet-, butter-, or margarine-fed hamsters, these changes were associated with a 4- and 8-fold higher LDL receptor and 5- and 9-fold higher SREBP mRNA abundance, in hamsters fed with canola and soybean oils, respectively. MTP mRNA, a marker of very low-density lipoprotein particle formation, was higher in canola- and soybean oil-fed hamsters relative to the control diet-fed hamsters, although differences were modest. These results suggest that the substitution of canola and soybean oils for butter results in lower nHDL-C concentrations that may be related to increased mRNA abundance of the LDL receptor, SREBP-2, and MTP genes.
Collapse
Affiliation(s)
- Suzanne E Dorfman
- Cardiovascular Nutrition Laboratory, Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| | | |
Collapse
|
10
|
Aguilera CM, Ramirez-Tortosa CL, Quiles JL, Yago MD, Martínez-Burgos MA, Martínez-Victoria E, Gil A, Ramirez-Tortosa MC. Monounsaturated and omega-3 but not omega-6 polyunsaturated fatty acids improve hepatic fibrosis in hypercholesterolemic rabbits. Nutrition 2005; 21:363-71. [PMID: 15797680 DOI: 10.1016/j.nut.2004.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 06/07/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Although the influence of saturated fatty acids, monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), lipids, cholesterol levels, and other blood lipids has been established, few studies have examined the influence of these dietary lipids on the composition and histologic damage of organs in situations of hypercholesterolemia. Biliary lipids come from the liver, and this organ is essential in cholesterol homeostasis; thus, it may be helpful to evaluate the inter-relations among biliary, hepatic lipids, and hepatotoxic effects in situations of hypercholesterolemia with different dietary lipids. This study investigated whether administration of diets differing in fatty acid profiles (omega-3 PUFA, omega-6 PUFA, or MUFA) influence the content of biliary lipids, the lithogenic index of gallbladder bile, and the development of hepatic fibrosis in hypercholesterolemic rabbits. METHODS Thirty rabbits were randomized to one of five groups. A control group received rabbit chow for 80 d. The remaining four groups received a 50-d diet that contained 3% lard and 13% cholesterol to provoke hypercholesterolemia. After this period, three groups were fed for another 30 d on a diet enriched with omega-6 PUFAs, MUFAs, and omega-3 PUFAs, respectively. Liver, bile, and plasma lipid compositions, lipid peroxidation in hepatic mitochondria, and histologic hepatic lesions were analyzed. RESULTS AND CONCLUSIONS There was a beneficial effect of MUFA and omega-3 PUFA on hepatic fibrosis in hypercholesterolemic rabbits because both dietary fats led to recovery from hepatic lesions. However, because intake of omega-3 PUFA provoked lithogenic bile in rabbits, MUFA intake would be more advisable.
Collapse
Affiliation(s)
- Concepción M Aguilera
- Department of Biochemistry and Molecular Biology, Institute of Nutrition and Food Technology, University of Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
11
|
de Silva PP, Agarwal-Mawal A, Davis PJ, Cheema SK. The levels of plasma low density lipoprotein are independent of cholesterol ester transfer protein in fish-oil fed F1B hamsters. Nutr Metab (Lond) 2005; 2:8. [PMID: 15762995 PMCID: PMC555566 DOI: 10.1186/1743-7075-2-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Accepted: 03/11/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: Cholesterol ester transfer protein (CETP) plays a major role in regulating the levels of LDL- and HDL-cholesterol. We previously observed a fish-oil-induced elevation of low-density lipoprotein (LDL)-and very-low-density lipoprotein (VLDL)-cholesterol concentrations and a decrease in high-density lipoprotein (HDL)-cholesterol concentration in F1B hamsters. The molecular mechanism/s by which fish oil induces hyperlipidaemic effect was investigated in this study. We examined whether the effects of dietary fish oil on plasma lipoprotein concentrations are due to fish-oil-induced alterations in plasma CETP activity. MIX diet, a diet supplemented with a mixture of lard and safflower oil, was used as the control diet. RESULTS: We found that fish oil feeding in hamsters reduced CETP mass as well as CETP activity. Increasing the dietary fat level of fish-oil from 5% to 20% (w/w) led to a further decrease in CETP mass. Supplementation with dietary cholesterol increased both CETP mass and CETP activity in fish-oil and MIX-diet fed hamsters. However, there was no correlation between CETP mass as well as CETP activity and LDL-cholesterol concentrations. CONCLUSION: These findings suggest that cholesterol ester transfer between HDL and LDL is not likely to play a major role in determining fish-oil-induced changes in LDL- and HDL-cholesterol concentrations in F1B hamsters. A possible role of reduced clearance of LDL-particles as well as dietary fat level and dietary cholesterol dependent changes in LDL-lipid composition have been discussed.
Collapse
Affiliation(s)
- Pujitha P de Silva
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9 Canada
| | - Alka Agarwal-Mawal
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9 Canada
| | - Phillip J Davis
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9 Canada
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9 Canada
| |
Collapse
|
12
|
Abstract
We investigated the dietary influence of low and high levels of fish oil, supplemented with or without dietary cholesterol, on the plasma lipoprotein profile in Bio F1B hamsters, a model susceptible to diet-induced hyperlipidaemia. The MIX diet, a diet supplemented with a mixture of lard and safflower-seed oil, was used as the control diet to maintain the saturated MUFA and PUFA levels similar to the fish-oil diet. The animals were fed the specific diets for 2 weeks and fasted for 14 h before killing. The plasma from the animals fed high levels of fish oil was milky and rich in chylomicron-like particles. The plasma total cholesterol, VLDL- and LDL-cholesterol and -triacylglycerol concentrations were significantly higher, whereas HDL-cholesterol was lower in hamsters fed fish oil compared with the MIX-diet-fed hamsters. Increasing the amount of fat in the diet increased plasma lipids in both the fish-oil- and the MIX-diet-fed hamsters; however, this hyperlipidaemic effect of dietary fat level was greater in the hamsters fed the fish-oil diet. The hepatic lipid concentrations were not dramatically different between the fish-oil-fed and the MIX-diet-fed hamsters. However, the hepatic LDL-receptor mRNA levels were significantly low in the fish-oil-fed hamsters compared with the MIX-diet-fed hamsters. Increasing the amount of fish oil in the diet further decreased the hepatic LDL-receptor mRNA expression. It is concluded that F1B hamsters are susceptible to fish-oil-induced hyperlipidaemia, especially at high fat levels, and this increase is partially explained by the inhibition of hepatic LDL-receptor mRNA expression.
Collapse
Affiliation(s)
- Pujitha P de Silva
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada A1B 3X9
| | | | | |
Collapse
|
13
|
Ko C, O'Rourke SM, Huang LS. A fish oil diet produces different degrees of suppression of apoB and triglyceride secretion in human apoB transgenic mouse strains. J Lipid Res 2003; 44:1946-55. [PMID: 12867542 DOI: 10.1194/jlr.m300172-jlr200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human apolipoprotein B (apoB) transgenic (HuBTg) mouse strains were used to assess genetic effects on the response to fish oil (FO), a source of n-3 fatty acids. A congenic HuBTg strain of the C57BL/6 (B6) background and six F1 HuBTg strains were fed a FO for 2 weeks. Different responses of plasma lipid levels to FO were observed among these strains. In particular, plasma apoB levels changed minimally in FO-fed male B6 HuBTg mice, but increased markedly ( approximately 40%) in FO-fed male FVB/NJ (FVB) x B6 F1 HuBTg mice. These strain differences were determined mainly by hepatic apoB secretion rates and were likely regulated by posttranscriptional mechanisms. In addition, plasma triglyceride (TG) levels were reduced (14%) in FO-fed B6 mice, but not in FVB x B6 mice. These strain differences were determined mainly by TG secretion rates, but were not due to differences in hepatic lipogenesis. Hepatic mRNA levels of acyl-CoA oxidase, reflective of peroxisomal beta-oxidation rate, were increased in FO-fed B6 but not in FVB x B6 mice, which could account for the difference in TG secretion rates. In summary, differential effects of FO on plasma apoB and TG levels in B6 and FVB x B6 HuBTg mice were associated with strain differences in hepatic apoB and TG secretion and in peroxisomal beta-oxidation.
Collapse
Affiliation(s)
- Carol Ko
- Department of Medicine, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
14
|
Pal S, Thomson AM, Bottema CD, Roach PD. Polyunsaturated fatty acids downregulate the low density lipoprotein receptor of human HepG2 cells. J Nutr Biochem 2002; 13:55-63. [PMID: 11834220 DOI: 10.1016/s0955-2863(01)00195-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the study was to investigate the effect of different fatty acids on the low density lipoprotein (LDL) receptor of cultured human liver HepG2 cells. Previous studies investigating the effect of fatty acids on LDL expression have reported conflicting findings and are limited to measurements of LDL receptor binding activity. Therefore, this study is unique in that the relative effects of different fatty acids on the LDL receptor were investigated at three different stages of expression: 1) functional cellular LDL binding activity, 2) amount of LDL receptor protein and 3) LDL receptor mRNA level. The HepG2 cells were incubated for 24 hr with either 100 &mgr;M palmitic, oleic, linoleic or eicosapentaenoic acid (EPA). The measurement of LDL receptor binding activity was with colloidal gold-LDL conjugates, cellular LDL receptor protein was by western blotting and LDL receptor mRNA by Southern blotting of reverse-transcribed, polymerase chain reaction-amplified cDNA. The LDL receptor binding activity, protein and mRNA levels decreased as the degree of unsaturation of the fatty acids increased (palmitic acid greater-than-or-equal oleic acid > linoleic acid > EPA) and the inverse relationship held whether or not cholesterol was included in the culture media. The relative differences were very similar for the three stages of expression indicating that modulation of the LDL receptor by the fatty acids occurred at the level of gene transcription. The increased susceptibility to oxidation of the polyunsaturated fatty acids was unlikely to be a factor in the effect because EPA and linoleic acid (250 &mgr;M) still downregulated the LDL receptor in the presence of the antioxidant vitamin E (50 &mgr;M). In conclusion, the polyunsaturates, linoleic acid and EPA, effectively downregulated the LDL receptor of HepG2 cells compared to palmitic acid. The effects of these fatty acids were observed at the level of LDL receptor binding activity, protein and mRNA, strongly suggesting that the fatty acid effects were at the level of gene transcription.
Collapse
Affiliation(s)
- Sebely Pal
- CSIRO Health Sciences and Nutrition, 5000, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
15
|
Shafi S, Stepanova IP, Fitzsimmons C, Bowyer DE, Welzel D, Born GV. Effects of reserpine on expression of the LDL receptor in liver and on plasma and tissue lipids, low density lipoprotein and fibrinogen in rabbits in vivo. Atherosclerosis 2000; 149:267-75. [PMID: 10729376 DOI: 10.1016/s0021-9150(99)00327-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of administering reserpine (0.1 mg/kg) or 17alpha-ethinyloestradiol (2.5 mg/kg) to New Zealand White rabbits on low density lipoprotein receptors in liver, on plasma low density lipoprotein and fibrinogen and on plasma and tissue lipids were determined. Blood pressure and heart rate were also followed. The drugs were injected subcutaneously into conscious unrestrained rabbits for 5 days. On the 6th day homologous 125I-tyramine cellobiose labelled low density lipoprotein (125I-TC-LDL) was injected intravenously and 24 h later the animals were killed. Compared to controls, reserpine significantly increased LDL receptor expression in the liver by about threefold, and reduced total cholesterol in plasma, aorta and heart, without affecting plasma triglycerides. The reductions in plasma cholesterol and heart were due to decreases in both unesterified and esterified cholesterol. Similar effects were observed with oestrogen, except that there was no change in esterified cholesterol in aorta. In liver, a decrease of 24% in total cholesterol was due mainly to decreased esterified cholesterol. In adrenal glands total cholesterol increased by 25%. Reserpine significantly accelerated the plasma clearance of intravenously injected homologous 125I-TC-LDL and reduced its accumulation in aortic wall. Neither reserpine nor oestradiol affected blood pressure, haematocrit or plasma fibrinogen. The results suggest that reserpine is an affective anti-atherogenic drug capable of decreasing cholesterol in plasma, arteries and heart by increasing high affinity LDL receptors in the liver.
Collapse
Affiliation(s)
- S Shafi
- Pathopharmacology Unit, The William Harvey Research Institute, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London, UK.
| | | | | | | | | | | |
Collapse
|
16
|
Cartwright IJ, Higgins JA. Increased dietary triacylglycerol markedly enhances the ability of isolated rabbit enterocytes to secrete chylomicrons: an effect related to dietary fatty acid composition. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)34902-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Kim HJ, Takahashi M, Ezaki O. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 (SREBP-1) by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J Biol Chem 1999; 274:25892-8. [PMID: 10464332 DOI: 10.1074/jbc.274.36.25892] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dietary fish oil induces hepatic peroxisomal and microsomal fatty acid oxidation by peroxisome proliferator-activator receptor alpha activation, whereas it down-regulates lipogenic gene expression by unknown mechanism(s). Because sterol regulatory element-binding proteins (SREBPs) up-regulated lipogenic genes, investigation was made on the effects of fish oil feeding on SREBPs and sterol regulatory element (SRE)-dependent gene expression in C57BL/6J mice. Three forms of SREBPs, SREBP-1a, -1c, and -2, are expressed in liver, and their truncated mature forms activate transcription of sterol-regulated genes. C57BL/6J mice were divided into three groups; the first group was given a high carbohydrate diet, and the other two groups were given a high fat diet (60% of total energy), with the fat in the form of safflower oil or fish oil, for 5 months. Compared with safflower oil feeding, fish oil feeding decreased triglyceride and cholesterol concentrations in liver. There were no differences in amount of SREBP-1 and -2 in both precursor and mature forms between carbohydrate- and safflower oil-fed mice. However, compared with safflower oil feeding, fish oil feeding reduced the amounts of precursor SREBP-1 in membrane fraction by 90% and of mature SREBP-1 in liver nuclei by 57%. Fish oil feeding also reduced precursor SREBP-2 by 65% but did not alter the amount of mature SREBP-2. Compared with safflower oil feeding, fish oil feeding decreased liver SREBP-1c mRNA level by 86% but did not alter SERBP-1a mRNA. Consistent with decrease of mature SREBP-1, compared with safflower oil feeding, fish oil feeding down-regulated the expression of liver SRE-dependent genes, such as low density lipoprotein receptor, 3-hydroxy-3-methylglutaryl-CoA reductase, 3-hydroxy-3-methylglutaryl-CoA synthase, fatty acid synthase, acetyl-CoA carboxylase, and stearoyl-CoA desaturase-1. These data suggested that in liver, fish oil feeding down-regulates the mature form of SREBP-1 by decreasing SREBP-1c mRNA expression, with corresponding decreases of mRNAs of cholesterologenic and lipogenic enzymes.
Collapse
Affiliation(s)
- H J Kim
- Division of Clinical Nutrition, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | | | | |
Collapse
|
18
|
Dietary fish oils inhibit early events in the assembly of very low density lipoproteins and target apoB for degradation within the rough endoplasmic reticulum of hamster hepatocytes. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32455-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|