1
|
Wu H, Zhang Z, Xue Y, Guo J, Ouyang Z, Cao Z, Guo W, Zhang Q, Wang M, Gu X. PCSK9 Targeted Autophagosome-Tethering Compounds: Design, Synthesis, and Antiatherosclerosis Evaluation. J Med Chem 2025; 68:8190-8207. [PMID: 40226893 DOI: 10.1021/acs.jmedchem.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Atherosclerosis is a multifaceted disease involving various cell types and complex mechanisms, and it is the main cause of cardiovascular disease. Proprotein convertase subtilisin/kexin type-9 (PCSK9) has been identified as an effective target for treating atherosclerosis; however, most current research focuses on biological drugs. Our work optimized the previously reported autophagosome-tethering compound OY3, and specifically, compound W6 induced PCSK9 degradation with a 5-fold increase in activity and a 6-fold increase in bioavailability. Compared to the currently marketed PCSK9 drug, siRNA, W6 demonstrated comparable antiatherosclerosis effects both in vivo and in vitro. W6 exhibited beneficial effects on hepatocytes, endothelial cells, macrophages, and vascular smooth muscle cells involved in the atherosclerosis process, making it a promising potential antiatherosclerosis drug. This work highlights the feasibility of ATTECs in degrading both intracellular and extracellular proteins, and our novel PCSK9-ATTEC W6 provides a valuable reference for the treatment of atherosclerotic diseases.
Collapse
Affiliation(s)
- Hongyu Wu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Ziwen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Yongxing Xue
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Jiannan Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Zhirong Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Zhonglian Cao
- Department of Biopharmaceuticals, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Qingwen Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry Co., Ltd., Shanghai 201301, China
| | - Mo Wang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| |
Collapse
|
2
|
Liu S, Huang J, Luo J, Gao X, Song S, Bian Q, Weng Y, Chen J. LOX-1-Based Assembly Layer on Devices Surface to Promote Endothelial Repair and Reduce Complications for In Situ Interventional Plaque. Adv Healthc Mater 2025; 14:e2403060. [PMID: 39692170 DOI: 10.1002/adhm.202403060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/05/2024] [Indexed: 12/19/2024]
Abstract
Rapid endothelialization and functional recovery are considered as promising methods to extend the long-term effectiveness of cardiovascular implant materials. LOX-1 participates in the initiation and development of atherosclerosis and is highly expressed in a variety of cells involved in atherosclerosis, hence it is feasible to accelerate the recovery of endothelial function and inhibit the development of existing plaques by regulating LOX-1. Herein, the surface is modified with Poly I, a LOX-1 inhibitor, using rich amino dendritic macromolecules (PAMAM) as the linker coating, to against the pathological microenvironment. Poly I modified surface resisted endothelial damage caused by oxidative stress through the LOX-1-NADPH signaling pathway and inhibited endothelial inflammation via the LOX-1-NF-κB signaling pathway. It also promoted endothelial cell migration and inhibited platelet adhesion. Moreover, the Poly I modified surface can inhibit oxLDL-induced macrophage foam cell formation and alleviate inflammation by modulating macrophage phenotypes. Poly I modified surface significantly reduced plaque burden after treatment of atherosclerotic model rats, most importantly, it significantly inhibited post-implantation-induced restenosis and thrombosis. In vivo and in vitro evaluations confirmed its safety and therapeutic efficacy against atherosclerosis. Overall, the multifunctional Poly I with pathological microenvironment regulation exhibits potential application value in the surface engineering of cardiovascular devices.
Collapse
Affiliation(s)
- Sainan Liu
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jinquan Huang
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Jiayan Luo
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Xiaowa Gao
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Siqi Song
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qihao Bian
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yajun Weng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Junying Chen
- Key Laboratory of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
3
|
Kim EN, Seok HY, Lim JS, Koh J, Bae JM, Kim CJ, Ryu GH, Ok YJ, Choi JS, Cho CH, Oh SJ. CRP deposition in human abdominal aortic aneurysm is associated with transcriptome alterations toward aneurysmal pathogenesis: insights from in situ spatial whole transcriptomic analysis. Front Immunol 2024; 15:1475051. [PMID: 39737187 PMCID: PMC11682986 DOI: 10.3389/fimmu.2024.1475051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Background We investigated the effects of C-reactive protein (CRP) deposition on the vessel walls in abdominal aortic aneurysm (AAA) by analyzing spatially resolved changes in gene expression. Our aim was to elucidate the pathways that contribute to disease progression. Methods AAA specimens from surgically resected formalin-fixed paraffin-embedded tissues were categorized into the AAA-high CRP [serum CRP ≥ 0.1 mg/dL, diffuse and strong immunohistochemistry (IHC); n = 7 (12 cores)] and AAA-low-CRP [serum CRP < 0.1 mg/dL, weak IHC; n = 3 (5 cores)] groups. Normal aorta specimens obtained during heart transplantation were used as the control group [n = 3 (6 cores)]. Spatially resolved whole transcriptomic analysis was performed, focusing on CD68-positive macrophages, CD45-positive lymphocytes, and αSMA-positive vascular smooth muscle cells. Results Spatial whole transcriptomic analysis revealed significant differential expression of 1,086, 1,629, and 1,281 genes between high-CRP and low-CRP groups within CD68-, CD45-, and αSMA-positive cells, respectively. Gene ontology (GO) analysis of CD68-positive macrophages identified clusters related to inflammation, apoptosis, and immune response, with signal transducer and activator of transcription 3 implicated across three processes. Notably, genes involved in blood vessel diameter maintenance were significantly downregulated in the high-CRP group. GO analysis of lymphocytes showed upregulation of leukocyte rolling and the apoptosis pathway, whereas, in smooth muscle cells, genes associated with Nuclear factor kappa B (NF-κB) signaling and c-Jun N-terminal Kinase (JNK) pathway were upregulated, and those related to blood pressure regulation were downregulated in the high-CRP group. Discussion CRP deposition was associated with significant transcriptomic changes in macrophages, lymphocytes, and vascular smooth muscle cells in AAA, suggesting its potential role in promoting pro-inflammatory and apoptotic processes, as well as contributing to the degradation of vascular structure and elasticity.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/immunology
- Transcriptome
- Male
- Gene Expression Profiling
- C-Reactive Protein/genetics
- C-Reactive Protein/analysis
- C-Reactive Protein/metabolism
- Female
- Aged
- Macrophages/metabolism
- Macrophages/immunology
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
Collapse
Affiliation(s)
- Eun Na Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Young Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Seoul National University Hospital, Seoul, Republic of Korea
| | - Joon Seo Lim
- Clinical Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Mo Bae
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chong Jai Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ga-Hyeon Ryu
- Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - You Jung Ok
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Sung Choi
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences and Pharmacology , College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Dai Y, Junho CVC, Schieren L, Wollenhaupt J, Sluimer JC, van der Vorst EPC, Noels H. Cellular metabolism changes in atherosclerosis and the impact of comorbidities. Front Cell Dev Biol 2024; 12:1446964. [PMID: 39188527 PMCID: PMC11345199 DOI: 10.3389/fcell.2024.1446964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/28/2024] Open
Abstract
Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD. Therefore, we briefly review disease pathogenesis and the principles of cell metabolic pathways, before detailing changes in cellular metabolism in the context of atherosclerosis and comorbidities. In the hypoxic, inflammatory and hyperlipidemic milieu of the atherosclerotic plaque riddled with oxidative stress, metabolism shifts to increase anaerobic glycolysis, the pentose-phosphate pathway and amino acid use. We elaborate on metabolic changes for macrophages, neutrophils, vascular endothelial cells, vascular smooth muscle cells and lymphocytes in the context of atherosclerosis and its co-morbidities hypertension, dyslipidemia, and diabetes. Since causal relationships of specific key genes in a metabolic pathway can be cell type-specific and comorbidity-dependent, the impact of cell-specific metabolic changes must be thoroughly explored in vivo, with a focus on also systemic effects. When cell-specific treatments become feasible, this information will be crucial for determining the best metabolic intervention to improve atherosclerosis and its interplay with co-morbidities.
Collapse
Affiliation(s)
- Yusang Dai
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Physical Examination Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Carolina Victoria Cruz Junho
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Luisa Schieren
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
| | - Judith C. Sluimer
- Department of Nephrology and Clinical Immunology, University Hospital RWTH Aachen, Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Interdisciplinary Centre for Clinical Research (IZKF), RWTH Aachen University, Aachen, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital, RWTH Aachen University, Aachen, Germany
- Aachen-Maastricht Institute for Cardiorenal Disease (AMICARE), RWTH Aachen Campus, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| |
Collapse
|
5
|
Munno M, Mallia A, Greco A, Modafferi G, Banfi C, Eligini S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel) 2024; 13:583. [PMID: 38790688 PMCID: PMC11118168 DOI: 10.3390/antiox13050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process.
Collapse
Affiliation(s)
- Marco Munno
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, 27100 Pavia, Italy
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Gloria Modafferi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| |
Collapse
|
6
|
Bagheri B, Khatibiyan Feyzabadi Z, Nouri A, Azadfallah A, Mahdizade Ari M, Hemmati M, Darban M, Alavi Toosi P, Banihashemian SZ. Atherosclerosis and Toll-Like Receptor4 (TLR4), Lectin-Like Oxidized Low-Density Lipoprotein-1 (LOX-1), and Proprotein Convertase Subtilisin/Kexin Type9 (PCSK9). Mediators Inflamm 2024; 2024:5830491. [PMID: 38445291 PMCID: PMC10914434 DOI: 10.1155/2024/5830491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.
Collapse
Affiliation(s)
- Bahador Bagheri
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Ahmad Nouri
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Azadfallah
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahyar Mahdizade Ari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maral Hemmati
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahboubeh Darban
- Department of Internal Medicine, Kowsar Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Alavi Toosi
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
7
|
Pyrpyris N, Dimitriadis K, Beneki E, Iliakis P, Soulaidopoulos S, Tsioufis P, Adamopoulou E, Kasiakogias A, Sakalidis A, Koutsopoulos G, Aggeli K, Tsioufis K. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr Probl Cardiol 2024; 49:102117. [PMID: 37802161 DOI: 10.1016/j.cpcardiol.2023.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
Low-density lipoprotein (LDL) and oxidized LDL (oxLDL) are major contributors to atherogenesis, as endogenous antigens, via several receptors such as LOX 1. A PubMed search was conducted in order to identify relevant articles regarding LOX-1's role in the atherosclerosis, diagnosis, prognostic use and molecules that could be used for therapy. The references of the manuscripts obtained were also reviewed, in order to find additional relevant bibliography. LOX-1 is a lectin-like pattern recognition receptor, mostly expressed in endothelial cells (ECs) which can bind a variety of molecules, including oxLDL and C-reactive protein (CRP). LOX-1 plays a key role in oxLDL's role as a causative agent of atherosclerosis through several pathologic mechanisms, such as oxLDL deposition in the subintima, foam cell formation and endothelial dysfunction. Additionally, LOX-1 acts a scavenger receptor for oxLDL in macrophages and can be responsible for oxLDL uptake, when stimulated. Serum LOX-1 (sLOX-1) has emerged as a new, potential biomarker for diagnosis of acute coronary syndromes, and it seems promising for use along with other common biomarkers in everyday clinical practice. In a therapeutic perspective, natural as well as synthetic molecules exert anti-LOX-1 properties and attain the receptor's pathophysiological effects, thus extensive research is ongoing to further evaluate molecules with therapeutic potential. However, most of these molecules need further trials in order to properly assess their safety and efficacy for clinical use. The aim of this review is to investigate LOX-1 role in atherogenesis and explore its potential as diagnostic tool and therapeutic target.
Collapse
Affiliation(s)
- Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece.
| | - Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Panagiotis Iliakis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Stergios Soulaidopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Panagiotis Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Elena Adamopoulou
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Alexandros Kasiakogias
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Athanasios Sakalidis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - George Koutsopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Konstantina Aggeli
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| |
Collapse
|
8
|
Aronova A, Tosato F, Naser N, Asare Y. Innate Immune Pathways in Atherosclerosis-From Signaling to Long-Term Epigenetic Reprogramming. Cells 2023; 12:2359. [PMID: 37830572 PMCID: PMC10571887 DOI: 10.3390/cells12192359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Innate immune pathways play a crucial role in the development of atherosclerosis, from sensing initial danger signals to the long-term reprogramming of immune cells. Despite the success of lipid-lowering therapy, anti-hypertensive medications, and other measures in reducing complications associated with atherosclerosis, cardiovascular disease (CVD) remains the leading cause of death worldwide. Consequently, there is an urgent need to devise novel preventive and therapeutic strategies to alleviate the global burden of CVD. Extensive experimental research and epidemiological studies have demonstrated the dominant role of innate immune mechanisms in the progression of atherosclerosis. Recently, landmark trials including CANTOS, COLCOT, and LoDoCo2 have provided solid evidence demonstrating that targeting innate immune pathways can effectively reduce the risk of CVD. These groundbreaking trials mark a significant paradigm shift in the field and open new avenues for atheroprotective treatments. It is therefore crucial to comprehend the intricate interplay between innate immune pathways and atherosclerosis for the development of targeted therapeutic interventions. Additionally, unraveling the mechanisms underlying long-term reprogramming may offer novel strategies to reverse the pro-inflammatory phenotype of immune cells and restore immune homeostasis in atherosclerosis. In this review, we present an overview of the innate immune pathways implicated in atherosclerosis, with a specific focus on the signaling pathways driving chronic inflammation in atherosclerosis and the long-term reprogramming of immune cells within atherosclerotic plaque. Elucidating the molecular mechanisms governing these processes presents exciting opportunities for the development of a new class of immunotherapeutic approaches aimed at reducing inflammation and promoting plaque stability. By addressing these aspects, we can potentially revolutionize the management of atherosclerosis and its associated cardiovascular complications.
Collapse
Affiliation(s)
| | | | | | - Yaw Asare
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilian-University (LMU), 80539 Munich, Germany
| |
Collapse
|
9
|
Xue S, Su Z, Liu D. Immunometabolism and immune response regulate macrophage function in atherosclerosis. Ageing Res Rev 2023; 90:101993. [PMID: 37379970 DOI: 10.1016/j.arr.2023.101993] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Macrophages are crucial in the progression of atherosclerotic cardiovascular disease (ASCVD). In the atherosclerotic lesions, macrophages play a central role in maintaining inflammatory response, promoting plaque development, and facilitating thrombosis. Increasing studies indicate that metabolic reprogramming and immune response mediate macrophage functional changes in all stages of atherosclerosis. In this review article, we explain how metabolic changes in glycolysis, oxidative phosphorylation, the tricarboxylic acid cycle, fatty acid synthesis, fatty acid oxidation, and cholesterol metabolism regulate macrophage function in atherosclerosis. We discuss how immune response to oxidized lipids regulate macrophage function in atherosclerosis. Additionally, we explore how abnormal metabolism leads to macrophage mitochondrial dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Sheng Xue
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China.
| | - Zhe Su
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| | - Dacheng Liu
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003 China
| |
Collapse
|
10
|
Vavere AL, Sinsakul M, Ongstad EL, Yang Y, Varma V, Jones C, Goodman J, Dubois VFS, Quartino AL, Karathanasis SK, Abuhatzira L, Collén A, Antoniades C, Koren MJ, Gupta R, George RT. Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results. J Am Heart Assoc 2023; 12:e027540. [PMID: 36688371 PMCID: PMC9973634 DOI: 10.1161/jaha.122.027540] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Background Blockade of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a potentially attractive mechanism for lowering inflammatory and lipid risk in patients with atherosclerosis. This study aims to assess the safety, tolerability, and target engagement of MEDI6570, a high-affinity monoclonal blocking antibody to LOX-1. Methods and Results This phase 1, first-in-human, placebo-controlled study (NCT03654313) randomized 88 patients with type 2 diabetes to receive single ascending doses (10, 30, 90, 250, or 500 mg) or multiple ascending doses (90, 150, or 250 mg once monthly for 3 months) of MEDI6570 or placebo. Primary end point was safety; secondary and exploratory end points included pharmacokinetics, immunogenicity, free soluble LOX-1 levels, and change in coronary plaque volume. Mean age was 57.6/58.1 years in the single ascending doses/multiple ascending doses groups, 31.3%/62.5% were female, and mean type 2 diabetes duration was 9.7/8.7 years. Incidence of adverse events was similar among cohorts. MEDI6570 exhibited nonlinear pharmacokinetics, with terminal half-life increasing from 4.6 days (30 mg) to 11.2 days (500 mg), consistent with target-mediated drug disposition. Dose-dependent reductions in mean soluble LOX-1 levels from baseline were observed (>66% at 4 weeks and 71.61-82.96% at 10 weeks in the single ascending doses and multiple ascending doses groups, respectively). After 3 doses, MEDI6570 was associated with nonsignificant regression of noncalcified plaque volume versus placebo (-13.45 mm3 versus -8.25 mm3). Conclusions MEDI6570 was well tolerated and demonstrated dose-dependent soluble LOX-1 suppression and a pharmacokinetic profile consistent with once-monthly dosing. Registration URL: https://clinicaltrials.gov/; Unique identifier: NCT03654313.
Collapse
Affiliation(s)
- Andrea L. Vavere
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Marvin Sinsakul
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Emily L. Ongstad
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Ye Yang
- Early CVRM Biometrics, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Vijayalakshmi Varma
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Christopher Jones
- Clinical Pharmacology & Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Joanne Goodman
- Clinical Pharmacology & Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Vincent F. S. Dubois
- Clinical Pharmacology & Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Angelica L. Quartino
- Clinical Pharmacology & Quantitative PharmacologyClinical Pharmacology & Safety Sciences, R&D, AstraZenecaGothenburgSweden
| | - Sotirios K. Karathanasis
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Liron Abuhatzira
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Anna Collén
- Projects, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGothenburgSweden
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordUnited Kingdom
| | - Michael J. Koren
- Jacksonville Center for Clinical Research (JCCR)JacksonvilleFLUSA
| | - Ruchi Gupta
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| | - Richard T. George
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal and MetabolismBioPharmaceuticals R&D, AstraZenecaGaithersburgMDUSA
| |
Collapse
|
11
|
Yao SJ, Lan TH, Zhang XY, Zeng QH, Xu WJ, Li XQ, Huang GB, Liu T, Lyu WH, Jiang W. LOX-1 Regulation in Anti-atherosclerosis of Active Compounds of Herbal Medicine: Current Knowledge and the New Insight. Chin J Integr Med 2023; 29:179-185. [PMID: 36342592 DOI: 10.1007/s11655-022-3621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) have recently been identified to be closely related to the occurrence and development of atherosclerosis (AS). A growing body of evidence has suggested Chinese medicine takes unique advantages in preventing and treating AS. In this review, the related research progress of AS and LOX-1 has been summarized. And the anti-AS effects of 10 active components of herbal medicine through LOX-1 regulation have been further reviewed. As a potential biomarker and target for intervention in AS, LOX-1 targeted therapy might provide a promising and novel approach to atherosclerotic prevention and treatment.
Collapse
Affiliation(s)
- Si-Jie Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Tao-Hua Lan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xin-Yu Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Qiao-Huang Zeng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wen-Jing Xu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Xiao-Qing Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Gui-Bao Huang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Tong Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
| | - Wei-Hui Lyu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China.,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China.,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Jiang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Department of Cardiology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510020, China. .,Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510020, China. .,The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
12
|
Lin X, Yuen M, Yuen T, Yuen H, Wang M, Peng Q. Regulatory Effect of Sea-Buckthorn Procyanidins on Oxidative Injury HUVECs. Front Nutr 2022; 9:850076. [PMID: 35656158 PMCID: PMC9152354 DOI: 10.3389/fnut.2022.850076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
As society develops and aging populations increase, the incidence of arteriosclerosis, a seriously harmful cardiovascular disease (CVD) which mostly results from endothelial cellular oxidative damage, has continuously risen. Procyanidins from sea-buckthorn is a powerful antioxidant, although its protective effect on the cardiovascular system is not yet clearly understand. In this study, oxidative damaged HUVECs induced by palmitate acid (PA) were used as a model and the regulatory effect of procyanidins from sea-buckthorn (SBP) on HUVECs were investigated. The results showed SBP can be used for 12 h by HUVECs and had no detective cytotoxicity to them under 400 μg/L. Also, different concentrations of SBP can increase mitochondrial membrane potential and NO level and decrease LDH leakage in a dose-effect relationship, indicating SBP can improve oxidative damage. In addition, western blots and qPCR results showed SBP regulation on oxidative injured HUVECs is probably through p38MAPK/NF-κB signal pathway. This study revealed the molecular mechanism of procyanidins in decreasing endothelial oxidative damage, providing a theoretical foundation for further research on natural bioactive compounds to exert antioxidant activity in the body and prevent and improve cardiovascular diseases.
Collapse
Affiliation(s)
- Ximeng Lin
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | | | | | | | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia‐induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc 2022; 97:1844-1867. [PMID: 35569818 PMCID: PMC9541442 DOI: 10.1111/brv.12866] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
Atherosclerosis, characterized by lipid‐rich plaques in the arterial wall, is an age‐related disorder and a leading cause of mortality worldwide. However, the specific mechanisms remain complex. Recently, emerging evidence has demonstrated that senescence of various types of cells, such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), macrophages, endothelial progenitor cells (EPCs), and adipose‐derived mesenchymal stem cells (AMSCs) contributes to atherosclerosis. Cellular senescence and atherosclerosis share various causative stimuli, in which dyslipidemia has attracted much attention. Dyslipidemia, mainly referred to elevated plasma levels of atherogenic lipids or lipoproteins, or functional impairment of anti‐atherogenic lipids or lipoproteins, plays a pivotal role both in cellular senescence and atherosclerosis. In this review, we summarize the current evidence for dyslipidemia‐induced cellular senescence during atherosclerosis, with a focus on low‐density lipoprotein (LDL) and its modifications, hydrolysate of triglyceride‐rich lipoproteins (TRLs), and high‐density lipoprotein (HDL), respectively. Furthermore, we describe the underlying mechanisms linking dyslipidemia‐induced cellular senescence and atherosclerosis. Finally, we discuss the senescence‐related therapeutic strategies for atherosclerosis, with special attention given to the anti‐atherosclerotic effects of promising geroprotectors as well as anti‐senescence effects of current lipid‐lowering drugs.
Collapse
Affiliation(s)
- Qunyan Xiang
- Department of Geriatrics, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Institute of Aging and Age‐related Disease Research Central South University Changsha Hunan 410011 PR China
| | - Feng Tian
- Department of Geriatric Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Shilan Zhang
- Department of Gastroenterology, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| |
Collapse
|
14
|
Bai Y, Li X, Chen Z, Li J, Tian H, Ma Y, Raza SHA, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Interference With ACSL1 Gene in Bovine Adipocytes: Transcriptome Profiling of mRNA and lncRNA Related to Unsaturated Fatty Acid Synthesis. Front Vet Sci 2022; 8:788316. [PMID: 34977220 PMCID: PMC8716587 DOI: 10.3389/fvets.2021.788316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
The enzyme long-chain acyl-CoA synthetase 1 (ACSL1) is essential for lipid metabolism. The ACSL1 gene controls unsaturated fatty acid (UFA) synthesis as well as the formation of lipid droplets in bovine adipocytes. Here, we used RNA-Seq to determine lncRNA and mRNA that regulate UFA synthesis in bovine adipocytes using RNA interference and non-interference with ACSL1. The corresponding target genes of differentially expressed (DE) lncRNAs and the DE mRNAs were found to be enriched in lipid and FA metabolism-related pathways, according to GO and KEGG analyses. The differentially expressed lncRNA- differentially expressed mRNA (DEL-DEM) interaction network indicated that some DELs, such as TCONS_00069661, TCONS_00040771, TCONS_ 00035606, TCONS_00048301, TCONS_001309018, and TCONS_00122946, were critical for UFA synthesis. These findings assist our understanding of the regulation of UFA synthesis by lncRNAs and mRNAs in bovine adipocytes.
Collapse
Affiliation(s)
- Yanbin Bai
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xupeng Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zongchang Chen
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jingsheng Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Hongshan Tian
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yong Ma
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | | | - Bingang Shi
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiangmin Han
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- College of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
15
|
Jiang W, Zhao W, Ye F, Huang S, Wu Y, Chen H, Zhou R, Fu G. SNHG12 regulates biological behaviors of ox-LDL-induced HA-VSMCs through upregulation of SPRY2 and NUB1. Atherosclerosis 2021; 340:1-11. [PMID: 34847450 DOI: 10.1016/j.atherosclerosis.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/27/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Human vascular smooth muscle cells (HA-VSMCs) are an important cell type involved in atherosclerosis. Low density lipoprotein (LDL) is a lipoprotein particle that carries cholesterol into peripheral tissue cells, and oxidized modified LDL (ox-LDL) is a well-known inducer of the atherosclerosis-related phenotype switch in VSMCs, leading to the occurrence of atherosclerosis. Accumulating studies have revealed that long non-coding RNAs (lncRNAs) mediate the effect of ox-LDL on the atherosclerosis-related biological activities of HA-VSMCs, including proliferation, migration, and apoptosis. However, the mechanism of small nucleolar RNA host gene 12 (SNHG12) in ox-LDL-induced phenotype switch of VSMCs remains unclear. Thus, this research dug in whether SNHG12 mediated the influence of ox-LDL on HA-VSMCs and the potential mechanism. METHODS Fundamental experiments and functional assays were performed to measure the function of SNHG12 on HA-VSMCs. Then, mechanism assays and rescue assays were performed to study the regulatory mechanism of SNHG12 in HA-VSMCs. RESULTS SNHG12 reversed the influence of ox-LDL treatment in enhancing cell proliferative and migratory abilities and weakening apoptotic ability in HA-VSMCs. SNHG12 was a competitive endogenous RNA (ceRNA) competing with sprouty RTK signaling antagonist 2 (SPRY2) to bind to miR-1301-3p, thus up-regulating SPRY2 expression in ox-LDL-treated HA-VSMCs. Besides, SNHG12 recruited serine and arginine rich splicing factor 1 (SRSF1) to stabilize negative regulator of ubiquitin like proteins 1 (NUB1) expression. CONCLUSIONS This study illustrated that SNHG12 inhibited cell proliferation, migration and facilitated cell apoptosis in ox-LDL-induced HA-VSMCs by up-regulating SPRY2 and NUB1.
Collapse
Affiliation(s)
- Wenbing Jiang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Wei Zhao
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Fanhao Ye
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Shiwei Huang
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Youyang Wu
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Hao Chen
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Rui Zhou
- Department of Cardiology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, PR China.
| |
Collapse
|
16
|
Yang X, Hou D, Liu J, Wang T, Luo Y, Sun W, Li C, Shen L, Liu W, Wu D. Soluble Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1 Level is Related to Clinical Prognosis In Patients with Acute Atherosclerosis-related Ischemic Stroke. Clin Appl Thromb Hemost 2021; 27:10760296211059500. [PMID: 34775859 PMCID: PMC8597060 DOI: 10.1177/10760296211059500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
To investigate the associations between soluble Lectin-like Oxidized Low-density lipoprotein receptor-1 (sLOX-1) and clinical prognosis, especially infarct volume in patients with acute atherosclerosis-related ischemic stroke. We recruited acute ischemic stroke patients within 3 days after onset. Patients were stratified into 3 groups by sLOX-1 level. Initial stroke severity was assessed using the National Institutes of Health Stroke Scale scores, and infarct volume was measured using DWI by ITK-SNAP software. The clinical prognosis was evaluated by DWI volume, clinical response at discharge, and functional outcome at 90 days. Spearman rank correlation analysis was used to examine associations between circulating sLOX-1 levels and infarct volumes. Logistic regression was used to explore the relationship between sLOX-1 levels and clinical prognosis. A total of 207 patients were included in our study. The median DWI volume in the lowest sLOX-1 tertile was 1.98 cm3, smaller than 4.26 cm3 in the highest sLOX-1 group. The Spearman rank correlation coefficient between sLOX-1 levels and DWI volume was 0.47 (P < .01). Compared with the highest sLOX-1 tertiles, patients in the lowest sLOX-1 tertile had a higher risk of favorable functional outcome at 90 days (OR = 3.47, 95% CI, 1.21-9.96) after adjusting traditional risk factors. However, there was no difference between sLOX-1 level and clinical response at discharge. For patients with acute atherosclerosis-related ischemic stroke, circulating sLOX-1 level is correlated with DWI volume in the acute phase and favorable functional outcome at 90 days, but not with the clinical response at discharge.
Collapse
Affiliation(s)
- Xiaoli Yang
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Duanlu Hou
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianjun Liu
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tianyao Wang
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yufan Luo
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenbo Sun
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chen Li
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Liwei Shen
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Wenpeng Liu
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Danhong Wu
- 71529Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis. J Mol Med (Berl) 2021; 99:1511-1526. [PMID: 34345929 DOI: 10.1007/s00109-021-02109-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/03/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic and progressive process. It is the most important pathological basis of cardiovascular disease and stroke. Vascular smooth muscle cells (VSMCs) are an essential cell type in atherosclerosis. Previous studies have revealed that VSMCs undergo phenotypic transformation in atherosclerosis to participate in the retention of atherogenic lipoproteins as well as the formation of the fibrous cap and the underlying necrotic core in plaques. The emergence of lineage-tracing studies indicates that the function and number of VSMCs in plaques have been greatly underestimated. In addition, recent studies have revealed that VSMCs make up at least 50% of the foam cell population in human and mouse atherosclerotic lesions. Therefore, understanding the formation of lipid-loaded VSMCs and their regulatory mechanisms is critical to elucidate the pathogenesis of atherosclerosis and to explore potential therapeutic targets. Moreover, combination of many complementary technologies such as lineage tracing, single-cell RNA sequencing (scRNA-seq), flow cytometry, and mass cytometry (CyTOF) with immunostaining has been performed to further understand the complex VSMC function. Correct identification of detrimental and beneficial processes may reveal successful therapeutic treatments targeting VSMCs and their derivatives during atherosclerosis. The purpose of this review is to summarize the process of lipid-loaded VSMC formation in atherosclerosis and to describe novel insight into VSMCs gained by using multiple advanced methods.
Collapse
|
18
|
Circulating Biomarkers Reflecting Destabilization Mechanisms of Coronary Artery Plaques: Are We Looking for the Impossible? Biomolecules 2021; 11:biom11060881. [PMID: 34198543 PMCID: PMC8231770 DOI: 10.3390/biom11060881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/12/2022] Open
Abstract
Despite significant strides to mitigate the complications of acute coronary syndrome (ACS), this clinical entity still represents a major global health burden. It has so far been well-established that most of the plaques leading to ACS are not a result of gradual narrowing of the vessel lumen, but rather a result of sudden disruption of vulnerable atherosclerotic plaques. As most of the developed imaging modalities for vulnerable plaque detection are invasive, multiple biomarkers were proposed to identify their presence. Owing to the pivotal role of lipids and inflammation in the pathophysiology of atherosclerosis, most of the biomarkers originated from one of those processes, whereas recent advancements in molecular sciences shed light on the use of microRNAs. Yet, at present there are no clinically implemented biomarkers or any other method for that matter that could non-invasively, yet reliably, diagnose the vulnerable plaque. Hence, in this review we summarized the available knowledge regarding the pathophysiology of plaque instability, the current evidence on potential biomarkers associated with plaque destabilization and finally, we discussed if search for biomarkers could one day bring us to non-invasive, cost-effective, yet valid way of diagnosing the vulnerable, rupture-prone coronary artery plaques.
Collapse
|
19
|
Rogula S, Błażejowska E, Gąsecka A, Szarpak Ł, Jaguszewski MJ, Mazurek T, Filipiak KJ. Inclisiran-Silencing the Cholesterol, Speaking up the Prognosis. J Clin Med 2021; 10:2467. [PMID: 34199468 PMCID: PMC8199585 DOI: 10.3390/jcm10112467] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
The reduction of circulating low-density lipoprotein-cholesterol (LDL-C) is a primary target in cardiovascular risk reduction due to its well-established benefits in terms of decreased mortality. Despite the use of statin therapy, 10%-20% of high- and very-high-risk patients do not reach their LDL-C targets. There is an urgent need for improved strategies to manage dyslipidemia, especially among patients with homozygous familial hypercholesterolemia, but also in patients with established cardiovascular disease who fail to achieve LDL goals despite combined statin, ezetimibe, and PCSK9 inhibitor (PCSK9i) therapy. Inclisiran is a disruptive, first-in-class small interfering RNA (siRNA)-based therapeutic developed for the treatment of hypercholesterolemia that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) synthesis, thereby upregulating the number of LDL receptors on the hepatocytes, thus lowering the plasma LDL-C concentration. Inclisiran decreases the LDL-C levels by over 50% with one dose every 6 months, making it a simple and well-tolerated treatment strategy. In this review, we summarize the general information regarding (i) the role of LDL-C in atherosclerotic cardiovascular disease, (ii) data regarding the role of PCSK9 in cholesterol metabolism, (iii) pleiotropic effects of PCSK9, and (iv) the effects of PCSK9 silencing. In addition, we focus on inclisiran, in terms of its (i) mechanism of action, (ii) biological efficacy and safety, (iii) results from the ORION trials, (iv) benefits of its combination with statins, and (v) its potential future role in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Sylwester Rogula
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| | - Ewelina Błażejowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| | - Łukasz Szarpak
- Maria Sklodowska-Curie Białystok Oncology Centre, Ogrodowa 12, 15-027 Białystok, Poland;
- Maria Sklodowska-Curie Medical Academy in Warsaw, Solidarności 12, 03-411 Warsaw, Poland
| | - Milosz J. Jaguszewski
- 1st Department of Cardiology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Tomasz Mazurek
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| | - Krzysztof J. Filipiak
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (S.R.); (E.B.); (T.M.); (K.J.F.)
| |
Collapse
|
20
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
21
|
Mentrup T, Cabrera-Cabrera F, Schröder B. Proteolytic Regulation of the Lectin-Like Oxidized Lipoprotein Receptor LOX-1. Front Cardiovasc Med 2021; 7:594441. [PMID: 33553253 PMCID: PMC7856673 DOI: 10.3389/fcvm.2020.594441] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
The lectin-like oxidized-LDL (oxLDL) receptor LOX-1, which is broadly expressed in vascular cells, represents a key mediator of endothelial activation and dysfunction in atherosclerotic plaque development. Being a member of the C-type lectin receptor family, LOX-1 can bind different ligands, with oxLDL being the best characterized. LOX-1 mediates oxLDL uptake into vascular cells and by this means can promote foam cell formation. In addition, LOX-1 triggers multiple signaling pathways, which ultimately induce a pro-atherogenic and pro-fibrotic transcriptional program. However, the molecular mechanisms underlying this signal transduction remain incompletely understood. In this regard, proteolysis has recently emerged as a regulatory mechanism of LOX-1 function. Different proteolytic cleavages within the LOX-1 protein can initiate its turnover and control the cellular levels of this receptor. Thereby, cleavage products with individual biological functions and/or medical significance are produced. Ectodomain shedding leads to the release of a soluble form of the receptor (sLOX1) which has been suggested to have diagnostic potential as a biomarker. Removal of the ectodomain leaves behind a membrane-bound N-terminal fragment (NTF), which despite being devoid of the ligand-binding domain is actively involved in signal transduction. Degradation of this LOX-1 NTF, which represents an athero-protective mechanism, critically depends on the aspartyl intramembrane proteases Signal peptide peptidase-like 2a and b (SPPL2a/b). Here, we present an overview of the biology of LOX-1 focusing on how proteolytic cleavages directly modulate the function of this receptor and, what kind of pathophysiological implications this has in cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
22
|
Poznyak AV, Nikiforov NG, Markin AM, Kashirskikh DA, Myasoedova VA, Gerasimova EV, Orekhov AN. Overview of OxLDL and Its Impact on Cardiovascular Health: Focus on Atherosclerosis. Front Pharmacol 2021; 11:613780. [PMID: 33510639 PMCID: PMC7836017 DOI: 10.3389/fphar.2020.613780] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular pathologies maintain the leading position in mortality worldwide. Atherosclerosis is a chronic disease that can result in a variety of serious complications, such as myocardial infarction, stroke, and cardiovascular disease. Inflammation and lipid metabolism alterations play a crucial role in atherogenesis, but the details of relationships and causality of these fundamental processes remain not clear. The oxidation of LDL was considered the main atherogenic modification of LDL within the vascular wall for decades. However, recent investigations provided a growing body of evidence in support of the multiple LDL modification theory. It suggests that LDL particles undergo numerous modifications that change their size, density, and chemical properties within the blood flow and vascular wall. Oxidation is the last stage in this cascade resulting in the atherogenic properties. Moreover, recent investigations have discovered that oxLDL may have both anti-inflammatory and pro-inflammatory properties. Oxidized LDL can trigger inflammation through the activation of macrophages and other cells. After all, oxidized LDL is still a promising object for further investigations that have the potential to clarify the unknown parts of the atherogenic process. In this review, we discuss the role of oxLDL in atherosclerosis development on different levels.
Collapse
Affiliation(s)
- Anastasia V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Nikita G Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Alexander M Markin
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Dmitry A Kashirskikh
- Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Veronika A Myasoedova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia.,Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico, Milan, Italy
| | - Elena V Gerasimova
- Department of Systemic Rheumatic Diseases, V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Alexander N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of the Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
23
|
Barreto J, Karathanasis SK, Remaley A, Sposito AC. Role of LOX-1 (Lectin-Like Oxidized Low-Density Lipoprotein Receptor 1) as a Cardiovascular Risk Predictor: Mechanistic Insight and Potential Clinical Use. Arterioscler Thromb Vasc Biol 2020; 41:153-166. [PMID: 33176449 DOI: 10.1161/atvbaha.120.315421] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Atherosclerosis, the underlying cause of cardiovascular disease (CVD), is a worldwide cause of morbidity and mortality. Reducing ApoB-containing lipoproteins-chiefly, LDL (low-density lipoprotein)-has been the main strategy for reducing CVD risk. Although supported by large randomized clinical trials, the persistence of residual cardiovascular risk after effective LDL reduction has sparked an intense search for other novel CVD biomarkers and therapeutic targets. Recently, Lox-1 (lectin-type oxidized LDL receptor 1), an innate immune scavenger receptor, has emerged as a promising target for early diagnosis and cardiovascular risk prediction and is also being considered as a treatment target. Lox-1 was first described as a 50 kDa transmembrane protein in endothelial cells responsible for oxLDL (oxidized LDL) recognition, triggering downstream pathways that intensify atherosclerosis via endothelial dysfunction, oxLDL uptake, and apoptosis. Lox-1 is also expressed in platelets, where it enhances platelet activation, adhesion to endothelial cells, and ADP-mediated aggregation, thereby favoring thrombus formation. Lox-1 was also identified in cardiomyocytes, where it was implicated in the development of cardiac fibrosis and myocyte apoptosis, the main determinants of cardiac recovery following an ischemic insult. Together, these findings have revealed that Lox-1 is implicated in all the main steps of atherosclerosis and has encouraged the development of immunoassays for measurement of sLox-1 (serum levels of soluble Lox-1) to be used as a potential CVD biomarker. Finally, the recent development of synthetic Lox-1 inhibitors and neutralizing antibodies with promising results in animal models has made Lox-1 a target for drug development. In this review, we discuss the main findings regarding the role of Lox-1 in the development, diagnosis, and therapeutic strategies for CVD prevention and treatment.
Collapse
Affiliation(s)
- Joaquim Barreto
- Atherosclerosis and Vascular Biology Lab (Atherolab), Clinical Research Center, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil (J.B., A.C.S.)
| | - Sotirios K Karathanasis
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (S.K.K., A.R.)
- NeoProgen, Baltimore, MD (S.K.K.)
| | - Alan Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD (S.K.K., A.R.)
| | - Andrei C Sposito
- Atherosclerosis and Vascular Biology Lab (Atherolab), Clinical Research Center, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Brazil (J.B., A.C.S.)
| |
Collapse
|
24
|
Liu D, Wang X, Zhang M, Tian J, Liu M, Jin T, Pan J, Gao M, An F. WISP1 alleviates lipid deposition in macrophages via the PPARγ/CD36 pathway in the plaque formation of atherosclerosis. J Cell Mol Med 2020; 24:11729-11741. [PMID: 32851768 PMCID: PMC7579692 DOI: 10.1111/jcmm.15783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022] Open
Abstract
Lipid deposition in macrophages plays an important role in atherosclerosis. The WNT1-inducible signalling pathway protein 1(WISP1) can promote proliferation and migration of smooth muscle cells. Its expression is up-regulated in obesity, which is associated with atherosclerosis, but the effect of WISP1 on atherosclerosis remains unclear. Thus, the objective of our study was to elucidate the role of WISP and its mechanism of action in atherosclerosis via in vivo and in vitro experiments. In our experiment, ApoE-/- mice were divided into 5 groups: control, high-fat diet (HFD), null lentivirus (HFD + NC), lentivirus WISP1 (HFD + IvWISP1) and WISP1-shRNA (HFD + shWISP1). Oil Red O staining, immunofluorescence and immunohistochemistry of the aortic sinuses were conducted. Macrophages (RAW264.7 cell lines and peritoneal macrophages) were stimulated with 50 μg/mL oxidized low-density lipoprotein (ox-LDL); then, the reactive oxygen species (ROS) level was measured. Oil Red O staining and Dil-ox-LDL (ox-LDL with Dil dye) uptake measurements were used to test lipid deposition of peritoneal macrophages. WISP1, CD36, SR-A and PPARγ expression levels were measured via Western blotting and ELISA. The results showed that HFD mice had increased WISP1, CD36 and SR-A levels. The plaque lesion area increased when WISP1 was down-regulated, and lipid uptake and foam cell formation were inhibited when WISP1 was up-regulated. Treatment of RAW264.7 cell lines with ox-LDL increased WISP1 expression via activation of the Wnt5a/β-catenin pathway, whereas ROS inhibition reduced WISP1 expression. Moreover, WISP1 down-regulated CD36 and SR-A expression, and Oil Red O staining and Dil-ox-LDL uptake measurement showed that WISP1 down-regulated lipid deposition in macrophages. These results clearly demonstrate that WISP1 is activated by ox-LDL at high ROS levels and can alleviate lipid deposition in atherosclerosis through the PPARγ/CD36 pathway.
Collapse
Affiliation(s)
- Dian Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Xuyang Wang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Mingjun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Jingjing Tian
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Ming Liu
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Tao Jin
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Jinyu Pan
- Department of CardiologyShandong Provincial The First Affiliated Hospital of Shandong First Medical UniversityJinanChina
| | | | - Fengshuang An
- The Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineDepartment of CardiologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
25
|
Shi J, Yang Y, Cheng A, Xu G, He F. Metabolism of vascular smooth muscle cells in vascular diseases. Am J Physiol Heart Circ Physiol 2020; 319:H613-H631. [PMID: 32762559 DOI: 10.1152/ajpheart.00220.2020] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are the fundamental component of the medial layer of arteries and are essential for arterial physiology and pathology. It is becoming increasingly clear that VSMCs can alter their metabolism to fulfill the bioenergetic and biosynthetic requirements. During vascular injury, VSMCs switch from a quiescent "contractile" phenotype to a highly migratory and proliferative "synthetic" phenotype. Recent studies have found that the phenotype switching of VSMCs is driven by a metabolic switch. Metabolic pathways, including aerobic glycolysis, fatty acid oxidation, and amino acid metabolism, have distinct, indispensable roles in normal and dysfunctional vasculature. VSMCs metabolism is also related to the metabolism of endothelial cells. In the present review, we present a brief overview of VSMCs metabolism and how it regulates the progression of several vascular diseases, including atherosclerosis, systemic hypertension, diabetes, pulmonary hypertension, vascular calcification, and aneurysms, and the effect of the risk factors for vascular disease (aging, cigarette smoking, and excessive alcohol drinking) on VSMC metabolism to clarify the role of VSMCs metabolism in the key pathological process.
Collapse
Affiliation(s)
- Jia Shi
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anying Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Ramos Gómez TI, Toledo Alonso JR. LOX-1 en las afecciones cardiovasculares, perspectivas terapéuticas futuras. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El receptor de la lipoproteína de baja densidad oxidado tipo lectina 1 (LOX-1), también conocido como OLR-1, es un receptor scavenger (SR) clase E, que media la absorción del colesterol LDL en su forma oxidada, por las células vasculares. LOX-1 está involucrado en la disfunción endotelial, la adhesión de monocitos, la proliferación, migración y apoptosis de las células del músculo liso, la formación de células espumosas, la activación de plaquetas, así como la inestabilidad a nivel del endotelio vascular; todos eventos críticos en la patogénesis de la aterosclerosis. LOX-1 contribuyen a la inestabilidad de la placa ateroesclerótica y a las últimas secuelas clínicas de ruptura endotelial e isquemia tisular cardíaca potencialmente mortal. No existe en la actualidad ningún fármaco aprobado o en desarrollo clínico a partir de LOX-1, debido a sus complejos mecanismos biológicos no dilucidados completamente. Se han utilizado diversas terapias con el objetivo de inhibir la acción de LOX-1; medicamentos como: antioxidantes, estatinas, agentes antinflamatorios naturales, que actúen sobre su expresión, pero todos con eficacia moderada. También se ha evaluado la administración de anticuerpos anti-LOX-1 inhibe la aterosclerosis al disminuir eventos celulares. El diseño de fármacos enfocados en el conocimiento de las vías de señalización de LOX-1 y la aplicación de herramientas biotecnológicas permite el desarrollo de nuevas dianas terapéuticas basadas en la potencialidad que tienen los anticuerpos monoclonales. Con estos antecedentes el, receptor LOX-1, representa un objetivo terapéutico atractivo para el tratamiento de enfermedades ateroscleróticas humanas. La evidencia reciente indica que la acción sobre este SR es una posible estrategia para el tratamiento de la enfermedad vascular, explorando en esta revisión su papel y posibles futuras aplicaciones en el diagnóstico y la terapéutica.
Collapse
Affiliation(s)
- Thelvia I. Ramos Gómez
- Departamento Ciencias de la Vida y de la Agricultura, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, PO BOX 171-5-231B, Sangolquí, Ecuador
| | - Jorge Roberto Toledo Alonso
- Laboratorio de Biotecnología y Biofármacos, Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Barrio Universitario s/n, Concepción CP. 4030000, Chile
| |
Collapse
|
27
|
Oxidized LDL Modify the Human Adipocyte Phenotype to an Insulin Resistant, Proinflamatory and Proapoptotic Profile. Biomolecules 2020; 10:biom10040534. [PMID: 32244787 PMCID: PMC7226150 DOI: 10.3390/biom10040534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1, and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL.
Collapse
|
28
|
Markstad H, Edsfeldt A, Yao Mattison I, Bengtsson E, Singh P, Cavalera M, Asciutto G, Björkbacka H, Fredrikson GN, Dias N, Volkov P, Orho-Melander M, Nilsson J, Engström G, Gonçalves I. High Levels of Soluble Lectinlike Oxidized Low-Density Lipoprotein Receptor-1 Are Associated With Carotid Plaque Inflammation and Increased Risk of Ischemic Stroke. J Am Heart Assoc 2020; 8:e009874. [PMID: 30744454 PMCID: PMC6405674 DOI: 10.1161/jaha.118.009874] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background When the lectinlike oxidized low-density lipoprotein (ox LDL) receptor-1 ( LOX -1), a scavenger receptor for ox LDL , binds ox LDL , processes leading to endothelial dysfunction and inflammation are promoted. We aimed to study release mechanisms of LOX -1 and how circulating levels of soluble LOX -1 ( sLOX -1) relate to plaque inflammation and future risk for ischemic stroke. Methods and Results Endothelial cells and leukocytes were used to study release of sLOX -1. Plasma levels of sLOX -1 were determined in 4703 participants in the Malmö Diet and Cancer cohort. Incidence of ischemic stroke was monitored. For 202 patients undergoing carotid endarterectomy, levels of sLOX -1 were analyzed in plasma and plaque homogenates and related to plaque inflammation factors. Endothelial cells released sLOX -1 when exposed to ox LDL . A total of 257 subjects experienced stroke during a mean follow-up of 16.5 years. Subjects in the highest tertile of sLOX -1 had a stroke hazard ratio of 1.75 (95% CI, 1.28-2.39) compared with those in the lowest tertile after adjusting for age and sex. The patients undergoing carotid endarterectomy had a significant association between plasma sLOX -1 and the plaque content of sLOX -1 ( r=0.209, P=0.004). Plaques with high levels of sLOX -1 had more ox LDL , proinflammatory cytokines, and matrix metalloproteinases. Conclusions Our findings demonstrate that ox LDL induces the release of sLOX -1 from endothelial cells and that circulating levels of sLOX -1 correlate with carotid plaque inflammation and risk for ischemic stroke. These observations provide clinical support to experimental studies implicating LOX -1 in atherosclerosis and its possible role as target for cardiovascular intervention.
Collapse
Affiliation(s)
- Hanna Markstad
- 1 Center for Medical Imaging and Physiology Skåne University Hospital Lund University Lund Sweden.,2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden
| | - Andreas Edsfeldt
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden.,3 Department of Cardiology Skåne University Hospital Malmö Sweden
| | - Ingrid Yao Mattison
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden
| | - Eva Bengtsson
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden
| | - Pratibha Singh
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden
| | - Michele Cavalera
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden
| | - Giuseppe Asciutto
- 4 Vascular Center, Malmö, Sweden Skåne University Hospital Malmö Sweden
| | - Harry Björkbacka
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden
| | - Gunilla Nordin Fredrikson
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden
| | - Nuno Dias
- 4 Vascular Center, Malmö, Sweden Skåne University Hospital Malmö Sweden
| | - Petr Volkov
- 5 Clinical Sciences Malmö Lund University Malmö Sweden
| | | | - Jan Nilsson
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden
| | | | - Isabel Gonçalves
- 2 Experimental Cardiovascular Research Unit Clinical Research Center Clinical Sciences Malmö Lund University Malmö Sweden.,3 Department of Cardiology Skåne University Hospital Malmö Sweden
| |
Collapse
|
29
|
Inhibition of LOX-1 prevents inflammation and photoreceptor cell death in retinal degeneration. Int Immunopharmacol 2020; 80:106190. [PMID: 31945611 DOI: 10.1016/j.intimp.2020.106190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE To explore the expression and role of lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) in retinal degeneration. METHODS The retinal degeneration of BALB/c mice was induced by light exposure. BV2 cells were activated by LPS stimulation. Retinas or BV2 cells were pretreated with LOX-1 neutralizing antibody or Polyinosinic acid (PolyI) (the inhibitor of LOX-1) before light damage (LD) or LPS stimulation. LOX-1, TNF-α, IL-1β, CCL2 and NF-κB expression were detected in retinas or BV2 cells by real-time RT-PCR, western blot or ELISA. Histological analyses of retinas were performed. Photoreceptor cell death was assessed by TUNEL assay in retinas or by flow cytometry in 661W cells cultured in microglia-conditioned medium. RESULTS Photoreceptor cell death and elevated expression of LOX-1 were induced by LD in retinas of BALB/c mice. LOX-1 neutralizing antibody or PolyI pretreatment significantly reduced the elevated expression of LOX-1, TNF-α, IL-1β, CCL2 and p-NF-κB caused by LD in retinas. Inhibition of LOX-1 by LOX-1 neutralizing antibody or PolyI significantly reduced photoreceptor cell death induced by LD in retinas. Elevated levels of TNF-α, IL-1β and CCL2 caused by LPS were down-regulated by inhibition of LOX-1 in BV2 cells. Inhibition of LOX-1 reduces microglial neurotoxicity on photoreceptors. CONCLUSIONS LOX-1 expression is increased in light induced retinal degeneration, what's more, inhibition of LOX-1 prevents inflammation and photoreceptor cell death in retinal degeneration and reduces microglial neurotoxicity on photoreceptors. Therefore, LOX-1 can be used as a potential therapeutic target for such retinal degeneration diseases.
Collapse
|
30
|
Qiao Y, Wang C, Kou J, Wang L, Han D, Huo D, Li F, Zhou X, Meng D, Xu J, Murtaza G, Artyom B, Ma N, Luo S. MicroRNA-23a suppresses the apoptosis of inflammatory macrophages and foam cells in atherogenesis by targeting HSP90. Gene 2019; 729:144319. [PMID: 31884108 DOI: 10.1016/j.gene.2019.144319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022]
Abstract
In previous study, we have found that microRNA-23a is down regulated in atherosclerotic tissues. Here we demonstrate that miR-23a directly binds to 3'UTR of HSP90 mRNA to suppress the expression of HSP90. To investigate the potential roles of miR-23a in macrophage, THP-1 macrophages were transfected with miR-23a mimics or inhibitors. Our results showed inflammatory factors IL-6 and MCP-1 concentrations in cell culture medium of macrophage and foam cell transfected with miR-23a mimics were decreased. Furthermore, we find that apoptosis of macrophage and foam cells transfected with miR-23a mimics were inhibited. Over expression of miR-23a in foam cells could reduced lipid intake and accumulation in foam cells. Meanwhile, we found that in inflammatory macrophages and foam cells transfected with miR-23a mimcs, HSP90 and NF-κB proteins are significantly decreased. Our results have suggested a promising and potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Yu Qiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Chuxuan Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Jiayuan Kou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Lujing Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Da Huo
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Fuyan Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Xiaoxi Zhou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Dehao Meng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Jiaran Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Bobkov Artyom
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China; Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China; Medical Science Institute of Hei Longjiang Province, Harbin, China.
| | - Shanshun Luo
- Department of Gerontology, The First Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
31
|
Rahimi P, Mesbah-Namin SA, Ostadrahimi A, Separham A, Asghari Jafarabadi M. Betalain- and betacyanin-rich supplements’ impacts on the PBMC SIRT1 and LOX1 genes expression and Sirtuin-1 protein levels in coronary artery disease patients: A pilot crossover clinical trial. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
32
|
Anti-atherosclerosis effect of H2S donors based on nicotinic acid and chlorfibrate structures. Bioorg Med Chem 2019; 27:3307-3318. [DOI: 10.1016/j.bmc.2019.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/02/2019] [Accepted: 06/05/2019] [Indexed: 01/01/2023]
|
33
|
Stoeva M. RETRACTED ARTICLE: Apoptotic suppression of inflammatory macrophages and foam cells in vascular tissue by miR-23a. HEALTH AND TECHNOLOGY 2019. [DOI: 10.1007/s12553-019-00301-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Upregulated LOX-1 Receptor: Key Player of the Pathogenesis of Atherosclerosis. Curr Atheroscler Rep 2019; 21:38. [DOI: 10.1007/s11883-019-0801-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
LOX-1: Regulation, Signaling and Its Role in Atherosclerosis. Antioxidants (Basel) 2019; 8:antiox8070218. [PMID: 31336709 PMCID: PMC6680802 DOI: 10.3390/antiox8070218] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis has long been known to be a chronic inflammatory disease. In addition, there is intense oxidative stress in atherosclerosis resulting from an imbalance between the excess reactive oxygen species (ROS) generation and inadequate anti-oxidant defense forces. The excess of the oxidative forces results in the conversion of low-density lipoproteins (LDL) to oxidized LDL (ox-LDL), which is highly atherogenic. The sub-endothelial deposition of ox-LDL, formation of foamy macrophages, vascular smooth muscle cell (VSMC) proliferation and migration, and deposition of collagen are central pathophysiologic steps in the formation of atherosclerotic plaque. Ox-LDL exerts its action through several different scavenger receptors, the most important of which is LOX-1 in atherogenesis. LOX-1 is a transmembrane glycoprotein that binds to and internalizes ox-LDL. This interaction results in variable downstream effects based on the cell type. In endothelial cells, there is an increased expression of cellular adhesion molecules, resulting in the increased attachment and migration of inflammatory cells to intima, followed by their differentiation into macrophages. There is also a worsening endothelial dysfunction due to the increased production of vasoconstrictors, increased ROS, and depletion of endothelial nitric oxide (NO). In the macrophages and VSMCs, ox-LDL causes further upregulation of the LOX-1 gene, modulation of calpains, macrophage migration, VSMC proliferation and foam cell formation. Soluble LOX-1 (sLOX-1), a fragment of the main LOX-1 molecule, is being investigated as a diagnostic marker because it has been shown to be present in increased quantities in patients with hypertension, diabetes, metabolic syndrome and coronary artery disease. LOX-1 gene deletion in mice and anti-LOX-1 therapy has been shown to decrease inflammation, oxidative stress and atherosclerosis. LOX-1 deletion also results in damage from ischemia, making LOX-1 a promising target of therapy for atherosclerosis and related disorders. In this article we focus on the different mechanisms for regulation, signaling and the various effects of LOX-1 in contributing to atherosclerosis.
Collapse
|
36
|
Itabe H, Kato R, Sawada N, Obama T, Yamamoto M. The Significance of Oxidized Low-Density Lipoprotein in Body Fluids as a Marker Related to Diseased Conditions. Curr Med Chem 2019. [PMID: 29521196 DOI: 10.2174/0929867325666180307114855] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of ox-LDL and LDL rather than oxLDL concentration alone has also been focused. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in the circulatory system.
Collapse
Affiliation(s)
- Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Rina Kato
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Naoko Sawada
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
37
|
Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr Med Chem 2019; 26:1693-1700. [DOI: 10.2174/0929867325666180508100950] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 02/02/2023]
Abstract
Oxidized LDL (ox-LDL) plays a central role in atherosclerosis by acting on multiple
cells such as endothelial cells, macrophages, platelets, fibroblasts and smooth muscle cells
through LOX-1. LOX-1 is a 50 kDa transmembrane glycoprotein that serves as receptor for
ox-LDL, modified lipoproteins, activated platelets and advance glycation end-products. Ox-
LDL through LOX-1, in endothelial cells, causes increase in leukocyte adhesion molecules,
activates pathways of apoptosis, increases reactive oxygen species and cause endothelial dysfunction.
In vascular smooth muscle cells and fibroblasts, they stimulate proliferation, migration
and collagen synthesis. LOX-1 expressed on macrophages inhibit macrophage migration
and stimulate foam cell formation. They also stimulate generation of metalloproteinases and
contribute to plaque instability and thrombosis. Drugs that modulate LOX-1 are desirable targets
against atherosclerosis. Many naturally occurring compounds have been shown to modulate
LOX-1 expression and atherosclerosis. Currently, novel drug design techniques are used
to identify molecules that can bind to LOX-1 and inhibit its activation by ox-LDL. In addition,
techniques using RNA interference and monoclonal antibody against LOX-1 are currently
being investigated for clinical use.
Collapse
Affiliation(s)
- Ajoe John Kattoor
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Sri Harsha Kanuri
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Jawahar L. Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| |
Collapse
|
38
|
Lubrano V, Pingitore A, Traghella I, Storti S, Parri S, Berti S, Ndreu R, Andrenelli A, Palmieri C, Iervasi G, Mastorci F, Vassalle C. Emerging Biomarkers of Oxidative Stress in Acute and Stable Coronary Artery Disease: Levels and Determinants. Antioxidants (Basel) 2019; 8:antiox8050115. [PMID: 31052417 PMCID: PMC6562723 DOI: 10.3390/antiox8050115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Oxidative stress is crucial in the pathogenesis of atherosclerosis and acute myocardial infarction (AMI). Under the generic terms “oxidative stress” (OS), many biomarkers belonging to different pathways have been proposed. Aim: To compare the levels of recently proposed OS-related parameters in acute coronary syndromes (ACS) and stable coronary artery disease (CAD), to evaluate their effectiveness as additive risk or illness indicators of stable and acute ischemic events, and their response over time during the course of AMI. Methods: 76 ACS, 77 CAD patients, and 63 controls were enrolled in the study. Different OS-related biomarkers, including reactive oxygen metabolites (ROM), the total antioxidant capacity (OXY), nitrite/nitrate (final nitric oxide products, NOx), and Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), were evaluated. Moreover, time response during AMI course (admission, and 6, 12, 18, 24, 36, and 48 hours after, T0-T6, respectively) and correlation with traditional cardiovascular (CV) risk factors (age, gender, hypertension, diabetes mellitus, dyslipidemia, smoking habit) were also assessed. Results: Over time, ROM progressively increased while OXY and NOx decreased. Kinetics of LOX-1 during AMI shows that this biomarker boosts early during the acute event (T1 and T2) and then progressively decreases, being significantly lower from T0 to T6. Different OS-related biomarkers were differentially associated with CV risk factors and CAD or ACS presence. Conclusion: Differences in OS-related biomarkers (between groups, according to the response over time during AMI, and to the presence of CV risk factors) confirmed OS involvement in the transition from healthy status to stable CAD and ACS, although evidencing the heterogeneous nature of redox processes. In future, a multi-marker panel including different biomarkers and pathways of oxidative stress could be evaluated as an additive tool to be used in the CV prevention, diagnosis, patient stratification, and treatment.
Collapse
Affiliation(s)
- Valter Lubrano
- Fondazione CNR-Regione Toscana G Monasterio, 56100 Pisa, Italy.
| | | | - Irene Traghella
- Fondazione CNR-Regione Toscana G Monasterio, 56100 Pisa, Italy.
| | - Simona Storti
- Ospedale del Cuore G Pasquinucci, Fondazione CNR-Regione Toscana G Monasterio, 54100 Massa, Italy.
| | - Serena Parri
- Ospedale del Cuore G Pasquinucci, Fondazione CNR-Regione Toscana G Monasterio, 54100 Massa, Italy.
| | - Sergio Berti
- Ospedale del Cuore G Pasquinucci, Fondazione CNR-Regione Toscana G Monasterio, 54100 Massa, Italy.
| | - Rudina Ndreu
- Istituto di Fisiologia Clinica, CNR, 56100 Pisa, Italy.
| | - Andrea Andrenelli
- Ospedale del Cuore G Pasquinucci, Fondazione CNR-Regione Toscana G Monasterio, 54100 Massa, Italy.
| | - Cataldo Palmieri
- Ospedale del Cuore G Pasquinucci, Fondazione CNR-Regione Toscana G Monasterio, 54100 Massa, Italy.
| | | | | | | |
Collapse
|
39
|
Tian K, Ogura S, Little PJ, Xu SW, Sawamura T. Targeting LOX-1 in atherosclerosis and vasculopathy: current knowledge and future perspectives. Ann N Y Acad Sci 2018; 1443:34-53. [PMID: 30381837 DOI: 10.1111/nyas.13984] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1; also known as OLR1) is the dominant receptor that recognizes and internalizes oxidized low-density lipoproteins (ox-LDLs) in endothelial cells. Several genetic variants of LOX-1 are associated with the risk and severity of coronary artery disease. The LOX-1-ox-LDL interaction induces endothelial dysfunction, leukocyte adhesion, macrophage-derived foam cell formation, smooth muscle cell proliferation and migration, and platelet activation. LOX-1 activation eventually leads to the rupture of atherosclerotic plaques and acute cardiovascular events. In addition, LOX-1 can be cleaved to generate soluble LOX-1 (sLOX-1), which is a useful diagnostic and prognostic marker for atherosclerosis-related diseases in human patients. Of therapeutic relevance, several natural products and clinically used drugs have emerged as LOX-1 inhibitors that have antiatherosclerotic actions. We hereby provide an updated overview of role of LOX-1 in atherosclerosis and associated vascular diseases, with an aim to highlighting the potential of LOX-1 as a novel theranostic tool for cardiovascular disease prevention and treatment.
Collapse
Affiliation(s)
- Kunming Tian
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Sayoko Ogura
- Division of Laboratory Medicine, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, Queensland, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Suo-Wen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York
| | - Tatsuya Sawamura
- Department of Physiology, School of Medicine, Shinshu University, Nagano, Japan.,Research Center for Next Generation Medicine, Shinshu University, Nagano, Japan
| |
Collapse
|
40
|
Li XM, Jin PP, Xue J, Chen J, Chen QF, Luan XQ, Zhang ZR, Yu TE, Cai ZY, Zhao K, Shao B. Role of sLOX-1 in intracranial artery stenosis and in predicting long-term prognosis of acute ischemic stroke. Brain Behav 2018; 8:e00879. [PMID: 29568681 PMCID: PMC5853620 DOI: 10.1002/brb3.879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/22/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The role of sLOX-1 in acute ischemic stroke still remains unclear. This study aims to demonstrate the value of sLOX-1 in evaluating degrees of intracranial artery stenosis and to predict prognosis in stroke. METHODS Two hundred and seventy-two patients were included in this study and basic data were collected within 72 hr on admission. We assessed the association between sLOX-1 levels and stroke conditions in one-year duration. After adjusting for potential confounders, regression analyses were performed. RESULTS We found that sLOX-1 levels were increased significantly in severe patients compared to the mild stroke group (p = .011). After adjusting confounders, sLOX-1 was associated with a poor functional outcome in patients with an adjusted OR of 2. 946 (95% CI, 1.788-4.856, p < .001). There was also positive correlation between sLOX-1 levels and the degrees of intracranial artery stenosis in the different groups (p = .029). CONCLUSIONS Our study demonstrated that sLOX-1 levels could be used to evaluate the severity of stroke and the degrees of intracranial artery stenosis. Furthermore, sLOX-1 could be exploited to predict the long-term functional outcome of stroke.
Collapse
Affiliation(s)
- Xian-Mei Li
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Ping-Ping Jin
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Jie Xue
- Department of Neurology Yangpu Hospital of Tongji University Shang Hai China
| | - Jie Chen
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Qin-Fen Chen
- Department of Gastroenterology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Xiao-Qian Luan
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Zeng-Rui Zhang
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Tie-Er Yu
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Zheng-Yi Cai
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Kai Zhao
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| | - Bei Shao
- Department of Neurology First Affiliated Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
41
|
Zhang W, Zhu T, Wu W, Ge X, Xiong X, Zhang Z, Hu C. LOX-1 mediated phenotypic switching of pulmonary arterial smooth muscle cells contributes to hypoxic pulmonary hypertension. Eur J Pharmacol 2017; 818:84-95. [PMID: 29069578 DOI: 10.1016/j.ejphar.2017.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
In pulmonary hypertension (PH), pulmonary arterial smooth muscle cells (PASMCs) are dedifferentiated, undergoing a contractile-to-synthetic phenotypic switching. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays diverse roles in the cardiovascular system, but its contribution to PH remains to be fully defined. The present study was undertaken to explore the role of LOX-1 in PASMCs dedifferentiation in hypoxia-induced pulmonary vascular remodeling and PH. In a rat model of hypoxic PH, pulmonary vascular remodeling was accompanied by increased expression of LOX-1 in pulmonary arteries. In primary rat PASMCs, hypoxia-induced PASMCs dedifferentiation occurred concomitantly with LOX-1 upregulation. Inhibition of LOX-1 by either siRNA knockdown or neutralizing antibody significantly ameliorated PASMCs dedifferentiation. Mechanistically, LOX-1 promotes PASMCs dedifferentiation under hypoxic conditions via ERK1/2-Elk-1/MRTF-A/SRF signaling pathway. In conclusion, our data uncovers an important role of LOX-1 in the maintenance of PASMCs phenotype. Therapeutic targeting of LOX-1/ERK1/2-Elk-1/MRTF-A/SRF signaling axis would be exploited to treat hypoxic PH.
Collapse
Affiliation(s)
- Weifang Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Department of Pharmacy, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Tiantian Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Weihua Wu
- School of pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan 418000, China
| | - Xiaoyue Ge
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China
| | - Xiaoming Xiong
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| | - Changping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
42
|
Hofmann A, Brunssen C, Morawietz H. Contribution of lectin-like oxidized low-density lipoprotein receptor-1 and LOX-1 modulating compounds to vascular diseases. Vascul Pharmacol 2017; 107:S1537-1891(17)30171-4. [PMID: 29056472 DOI: 10.1016/j.vph.2017.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/29/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022]
Abstract
The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for binding and uptake of oxidized low-density lipoprotein (oxLDL) in endothelial cells. LOX-1 is also expressed in macrophages, smooth muscle cells and platelets. Following internalization of oxLDL, LOX-1 initiates a vicious cycle from activation of pro-inflammatory signaling pathways, thus promoting an increased reactive oxygen species formation and secretion of pro-inflammatory cytokines. LOX-1 plays a pivotal role in the development of endothelial dysfunction, foam cell and advanced lesions formation as well as in myocardial ischemia. Furthermore, it is known that LOX-1 plays a pivotal role in mitochondrial DNA damage, vascular cell apoptosis, and autophagy. A large number of studies provide evidence of a LOX-1's role in endothelial dysfunction, hypertension, diabetes, and obesity. In addition, novel insights into LOX-1 ligands and the activated signaling pathways have been gained. Recent studies have shown an interaction of LOX-1 with microRNA's, thus providing novel tools to regulate LOX-1 function. Because LOX-1 is increased in atherosclerotic plaques and contributes to endothelial dysfunction, several compounds were tested in vivo and in vitro to modulate the LOX-1 expression in therapeutic approaches.
Collapse
Affiliation(s)
- Anja Hofmann
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
43
|
Up-regulation of OLR1 expression by TBC1D3 through activation of TNFα/NF-κB pathway promotes the migration of human breast cancer cells. Cancer Lett 2017; 408:60-70. [PMID: 28844714 DOI: 10.1016/j.canlet.2017.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/12/2017] [Accepted: 08/16/2017] [Indexed: 11/20/2022]
Abstract
Metastatic spread of cancer cells is the most life-threatening aspect of breast cancer and involves multiple steps including cell migration. We recently found that the TBC1D3 oncogene promotes the migration of breast cancer cells, and its interaction with CaM enhances the effects of TBC1D3. However, little is known regarding the mechanism by which TBC1D3 induces the migration of cancer cells. Here, we demonstrated that TBC1D3 stimulated the expression of oxidized low density lipoprotein receptor 1 (OLR1), a stimulator of cell migration, in breast cancer cells at the transcriptional level. Depletion of OLR1 by siRNAs or down-regulation of OLR1 expression using pomalidomide, a TNFα inhibitor, significantly decreased TBC1D3-induced migration of these cells. Notably, TBC1D3 overexpression activated NF-κB, a major effector of TNFα signaling, while inhibition of TNFα signaling suppressed the effects of TBC1D3. Consistent with this, NF-κB inhibition using its specific inhibitor caffeic acid phenethyl ester decreased both TBC1D3-induced OLR1 expression and cell migration, suggesting a critical role for TNFα/NF-κB signaling in TBC1D3-induced migration of breast cancer cells. Mechanistically, TBC1D3 induced activation of this signaling pathway on multiple levels, including by increasing the release of TNFα, elevating the transcription of TNFR1, TRAF1, TRAF5 and TRAF6, and decreasing the degradation of TNFR1. In summary, these studies identify the TBC1D3 oncogene as a novel regulator of TNFα/NF-κB signaling that mediates this oncogene-induced migration of human breast cancer cells by up-regulating OLR1.
Collapse
|
44
|
Nègre-Salvayre A, Augé N, Camaré C, Bacchetti T, Ferretti G, Salvayre R. Dual signaling evoked by oxidized LDLs in vascular cells. Free Radic Biol Med 2017; 106:118-133. [PMID: 28189852 DOI: 10.1016/j.freeradbiomed.2017.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/12/2022]
Abstract
The oxidative theory of atherosclerosis relies on the modification of low density lipoproteins (LDLs) in the vascular wall by reactive oxygen species. Modified LDLs, such as oxidized LDLs, are thought to participate in the formation of early atherosclerotic lesions (accumulation of foam cells and fatty streaks), whereas their role in advanced lesions and atherothrombotic events is more debated, because antioxidant supplementation failed to prevent coronary disease events and mortality in intervention randomized trials. As oxidized LDLs and oxidized lipids are present in atherosclerotic lesions and are able to trigger cell signaling on cultured vascular cells and macrophages, it has been proposed that they could play a role in atherogenesis and atherosclerotic vascular remodeling. Oxidized LDLs exhibit dual biological effects, which are dependent on extent of lipid peroxidation, nature of oxidized lipids (oxidized phospholipids, oxysterols, malondialdehyde, α,β-unsaturated hydroxyalkenals), concentration of oxidized LDLs and uptake by scavenger receptors (e.g. CD36, LOX-1, SRA) that signal through different transduction pathways. Moderate concentrations of mildly oxidized LDLs are proinflammatory and trigger cell migration and proliferation, whereas higher concentrations induce cell growth arrest and apoptosis. The balance between survival and apoptotic responses evoked by oxidized LDLs depends on cellular systems that regulate the cell fate, such as ceramide/sphingosine-1-phosphate rheostat, endoplasmic reticulum stress, autophagy and expression of pro/antiapoptotic proteins. In vivo, the intimal concentration of oxidized LDLs depends on the influx (hypercholesterolemia, endothelial permeability), residence time and lipid composition of LDLs, oxidative stress intensity, induction of defense mechanisms (antioxidant systems, heat shock proteins). As a consequence, the local cellular responses to oxidized LDLs may stimulate inflammatory or anti-inflammatory pathways, angiogenic or antiangiogenic responses, survival or apoptosis, thereby contributing to plaque growth, instability, complication (intraplaque hemorrhage, proteolysis, calcification, apoptosis) and rupture. Finally, these dual properties suggest that oxLDLs could be implicated at each step of atherosclerosis development, from early fatty streaks to advanced lesions, depending on the nature and concentration of their oxidized lipid content.
Collapse
Affiliation(s)
| | | | - Caroline Camaré
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France.
| |
Collapse
|
45
|
Sun Y, Gao W, Zhao Y, Cao W, Liu Z, Cui G, Tong L, Lei F, Tang B. Visualization and Inhibition of Mitochondria-Nuclear Translocation of Apoptosis Inducing Factor by a Graphene Oxide-DNA Nanosensor. Anal Chem 2017; 89:4642-4647. [PMID: 28359155 DOI: 10.1021/acs.analchem.7b00221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High concentrations of oxidized low density lipoprotein (oxLDL) induce aberrant apoptosis of vascular smooth muscle cells (VSMCs) in atherosclerotic plaques. This apoptosis cannot be blocked completely by the inhibition of caspase, and it eventually potentiates plaque disruption and risk for cardiovascular disease. Given the important role of apoptosis inducing factor (AIF) in caspase-independent apoptosis, here we develop an AIF-targeting nanosensor by the assembly of graphene oxide (GO) nanosheets and dye-labeled DNA hybrid structures. This nanosensor selectively localizes in the cytosol of VSMCs, where it exhibits a "turn-off" fluorescence signal. Under oxLDL stimuli, the release of AIF from mitochondria into cytosol liberates the DNA hybrid structures from the surface of GO and results in a "turn-on" fluorescence signal. This nanosensor is shown to possess rapid response, high sensitivity, and selectivity for AIF that enables real-time imaging of AIF translocation in VSMCs. Using this novel nanosensor, a better assessment of the apoptotic level of VSMCs and a more accurate evaluation of the extent of atherosclerotic lesions can be obtained. More importantly, the abundant binding between DNA hybrid structures and AIF inhibits the translocation of AIF into the nucleus and subsequent apoptosis in VSMCs. This inhibition may help stabilize plaque and reduce the risk of heart attack and stroke.
Collapse
Affiliation(s)
- Yuhui Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Yujie Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Wenhua Cao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Zhenhua Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University , Jinan, Shandong 250014, P.R. China
| |
Collapse
|
46
|
Zhu TT, Zhang WF, Luo P, Qian ZX, Li F, Zhang Z, Hu CP. LOX-1 promotes right ventricular hypertrophy in hypoxia-exposed rats. Life Sci 2017; 174:35-42. [DOI: 10.1016/j.lfs.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/19/2017] [Accepted: 02/28/2017] [Indexed: 12/12/2022]
|
47
|
Li HF, Wang SH, Guo Y, Zhao HB, Li XY, Wang X. Identification of the interaction between bta-miR-370 and OLR1
gene in bovine adipocyte. Anim Genet 2017; 48:455-458. [DOI: 10.1111/age.12550] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 01/21/2023]
Affiliation(s)
- H. F. Li
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - S. H. Wang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - Y. Guo
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - H. B. Zhao
- Shandong Provincial Academy of Agricultural Sciences; Institute of Animal Science and Veterinary Medicine; Jinan Shandong 250100 China
| | - X. Y. Li
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| | - X. Wang
- College of Animal Science and Technology; Northwest A&F University; Yangling Shaanxi 712100 China
| |
Collapse
|
48
|
Chen Z, Wang M, He Q, Li Z, Zhao Y, Wang W, Ma J, Li Y, Chang G. MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1. Exp Ther Med 2017; 13:1702-1710. [PMID: 28565756 PMCID: PMC5443247 DOI: 10.3892/etm.2017.4171] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/16/2016] [Indexed: 12/26/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is a major and critical mediator of atherosclerosis, and the underlying mechanism is thought to involve the ox-LDL-induced dysfunction of endothelial cells (ECs). MicroRNAs (miRNAs), which are a group of small non-coding RNA molecules that post-transcriptionally regulate the expression of target genes, have been associated with diverse cellular functions and the pathogenesis of various diseases, including atherosclerosis. miRNA-98 (miR-98) has been demonstrated to be involved in the regulation of cellular apoptosis; however, the role of miR-98 in ox-LDL-induced dysfunction of ECs and atherosclerosis has yet to be elucidated. Therefore, the present study aimed to investigate the role of miR-98 in ox-LDL-induced dysfunction of ECs and the underlying mechanism. It was demonstrated that miR-98 expression was markedly downregulated in ox-LDL-treated human umbilical vein ECs (HUVECs) and that miR-98 promoted the proliferation and alleviated apoptosis of HUVECs exposed to ox-LDL. In addition, the results demonstrated that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) was a direct target of miR-98 in HUVECs, as indicated by a luciferase assay. The results of the present study suggested that miR-98 may inhibit the uptake of toxic ox-LDL, maintain HUVEC proliferation and protect HUVECs against apoptosis via the suppression of LOX-1.
Collapse
Affiliation(s)
- Zhibo Chen
- Division of Vascular Surgery, Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Mian Wang
- Division of Vascular Surgery, Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Qiong He
- Division of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zilun Li
- Division of Vascular Surgery, Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Zhao
- Division of Vascular Surgery, Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Wenjian Wang
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jieyi Ma
- Laboratory of General Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yongxin Li
- Department of Vascular Surgery, The First Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Guangqi Chang
- Division of Vascular Surgery, Guangdong Engineering Laboratory for Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
49
|
Cheng CI, Lee YH, Chen PH, Lin YC, Chou MH, Kao YH. Free Fatty Acids Induce Autophagy and LOX-1 Upregulation in Cultured Aortic Vascular Smooth Muscle Cells. J Cell Biochem 2017; 118:1249-1261. [PMID: 28072480 DOI: 10.1002/jcb.25784] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/03/2016] [Indexed: 11/07/2022]
Abstract
Elevation of free fatty acids (FFAs) is known to affect microvascular function and contribute to obesity-associated insulin resistance, hypertension, and microangiopathy. Proliferative and synthetic vascular smooth muscle cells (VSMCs) increase intimal thickness and destabilize atheromatous plaques. This study aimed to investigate whether saturated palmitic acid (PA) and monounsaturated oleic acid (OA) modulate autophagy activity, cell proliferation, and vascular tissue remodeling in an aortic VSMC cell line. Exposure to PA and OA suppressed growth of VSMCs without apoptotic induction, but enhanced autophagy flux with elevation of Beclin-1, Atg5, and LC3I/II. Cotreatment with autophagy inhibitors potentiated the FFA-suppressed VSMC growth and showed differential actions of PA and OA in autophagy flux retardation. Both FFAs upregulated lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) but only OA increased LDL uptake by VSMCs. Mechanistically, FFAs induced hyperphosphorylation of Akt, ERK1/2, JNK1/2, and p38 MAPK. All pathways, except OA-activated PI3K/Akt cascade, were involved in the LOX-1 upregulation, whereas blockade of PI3K/Akt and MEK/ERK cascades ameliorated the FFA-induced growth suppression on VSMCs. Moreover, both FFAs exhibited tissue remodeling effect through increasing MMP-2 and MMP-9 expression and their gelatinolytic activities, whereas high-dose OA significantly suppressed collagen type I expression. Conversely, siRNA-mediated LOX-1 knockdown significantly attenuated the OA-induced tissue remodeling effects in VSMCs. In conclusion, OA and PA enhance autophagy flux, suppress aortic VSMC proliferation, and exhibit vascular remodeling effect, thereby leading to the loss of VSMCs and interstitial ECM in vascular walls and eventually the instability of atheromatous plaques. J. Cell. Biochem. 118: 1249-1261, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yueh-Hong Lee
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Po-Han Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yu-Chun Lin
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ming-Huei Chou
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Huang W, Li Q, Chen X, Lin Y, Xue J, Cai Z, Zhang W, Wang H, Jin K, Shao B. Soluble lectin-like oxidized low-density lipoprotein receptor-1 as a novel biomarker for large-artery atherosclerotic stroke. Int J Neurosci 2017; 127:881-886. [PMID: 27967338 DOI: 10.1080/00207454.2016.1272601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Serum soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) has been shown associated with the progression of atherosclerosis in endothelial cells. We sought to assess whether the baseline serum sLOX-1 levels are correlated with the presence and short-term functional outcome of large-artery atherosclerotic (LAA) stroke. METHODS The study recruited 241 subjects, including 148 consecutive patients with acute ischemic stroke with the subtype of LAA and 93 non-stroke controls. Clinical and laboratory data, including serum concentration of sLOX-1, were collected within 24 h of admission, and the severity of LAA stroke patients was evaluated by National Institutes of Health Stroke Scale score. And functional outcome was assessed by modified Rankin Scale three months after stroke. The association between sLOX-1 level and the functional outcome at three months was analyzed by multiple logistic regression models. RESULTS Serum levels of sLOX-1 in the LAA stroke patients were significantly higher as compared to normal controls (2.48 ± 0.93 ng/ml vs. 2.22 ± 0.79 ng/ml in the controls, t = 2.301, p = 0.022). The levels of serum sLOX-1 in patients with good outcome were significantly lower than those with poor outcome (2.39 ± 0.94 ng/ml vs. 2.77 ± 0.84 ng/ml, p = 0.032). After adjusting for potential confounders, sLOX-1 was still an independent predictor for the function outcome with an adjusted OR of 3.39 (95% CI, 1.61-7.11, p = 0.001). CONCLUSIONS The serum sLOX-1 level was higher in patients with LAA stroke, and it was an independent predictor of functional outcome in patients with LAA ischemic stroke.
Collapse
Affiliation(s)
- Wensi Huang
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China.,b Department of Neurology , The People's Hospital Of Pingyang , Wenzhou , China
| | - Qian Li
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Xiaoli Chen
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Yuanshao Lin
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Jie Xue
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Zhengyi Cai
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Wanli Zhang
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Hong Wang
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| | - Kunlin Jin
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China.,c Department of Pharmacology and Neuroscience , University of North Texas Health Science Center at Fort Worth , Fort Worth , TX , USA
| | - Bei Shao
- a Department of Neurology, Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research , First Affiliated Hospital, Wenzhou Medical University , Wenzhou , China
| |
Collapse
|