1
|
Tan J, Cao X, Zheng R, Xie S, Yi J, Wang F, Li X, Song L, Zhang W, Fan J, Qin L, Dai A. Celastrol Ameliorates Hypoxia-Induced Pulmonary Hypertension by Regulation of the PDE5-cGMP-PKG Signaling Pathway. Phytother Res 2025; 39:1549-1564. [PMID: 39887769 DOI: 10.1002/ptr.8446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 12/30/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025]
Abstract
Pulmonary hypertension (PH) is a severe pulmonary vascular disease characterized by poor clinical outcomes and limited therapeutic options. Celastrol (CEL), a natural product derived from Tripterygium wilfordii Hook F, has shown therapeutic potential in PH models, although its mechanisms are not fully understood. This study aims to investigate the role of CEL in PH and explore its potential underlying mechanisms. This study investigates the role of CEL in PH and explores its underlying mechanisms. We evaluated the effects of CEL in a chronic hypoxia-induced PH rat model and hypoxia-stimulated human pulmonary arterial smooth muscle cells (HPASMCs). Bioinformatics and network pharmacology were employed to identify potential targets and pathways, which were then validated through mechanistic and functional analyses. CEL significantly reduced right ventricular systolic pressure, hypertrophy, fibrosis, and dysfunction in hypoxia-induced PH rats. It also decreased proliferating cell nuclear antigen expression and promoted apoptosis in pulmonary arterioles. Our findings suggest that CEL's therapeutic effects are mediated through the modulation of phosphodiesterase 5 (PDE5) and the activation of the cGMP-PKG signaling pathway. In HPASMCs, CEL treatment mirrored the in vivo results, and PDE5 overexpression negated CEL's antiproliferative, antimigratory, and pro-apoptotic effects. CEL ameliorates pulmonary vascular remodeling and right ventricular dysfunction in PH, potentially through the PDE5-cGMP-PKG signaling pathway. These findings position CEL as a promising candidate for PH therapy.
Collapse
Affiliation(s)
- Junlan Tan
- Department of Gerontology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Xianya Cao
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Runxiu Zheng
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Silin Xie
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Jian Yi
- Department of Gerontology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Feiying Wang
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Xia Li
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Lan Song
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Wen Zhang
- Department of Gerontology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Jianmin Fan
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
| | - Li Qin
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Aiguo Dai
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, China
- Department of Respiratory Medicine, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Bai Z, Li P, Gao X, Zu G, Jiang A, Wu K, Mechawar N, Turecki G, Lehnert K, Snell RG, Zhou J, Hu J, Yan B, Chen L, Li W, Chen Y, Liu S, Zhu Y, You L. Exploring PDE5A upregulation in bipolar disorder: insights from single-nucleus RNA sequencing of human basal ganglia. Transl Psychiatry 2024; 14:494. [PMID: 39695100 DOI: 10.1038/s41398-024-03202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
Basal ganglia is proposed to mediate symptoms underlying bipolar disorder (BD). To understand the cell type-specific gene expression and network changes of BD basal ganglia, we performed single-nucleus RNA sequencing of 30,752 nuclei from caudate, putamen, globus pallidus, and substantia nigra of control human postmortem brain and 24,672 nuclei from BD brain. Differential expression analysis revealed major difference lying in caudate, with BD medium spiny neurons (MSNs) expressing significantly higher PDE5A, a cGMP-specific phosphodiesterase. Gene co-expression analysis (WGCNA) showed a strong correlation of caudate MSNs and gene module green, with a PDE5A-containing hub gene network. Gene regulatory network analysis (SCENIC) indicated key regulons among different cell types and basal ganglia regions, with downstream targets of key transcriptional factors showing overlapping genes such as PDEs. Upregulation of PDE5A was further validated in 7 pairs of control and BD caudate sections. Overexpression of PDE5A in primary cultured lateral ganglion eminence-derived striatal neurons led to decreased dendrite complexity, increased apoptosis, and enhanced neuronal excitability and membrane resistance. This effect could be rescued by PDE5 specific inhibitor, tadalafil. Overexpression of PDE5A in mouse striatum by stereotaxic injection caused a decreased cGMP level, an increased gene expression profile of neuroinflammation, and BD-like behaviors. Collectively, our findings provided cell type-specific gene expression profile, and indicated a causative role of PDE5A upregulation in BD basal ganglia. This study provides a single-nucleus transcriptomic profile of human control and bipolar disorder (BD) basal ganglia. Differential expression, gene co-expression, and gene regulatory network analyses collectively indicated upregulation of PDE5A in BD caudate medium spiny neurons (MSNs), which was further validated in another cohort of BD brains. The causative role of PDE5A upregulation in BD etiology is supported by the effects of PDE5A overexpression in cultured mouse MSNs in vitro and in adult mouse striatum in vivo. The former led to reduced dendrite complexity, increased apoptosis, and neuronal hyper-excitability, which could be rescued by PDE5 specific inhibitor tadalafil. The latter caused lower cGMP levels, upregulated genes associated with neuroinflammation, and BD-like behaviors.
Collapse
Affiliation(s)
- Zhixin Bai
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peilong Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xu Gao
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Gaoyu Zu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Andrew Jiang
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Keting Wu
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Russell G Snell
- Applied Translational Genetics Group, School of Biological Sciences, the University of Auckland, Auckland, New Zealand
| | - Jin Zhou
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jia Hu
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Bingbing Yan
- Neo-Biotechnology Limited Company, Shanghai, China
| | - Liang Chen
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wensheng Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - You Chen
- Shanghai Yangpu District Mental Health Center, Mental Health Center Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China.
| | - Shuai Liu
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.
- Shanghai Changning Mental Health Center, Shanghai, China.
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China.
| | - Ying Zhu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Madonna R, Biondi F, Ghelardoni S, D'Alleva A, Quarta S, Massaro M. Pulmonary hypertension associated to left heart disease: Phenotypes and treatment. Eur J Intern Med 2024; 129:1-15. [PMID: 39095300 DOI: 10.1016/j.ejim.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/19/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024]
Abstract
Pulmonary hypertension associated to left heart disease (PH-LHD) refers to a clinical and haemodynamic condition of pulmonary hypertension associated with a heterogeneous group of diseases affecting any of the compartments that form the left ventricle and left atrium. PH-LHD is the most common cause of PH, accounting for 65-80 % of diagnoses. Based on the haemodynamic phase of the disease, PH-LDH is classified into three subgroups: postcapillary PH, isolated postcapillary PH and combined pre-postcapillary PH (CpcPH). Several signaling pathways involved in the regulation of vascular tone are dysfunctional in PH-LHD, including nitric oxide, MAP kinase and endothelin-1 pathways. These pathways are the same as those altered in PH group 1, however PH-LHD can heardly be treated by specific drugs that act on the pulmonary circulation. In this manuscript we provide a state of the art of the available clinical trials investigating the safety and efficacy of PAH-specific drugs, as well as drugs active in patients with heart failure and PH-LHD. We also discuss the different phenotypes of PH-LHD, as well as molecular targets and signaling pathways potentially involved in the pathophysiology of the disease. Finally we will mention some new emerging therapies that can be used to treat this form of PH.
Collapse
Affiliation(s)
- Rosalinda Madonna
- University Cardiology Division, Pisa University Hospital and University of Pisa, Via Paradisa, 2, Pisa 56124, Italy.
| | - Filippo Biondi
- University Cardiology Division, Pisa University Hospital and University of Pisa, Via Paradisa, 2, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| | - Stefano Quarta
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce 73100, Italy
| | - Marika Massaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Lecce 73100, Italy
| |
Collapse
|
4
|
Hojda SE, Chis IC, Clichici S. Magnesium Sulfate, Rosuvastatin, Sildenafil and Their Combination in Chronic Hypoxia-Induced Pulmonary Hypertension in Male Rats. Life (Basel) 2024; 14:1193. [PMID: 39337975 PMCID: PMC11433049 DOI: 10.3390/life14091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Previous experimental findings have led to considerable interest in the beneficial effects on pulmonary hypertension (PH) produced by sildenafil and in the pleiotropic effects of rosuvastatin and their positive role in the process of pulmonary angiogenesis. However, magnesium sulfate, the most abundant intracellular cation, is essential in vascular endothelial functionality due to its anti-inflammatory and vasodilatory effects. Therefore, the present study aims to assess these treatment regimens and how they could potentially provide some additional benefits in PH therapy. Fourteen days after chronic-hypoxia PH was induced, rosuvastatin, sildenafil and magnesium sulfate were administered for an additional fourteen days to male Wistar rats. The Fulton Index, right ventricle (RV) anterior wall thickness, RV internal diameter and pulmonary arterial (PA) acceleration time/ejection time were evaluated, and another four biochemical parameters were calculated: brain natriuretic peptide, vascular endothelial growth factor, nitric oxide metabolites and endothelin 1. The present study demonstrates that sildenafil and rosuvastatin have modest effects in reducing RV hypertrophy and RV systolic pressure. The drug combination of sildenafil + rosuvastatin + magnesium sulfate recorded statistically very highly significant results on all parameters; through their positive synergistic effects on vascular endothelial function, oxidative stress and pathological RV remodeling, they attenuated PH in the chronic hypoxia pulmonary hypertension (CHPH) rat model.
Collapse
Affiliation(s)
- Silvana-Elena Hojda
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Number 1-3, Clinicilor Street, RO-400023 Cluj-Napoca, Romania
| | - Irina Camelia Chis
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Number 1-3, Clinicilor Street, RO-400023 Cluj-Napoca, Romania
| | - Simona Clichici
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Number 1-3, Clinicilor Street, RO-400023 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Hansen TS, Karimi Galougahi K, Tang O, Tsang M, Scherrer-Crosbie M, Arystarkhova E, Sweadner K, Bursill C, Bubb KJ, Figtree GA. The FXYD1 protein plays a protective role against pulmonary hypertension and arterial remodeling via redox and inflammatory mechanisms. Am J Physiol Heart Circ Physiol 2024; 326:H623-H635. [PMID: 38133617 DOI: 10.1152/ajpheart.00090.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Pulmonary hypertension (PH) consists of a heterogenous group of diseases that culminate in increased pulmonary arterial pressure and right ventricular (RV) dysfunction. We sought to investigate the role of FXYD1, a small membrane protein that modulates Na+-K+-ATPase function, in the pathophysiology of PH. We mined online transcriptome databases to assess FXYD1 expression in PH. We characterized the effects of FXYD1 knockout (KO) in mice on right and left ventricular (RV and LV) function using echocardiography and measured invasive hemodynamic measurements under normal conditions and after treatment with bleomycin sulfate or chronic hypoxia to induce PH. Using immunohistochemistry, immunoblotting, and functional assays, we examined the effects of FXYD1 KO on pulmonary microvasculature and RV and LV structure and assessed signaling via endothelial nitric oxide synthase (eNOS) and inflammatory pathways. FXYD1 lung expression tended to be lower in samples from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with controls, supporting a potential pathophysiological role. FXYD1 KO mice displayed characteristics of PH including significant increases in pulmonary arterial pressure, increased muscularization of small pulmonary arterioles, and impaired RV systolic function, in addition to LV systolic dysfunction. However, when PH was stimulated with standard models of lung injury-induced PH, there was no exacerbation of disease in FXYD1 KO mice. Both the lungs and left ventricles exhibited elevated nitrosative stress and inflammatory milieu. The absence of FXYD1 in mice results in LV inflammation and cardiopulmonary redox signaling changes that predispose to pathophysiological features of PH, suggesting FXYD1 may be protective.NEW & NOTEWORTHY This is the first study to show that deficiency of the FXYD1 protein is associated with pulmonary hypertension. FXYD1 expression is lower in the lungs of people with idiopathic pulmonary artery hypertension. FXYD1 deficiency results in both left and right ventricular functional impairment. Finally, FXYD1 may endogenously protect the heart from oxidative and inflammatory injury.
Collapse
Affiliation(s)
- Thomas S Hansen
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | | | - Owen Tang
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Tsang
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Marielle Scherrer-Crosbie
- Perelman School of Medicine, The Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elena Arystarkhova
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Kathleen Sweadner
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Christina Bursill
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Vascular Research Centre, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kristen J Bubb
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Biomedicine Discovery Institute and Victorian Heart Institute, Monash University Faculty of Medicine, Nursing and Health Sciences, Clayton, Victoria, Australia
| | - Gemma A Figtree
- Kolling Institute, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 38:295-307. [PMID: 38167268 DOI: 10.1515/dmpt-2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
7
|
Alqarni AA, Aldhahir AM, Alghamdi SA, Alqahtani JS, Siraj RA, Alwafi H, AlGarni AA, Majrshi MS, Alshehri SM, Pang L. Role of prostanoids, nitric oxide and endothelin pathways in pulmonary hypertension due to COPD. Front Med (Lausanne) 2023; 10:1275684. [PMID: 37881627 PMCID: PMC10597708 DOI: 10.3389/fmed.2023.1275684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 PH, with no current proven targeted therapies. Studies suggest that cigarette smoke, the most risk factor for COPD can cause vascular remodelling and eventually PH as a result of dysfunction and proliferation of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). In addition, hypoxia is a known driver of pulmonary vascular remodelling in COPD, and it is also thought that the presence of hypoxia in patients with COPD may further exaggerate cigarette smoke-induced vascular remodelling; however, the underlying cause is not fully understood. Three main pathways (prostanoids, nitric oxide and endothelin) are currently used as a therapeutic target for the treatment of patients with different groups of PH. However, drugs targeting these three pathways are not approved for patients with COPD-associated PH due to lack of evidence. Thus, this review aims to shed light on the role of impaired prostanoids, nitric oxide and endothelin pathways in cigarette smoke- and hypoxia-induced pulmonary vascular remodelling and also discusses the potential of using these pathways as therapeutic target for patients with PH secondary to COPD.
Collapse
Affiliation(s)
- Abdullah A. Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Abdulelah M. Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sara A. Alghamdi
- Respiratory Care Department, Al Murjan Hospital, Jeddah, Saudi Arabia
| | - Jaber S. Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Rayan A. Siraj
- Department of Respiratory Care, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulkareem A. AlGarni
- King Abdulaziz Hospital, The Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia
| | - Mansour S. Majrshi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Saad M. Alshehri
- Department of Respiratory Therapy, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Linhua Pang
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, Nottingham, United Kingdom
| |
Collapse
|
8
|
Varghese R, Digholkar G, Karsiya J, Salvi S, Shah J, Kumar D, Sharma R. PDE5 inhibitors: breaking new grounds in the treatment of COVID-19. Drug Metab Pers Ther 2023; 0:dmdi-2023-0011. [PMID: 37608528 DOI: 10.1515/dmdi-2023-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
INTRODUCTION Despite the ever-increasing occurrences of the coronavirus disease (COVID-19) cases around the world, very few medications have been validated in the clinical trials to combat COVID-19. Although several vaccines have been developed in the past quarter, the time elapsed between deployment and administration remains a major impediment. CONTENT Repurposing of pre-approved drugs, such as phosphodiesterase 5 (PDE5) inhibitors, could be a game-changer while lessening the burden on the current healthcare system. Repurposing and developing phosphodiesterase 5 (PDE5) inhibitors could extrapolate their utility to combat the SARS-CoV-2 infection, and potentially aid in the management of the symptoms associated with its newer variants such as BF.7, BQ.1, BQ.1.1, XBB.1.5, and XBB.1.16. SUMMARY Administration of PDE5 inhibitors via the oral and intravenous route demonstrates other potential off-label benefits, including anti-apoptotic, anti-inflammatory, antioxidant, and immunomodulatory effects, by intercepting several pathways. These effects can not only be of clinical importance in mild-to-moderate, but also moderate-to-severe SARS-CoV-2 infections. This article explores the various mechanisms by which PDE5 inhibitors alleviates the symptoms associated with COVID-19 as well as well as highlights recent studies and findings. OUTLOOK These benefits of PDE5 inhibitors make it a potential drug in the physicians' armamentarium in alleviating symptoms associated with SARS-CoV-2 infection. However, adequate clinical studies must be instituted to eliminate any untoward adverse events.
Collapse
Affiliation(s)
- Ryan Varghese
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Gargi Digholkar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jainam Karsiya
- River Route Creative Group LLP, Mumbai, Maharashtra, India
| | - Sahil Salvi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
| | - Jeenam Shah
- Department of Pulmonology, Saifee Hospital, Girgaon, Mumbai, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, India
- Department of Entomology, University of California, Davis, CA, USA
- UC Davis Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Ltaief Z, Yerly P, Liaudet L. Pulmonary Hypertension in Left Heart Diseases: Pathophysiology, Hemodynamic Assessment and Therapeutic Management. Int J Mol Sci 2023; 24:9971. [PMID: 37373119 PMCID: PMC10298585 DOI: 10.3390/ijms24129971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Pulmonary hypertension (PH) associated with left heart diseases (PH-LHD), also termed group 2 PH, represents the most common form of PH. It develops through the passive backward transmission of elevated left heart pressures in the setting of heart failure, either with preserved (HFpEF) or reduced (HFrEF) ejection fraction, which increases the pulsatile afterload of the right ventricle (RV) by reducing pulmonary artery (PA) compliance. In a subset of patients, progressive remodeling of the pulmonary circulation resulted in a pre-capillary phenotype of PH, with elevated pulmonary vascular resistance (PVR) further increasing the RV afterload, eventually leading to RV-PA uncoupling and RV failure. The primary therapeutic objective in PH-LHD is to reduce left-sided pressures through the appropriate use of diuretics and guideline-directed medical therapies for heart failure. When pulmonary vascular remodeling is established, targeted therapies aiming to reduce PVR are theoretically appealing. So far, such targeted therapies have mostly failed to show significant positive effects in patients with PH-LHD, in contrast to their proven efficacy in other forms of pre-capillary PH. Whether such therapies may benefit some specific subgroups of patients (HFrEF, HFpEF) with specific hemodynamic phenotypes (post- or pre-capillary PH) and various degrees of RV dysfunction still needs to be addressed.
Collapse
Affiliation(s)
- Zied Ltaief
- Service of Adult Intensive Care Medicine, University Hospital, 1011 Lausanne, Switzerland;
| | - Patrick Yerly
- Service of Cardiology, University Hospital, 1011 Lausanne, Switzerland;
| | - Lucas Liaudet
- Service of Adult Intensive Care Medicine, University Hospital, 1011 Lausanne, Switzerland;
| |
Collapse
|
10
|
Egln1Tie2Cre Mice Exhibit Similar Therapeutic Responses to Sildenafil, Ambrisentan, and Treprostinil as Pulmonary Arterial Hypertension (PAH) Patients, Supporting Egln1Tie2Cre Mice as a Useful PAH Model. Int J Mol Sci 2023; 24:ijms24032391. [PMID: 36768713 PMCID: PMC9916894 DOI: 10.3390/ijms24032391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and inevitably fatal disease characterized by the progressive increase of pulmonary vascular resistance and obliterative pulmonary vascular remodeling, which lead to right-sided heart failure and premature death. Many of the genetically modified mouse models do not develop severe PH and occlusive vascular remodeling. Egln1Tie2Cre mice with Tie2Cre-mediated deletion of Egln1, which encodes hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2), is the only mouse model with severe PAH, progressive occlusive pulmonary vascular remodeling, and right-sided heart failure leading to 50-80% mortality from the age of 3-6 months, indicating that the Egln1Tie2Cre mice model is a long-sought-after murine PAH model. However, it is unknown if Egln1Tie2Cre mice respond to FDA-approved PAH drugs in a way similar to PAH patients. Here, we tested the therapeutic effects of the three vasodilators: sildenafil (targeting nitric oxide signaling), ambrisentan (endothelin receptor antagonist), and treprostinil (prostacyclin analog) on Egln1Tie2Cre mice. All of them attenuated right ventricular systolic pressure (RVSP) in Egln1Tie2Cre mice consistent with their role as vasodilators. However, these drugs have no beneficial effects on pulmonary arterial function. Cardiac output was also markedly improved in Egln1Tie2Cre mice by any of the drug treatments. They only partially improved RV function and reduced RV hypertrophy and pulmonary vascular remodeling as well as improving short-term survival in a drug-dependent manner. These data demonstrate that Egln1Tie2Cre mice exhibit similar responses to these drugs as PAH patients seen in clinical trials. Thus, our study provides further evidence that the Egln1Tie2Cre mouse model of severe PAH is an ideal model of PAH and is potentially useful for enabling identification of drug targets and preclinical testing of novel PAH drug candidates.
Collapse
|
11
|
Wu J, Zhao X, Xiao C, Xiong G, Ye X, Li L, Fang Y, Chen H, Yang W, Du X. The role of lung macrophages in chronic obstructive pulmonary disease. Respir Med 2022; 205:107035. [PMID: 36343504 DOI: 10.1016/j.rmed.2022.107035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) as a common, preventable and treatable chronic respiratory disease in clinic, gets continuous deterioration and we can't take effective intervention at present. Lung macrophages (LMs) are closely related to the occurrence and development of COPD, but the specific mechanism is not completely clear. In this review we will focus on the role of LMs and potential avenues for therapeutic targeting for LMs in COPD.
Collapse
Affiliation(s)
- Jianli Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xia Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guosheng Xiong
- Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiulin Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Lin Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Xiaohua Du
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
12
|
Santos-Gomes J, Gandra I, Adão R, Perros F, Brás-Silva C. An Overview of Circulating Pulmonary Arterial Hypertension Biomarkers. Front Cardiovasc Med 2022; 9:924873. [PMID: 35911521 PMCID: PMC9333554 DOI: 10.3389/fcvm.2022.924873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), also known as Group 1 Pulmonary Hypertension (PH), is a PH subset characterized by pulmonary vascular remodeling and pulmonary arterial obstruction. PAH has an estimated incidence of 15-50 people per million in the United States and Europe, and is associated with high mortality and morbidity, with patients' survival time after diagnosis being only 2.8 years. According to current guidelines, right heart catheterization is the gold standard for diagnostic and prognostic evaluation of PAH patients. However, this technique is highly invasive, so it is not used in routine clinical practice or patient follow-up. Thereby, it is essential to find new non-invasive strategies for evaluating disease progression. Biomarkers can be an effective solution for determining PAH patient prognosis and response to therapy, and aiding in diagnostic efforts, so long as their detection is non-invasive, easy, and objective. This review aims to clarify and describe some of the potential new candidates as circulating biomarkers of PAH.
Collapse
Affiliation(s)
- Joana Santos-Gomes
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Gandra
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Rui Adão
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Frédéric Perros
- Paris-Porto Pulmonary Hypertension Collaborative Laboratory (3PH), UMR_S 999, INSERM, Université Paris-Saclay, Paris, France
- Université Paris–Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Carmen Brás-Silva
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
13
|
Tang Y, Tan S, Li M, Tang Y, Xu X, Zhang Q, Fu Q, Tang M, He J, Zhang Y, Zheng Z, Peng J, Zhu T, Xie W. Dapagliflozin, sildenafil and their combination in monocrotaline-induced pulmonary arterial hypertension. BMC Pulm Med 2022; 22:142. [PMID: 35413880 PMCID: PMC9006601 DOI: 10.1186/s12890-022-01939-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/04/2022] [Indexed: 11/28/2022] Open
Abstract
Background Dapagliflozin, a selective inhibitor of sodium-glucose cotransporter 2 (SGLT2), can reduce cardiovascular events and mortality in patients with heart failure. A number of mechanisms have been proposed to explain the beneficial effects of SGLT2 inhibitors. The purpose of this study was to determine whether dapagliflozin can improve pulmonary vascular remodelling and the efficacy of dapagliflozin as an add-on therapy to sildenafil in rats with pulmonary arterial hypertension (PAH). Methods A monocrotaline (MCT)-induced PAH rat model was used in our study. MCT-injected rats were randomly divided into four groups and treated for 3 weeks with daily per os treatment with vehicle, dapagliflozin (1 mg/kg/day), sildenafil (25 mg/kg/day), or a combination of dapagliflozin (1 mg/kg/day) and sildenafil (25 mg/kg/day). Haemodynamic measurements, histological analysis, enzyme-linked immunosorbent assay and western blotting analysis were employed to detect the changes in PAH rats after treatments. Results Dapagliflozin significantly attenuated MCT-induced increases in right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) in PAH rats. Dapagliflozin effectively decreased the thickening of pulmonary artery media and decreased the muscularization of pulmonary arterioles in PAH rats. Moreover, dapagliflozin attenuated nucleotide-binding domain-like receptor protein 3 (NLRP3) inflammasome activation in lung tissues and the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in plasma. However, dapagliflozin as an add-on therapy to sildenafil in rats with PAH did not show a more pronounced beneficial effect on right ventricular systolic pressure and pulmonary vascular remodelling in MCT rats than sildenafil alone. Conclusions Dapagliflozin reduces right ventricular systolic pressure and pulmonary vascular remodelling in a rat model of PAH. However, combination therapy with dapagliflozin and sildenafil was not more effective than monotherapy with sildenafil in PAH rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01939-7.
Collapse
Affiliation(s)
- Yi Tang
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, 410005, China
| | - Siyuan Tan
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Minqi Li
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Yijin Tang
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
| | - Qinghai Zhang
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, 410005, China
| | - Qinghua Fu
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, 410005, China
| | - Mingxiang Tang
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, 410005, China
| | - Jin He
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, 410005, China
| | - Yi Zhang
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, 410005, China
| | - Zhaofen Zheng
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, 410005, China
| | - Jianqiang Peng
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Medicine Research Center of Heart Failure of Hunan Province, Hunan Normal University, Changsha, 410005, China.
| | - Tengteng Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Wenlin Xie
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518017, China.
| |
Collapse
|
14
|
Sanati M, Aminyavari S, Mollazadeh H, Bibak B, Mohtashami E, Afshari AR. How do phosphodiesterase-5 inhibitors affect cancer? A focus on glioblastoma multiforme. Pharmacol Rep 2022; 74:323-339. [PMID: 35050491 DOI: 10.1007/s43440-021-00349-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022]
Abstract
Since the discovery of phosphodiesterase-5 (PDE5) enzyme overexpression in the central nervous system (CNS) malignancies, investigations have explored the potential capacity of current PDE5 inhibitor drugs for repositioning in the treatment of brain tumors, notably glioblastoma multiforme (GBM). It has now been recognized that these drugs increase brain tumors permeability and enhance standard chemotherapeutics effectiveness. More importantly, studies have highlighted the promising antitumor functions of PDE5 inhibitors, e.g., triggering apoptosis, suppressing tumor cell growth and invasion, and reversing tumor microenvironment (TME) immunosuppression in the brain. However, contradictory reports have suggested a pro-oncogenic role for neuronal cyclic guanosine monophosphate (cGMP), indicating the beneficial function of PDE5 in the brain of GBM patients. Unfortunately, due to the inconsistent preclinical findings, only a few clinical trials are evaluating the therapeutic value of PDE5 inhibitors in GBM treatment. Accordingly, additional studies should be conducted to shed light on the precise effect of PDE5 inhibitors in GBM biology regarding the existing molecular heterogeneities among individuals. Here, we highlighted and discussed the previously investigated mechanisms underlying the impacts of PDE5 inhibitors in cancers, focusing on GBM to provide an overview of current knowledge necessary for future studies.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bahram Bibak
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
15
|
Sildenafil: From angina to SARS-CoV-2. SEXOLOGIES 2021. [PMCID: PMC8162896 DOI: 10.1016/j.sexol.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sildenafil was first examined as an alternative to nitrates for the management of angina pectoris and hypertension and eventually developed into an oral therapeutic agent used for the treatment of erectile dysfunction. There are appropriate indicators that PDE5 inhibitors may also modify the detrimental consequences of the immune system over-stimulation, supplying a new chance for their use in SARS-CoV2 patients. The use of sildenafil for the management of SARS-CoV2 has been suggested based on its several mechanisms of action and therapeutic effects and on the clinical features of SARS-CoV2 which similar to those of other pathologies treated with the PDE5 inhibitors. Here we review fundamental highlights in the enhancement of sildenafil for numerous scientific disorders and consider practicable new uses for this versatile drug.
Collapse
|
16
|
Das P, Thandavarayan RA, Watanabe K, Velayutham R, Arumugam S. Right ventricular failure: a comorbidity or a clinical emergency? Heart Fail Rev 2021; 27:1779-1793. [PMID: 34826024 DOI: 10.1007/s10741-021-10192-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
There has been ample data providing a convincing perception about the underlying mechanism pertaining to left ventricle (LV) hypertrophy progressing towards LV failure. In comparison, data available on the feedback of right ventricle (RV) due to volume or pressure overload is minimal. Advanced imaging techniques have aided the study of physiology, anatomy, and diseased state of RV. However, the treatment scenario of right ventricular failure (RVF) demands more attention. It is a critical clinical risk in patients with carcinoid syndrome, pulmonary hypertension, atrial septal defect, and several other concomitant diseases. Although the remodeling responses of both ventricles on an increase of end-diastolic pressure are mostly identical, the stressed RV becomes more prone to oxidative stress activating the apoptotic mechanism with diminished angiogenesis. This instigates the advancement of RV towards failure in contrast to LV. Empirical heart failure (HF) therapies have been ineffective in improving the mortality rate and cardiac function in patients, which prompted a difference between the underlying pathophysiology of RVF and LV failure. Treatment strategies should be devised, taking into consideration the anatomical and physiological characteristics of RV. This review would emphasize on the pathophysiology of the RVF and the differences between two ventricles in molecular response to stress. A proper insight into the underlying pathophysiology is required to develop optimized therapeutic management in RV-specific HF.
Collapse
Affiliation(s)
- Pamelika Das
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India
| | | | - Kenichi Watanabe
- Department of Laboratory Medicine and Clinical Epidemiology for Prevention of Noncommunicable Diseases, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, NiigataNiigata, 951-8510, Japan
| | - Ravichandiran Velayutham
- National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| | - Somasundaram Arumugam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Kolkata, Chunilal Bhawan, 168 Maniktala Main Road, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
17
|
Sharma M, Rana U, Joshi C, Michalkiewicz T, Afolayan A, Parchur A, Joshi A, Teng RJ, Konduri GG. Decreased Cyclic GMP-protein Kinase G signaling impairs Angiogenesis in a Lamb Model of Persistent Pulmonary Hypertension of Newborn. Am J Respir Cell Mol Biol 2021; 65:555-567. [PMID: 34185619 DOI: 10.1165/rcmb.2020-0434oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Impaired angiogenesis function of pulmonary artery endothelial cells (PAEC) contributes to persistent pulmonary hypertension of the newborn (PPHN). Decreased nitric oxide (NO) levels in PPHN lead to impaired mitochondrial biogenesis and angiogenesis in the lung; the mechanisms remain unclear. We hypothesized that decreased cGMP-Protein kinase G (PKG) signaling downstream of NO leads to decreased mitochondrial biogenesis and angiogenesis in PPHN. PPHN was induced by ductus arteriosus constriction from 128-136d gestation in fetal lambs. Controls were gestation matched lambs without ductal constriction. PAEC isolated from PPHN lambs were treated with soluble guanylyl cyclase activator, cinaciguat, PKG activator, 8-Br-cGMP or phosphodiesterase-V inhibitor, sildenafil. Lysates were immunoblotted for mitochondrial transcription factors and electron transport chain (ETC) complex proteins I-V. In vitro angiogenesis of PAEC was evaluated by tube formation and scratch recovery assays. cGMP levels were measured by enzyme immunoassay. Fetal lambs with ductal constriction were given sildenafil or control saline by continuous infusion in utero and lung histology, capillary counts, vessel density and right ventricular pressure were assessed at birth. PPHN PAEC showed decreased mitochondrial transcription factors, ETC proteins, and in vitro tube formation and cell migration; these were restored by cinaciguat, 8-Br-cGMP and sildenafil. Cinaciguat and sildenafil increased cGMP levels in PPHN PAEC. Radial alveolar and capillary counts and vessel density were lower and RV pressure and Fulton index higher in PPHN lungs; these were improved by in utero sildenafil infusion. cGMP-PKG signaling is a potential therapeutic target to restore decreased mitochondrial biogenesis and angiogenesis in PPHN.
Collapse
Affiliation(s)
- Megha Sharma
- University of Arkansas for Medical Sciences, 12215, Little Rock, Arkansas, United States
| | - Ujala Rana
- Medical College of Wisconsin, 5506, Pediatrics, Milwaukee, Wisconsin, United States
| | - Chintamani Joshi
- Medical College of Wisconsin, 5506, Milwaukee, Wisconsin, United States
| | | | - Adeleye Afolayan
- Medical College of Wisconsin, 5506, Milwaukee, Wisconsin, United States
| | - Abdul Parchur
- Medical College of Wisconsin, 5506, Milwaukee, Wisconsin, United States
| | - Amit Joshi
- Medical College of Wisconsin, 5506, Milwaukee, Wisconsin, United States
| | - Ru-Jeng Teng
- Medical College of Wisconsin, 5506, Pediatrics, Milwaukee, Wisconsin, United States
| | - Girija G Konduri
- Medical College of Wisconsin, 5506, Pediatrics, Milwaukee, Wisconsin, United States;
| |
Collapse
|
18
|
De Bie FR, Sharma D, Lannoy D, Allegaert K, Storme L, Deprest J, Russo FM. Transplacental Transfer and Fetal Pharmacodynamics of Sildenafil in the Pregnant Sheep Model. Fetal Diagn Ther 2021; 48:411-420. [PMID: 34134114 DOI: 10.1159/000515435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sildenafil is a phosphodiesterase-5 inhibitor considered for antenatal use for a variety of indications. We sought to assess sildenafil pharmacokinetics in the pregnant ewe and fetus and evaluate its physiological fetal effects. METHODS Twelve fetal lambs (127-133 days GA, term 145) were chronically catheterized in utero. Ewes received different doses of sildenafil, either via subcutaneous injection (1.6, 2.0 mg/kg/day) or intravenous (IV) infusion (3, 5, 7, 10, and 12 mg/kg/day). Maternal and fetal sildenafil concentrations and metabolic status (blood gas analysis) were measured at given intervals. The fetal heart rate, pulmonary blood flow, systemic and aortic pressure, and maternal uterine artery pressure were continuously monitored. RESULTS The transplacental sildenafil transfer was 2.9% (range: 1.4-7.8%), preventing attainment of fetal target concentrations without toxic maternal levels. IV sildenafil infusion induced an immediate, temporary, dose-dependent reduction of pulmonary vascular resistance (38-78%) and increased both pulmonary blood flow (32-132%) and heart rate (13-49%), with limited nonlinear dose-dependent effects on systemic and pulmonary pressures. Fetal and maternal blood gases and maternal uterine artery pressures were unaffected by sildenafil infusion. CONCLUSION In sheep, transplacental transfer of sildenafil is extremely low. Though, minimal fetal sildenafil concentrations induce an acute transient pulmonary vasodilation, well-tolerated by the fetus and ewe.
Collapse
Affiliation(s)
- Felix Rafael De Bie
- Department of Development and Regeneration, Katholieke Universiteit, Leuven, Belgium
| | - Dyuti Sharma
- Department of Development and Regeneration, Katholieke Universiteit, Leuven, Belgium.,Department of Pediatric Surgery, Chu De Lille, Lille, France.,EA 2694-Evaluation des pratiques médicales et des technologies de santé, Equipe Environnement Périnatal et Santé, University of Lille, Lille, France
| | - Damien Lannoy
- Department of Pharmacy, Chu De Lille, Lille, France.,EA 7365-Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, Lille, France
| | - Karel Allegaert
- Department of Development and Regeneration, Katholieke Universiteit, Leuven, Belgium.,Department of Pharmacy and Pharmaceutical sciences, Katholieke Universiteit, Leuven, Belgium.,Department of Clinical Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Laurent Storme
- EA 2694-Evaluation des pratiques médicales et des technologies de santé, Equipe Environnement Périnatal et Santé, University of Lille, Lille, France
| | - Jan Deprest
- Department of Development and Regeneration, Katholieke Universiteit, Leuven, Belgium
| | - Francesca Maria Russo
- Department of Development and Regeneration, Katholieke Universiteit, Leuven, Belgium
| |
Collapse
|
19
|
Poitras EL, Gust SL, Kerr PM, Plane F. Repurposing of the PDE5 Inhibitor Sildenafil for the Treatment of Persistent Pulmonary Hypertension in Neonates. Curr Med Chem 2021; 28:2418-2437. [PMID: 32964819 DOI: 10.2174/0929867327666200923151924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), an important endogenous signaling molecule released from vascular endothelial cells and nerves, activates the enzyme soluble guanylate cyclase to catalyze the production of cyclic guanosine monophosphate (cGMP) from guanosine triphosphate. cGMP, in turn, activates protein kinase G to phosphorylate a range of effector proteins in smooth muscle cells that reduce intracellular Ca2+ levels to inhibit both contractility and proliferation. The enzyme phosphodiesterase type 5 (PDE5) curtails the actions of cGMP by hydrolyzing it into inactive 5'-GMP. Small molecule PDE5 inhibitors (PDE5is), such as sildenafil, prolong the availability of cGMP and therefore, enhance NO-mediated signaling. PDE5is are the first-line treatment for erectile dysfunction but are also now approved for the treatment of pulmonary arterial hypertension (PAH) in adults. Persistent pulmonary hypertension in neonates (PPHN) is currently treated with inhaled NO, but this is an expensive option and around 1/3 of newborns are unresponsive, resulting in the need for alternative approaches. Here the development, chemistry and pharmacology of PDE5is, the use of sildenafil for erectile dysfunction and PAH, are summarized and then current evidence for the utility of further repurposing of sildenafil, as a treatment for PPHN, is critically reviewed.
Collapse
Affiliation(s)
- Erika L Poitras
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Stephen L Gust
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Paul M Kerr
- Faculty of Nursing, Robbins Health Learning Centre, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Frances Plane
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
20
|
Mandula JK, Rodriguez PC. Tumor-related stress regulates functional plasticity of MDSCs. Cell Immunol 2021; 363:104312. [PMID: 33652258 PMCID: PMC8026602 DOI: 10.1016/j.cellimm.2021.104312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) impair protective anti-tumor immunity and remain major obstacles that stymie the effectiveness of promising cancer therapies. Diverse tumor-derived stressors galvanize the differentiation, intra-tumoral expansion, and immunomodulatory function of MDSCs. These tumor-associated 'axes of stress' underwrite the immunosuppressive programming of MDSCs in cancer and contribute to the phenotypic/functional heterogeneity that characterize tumor-MDSCs. This review discusses various tumor-associated axes of stress that direct MDSC development, accumulation, and immunosuppressive function, as well as current strategies aimed at overcoming the detrimental impact of MDSCs in cancer. To better understand the constellation of signals directing MDSC biology, we herein summarize the pivotal roles, signaling mediators, and effects of reactive oxygen/nitrogen species-related stress, chronic inflammatory stress, hypoxia-linked stress, endoplasmic reticulum stress, metabolic stress, and therapy-associated stress on MDSCs. Although therapeutic targeting of these processes remains mostly pre-clinical, intercepting signaling through the axes of stress could overcome MDSC-related immune suppression in tumor-bearing hosts.
Collapse
Affiliation(s)
- Jessica K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
21
|
Markvardsen LK, Sønderskov LD, Wandall-Frostholm C, Pinilla E, Prat-Duran J, Aalling M, Mogensen S, Andersen CU, Simonsen U. Cystamine Treatment Fails to Prevent the Development of Pulmonary Hypertension in Chronic Hypoxic Rats. J Vasc Res 2021; 58:237-251. [PMID: 33910208 DOI: 10.1159/000515511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. METHODS Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. RESULTS Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. DISCUSSION/CONCLUSIONS Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.
Collapse
MESH Headings
- Animals
- Arterial Pressure/drug effects
- Cystamine/pharmacology
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Female
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/prevention & control
- Hypertrophy, Right Ventricular/enzymology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/prevention & control
- Hypoxia/complications
- Hypoxia/drug therapy
- Hypoxia/enzymology
- Hypoxia/physiopathology
- Male
- Mice, Inbred C57BL
- Protein Glutamine gamma Glutamyltransferase 2/antagonists & inhibitors
- Protein Glutamine gamma Glutamyltransferase 2/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Pulmonary Artery/physiopathology
- Pulmonary Fibrosis/enzymology
- Pulmonary Fibrosis/etiology
- Pulmonary Fibrosis/physiopathology
- Pulmonary Fibrosis/prevention & control
- Rats, Wistar
- Vascular Remodeling/drug effects
- Ventricular Function, Right/drug effects
- Ventricular Remodeling/drug effects
- Mice
- Rats
Collapse
Affiliation(s)
- Lars K Markvardsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lene D Sønderskov
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christine Wandall-Frostholm
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Estéfano Pinilla
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Judit Prat-Duran
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Mathilde Aalling
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Susie Mogensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Charlotte U Andersen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
23
|
Mokra D, Mokry J. Phosphodiesterase Inhibitors in Acute Lung Injury: What Are the Perspectives? Int J Mol Sci 2021; 22:1929. [PMID: 33669167 PMCID: PMC7919656 DOI: 10.3390/ijms22041929] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Despite progress in understanding the pathophysiology of acute lung damage, currently approved treatment possibilities are limited to lung-protective ventilation, prone positioning, and supportive interventions. Various pharmacological approaches have also been tested, with neuromuscular blockers and corticosteroids considered as the most promising. However, inhibitors of phosphodiesterases (PDEs) also exert a broad spectrum of favorable effects potentially beneficial in acute lung damage. This article reviews pharmacological action and therapeutical potential of nonselective and selective PDE inhibitors and summarizes the results from available studies focused on the use of PDE inhibitors in animal models and clinical studies, including their adverse effects. The data suggest that xanthines as representatives of nonselective PDE inhibitors may reduce acute lung damage, and decrease mortality and length of hospital stay. Various (selective) PDE3, PDE4, and PDE5 inhibitors have also demonstrated stabilization of the pulmonary epithelial-endothelial barrier and reduction the sepsis- and inflammation-increased microvascular permeability, and suppression of the production of inflammatory mediators, which finally resulted in improved oxygenation and ventilatory parameters. However, the current lack of sufficient clinical evidence limits their recommendation for a broader use. A separate chapter focuses on involvement of cyclic adenosine monophosphate (cAMP) and PDE-related changes in its metabolism in association with coronavirus disease 2019 (COVID-19). The chapter illuminates perspectives of the use of PDE inhibitors as an add-on treatment based on actual experimental and clinical trials with preliminary data suggesting their potential benefit.
Collapse
Affiliation(s)
- Daniela Mokra
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
24
|
Ren Z, Li J, Shen J, Yu H, Mei X, Zhao P, Xiao Z, Wu W. Therapeutic sildenafil inhibits pulmonary damage induced by cigarette smoke exposure and bacterial inhalation in rats. PHARMACEUTICAL BIOLOGY 2020; 58:116-123. [PMID: 31967915 PMCID: PMC7006811 DOI: 10.1080/13880209.2019.1711135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/19/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Context: Clinical reports showed sildenafil beneficial therapy on severe chronic obstructive pulmonary disease (COPD) with pulmonary hypertension (PH) patients.Objective: The study investigated therapeutic effects of silenafil on pulmonary damage induced by cigarette smoke exposure and bacterial inhalation in rats.Materials and methods: Female Sprague-Dawley rats (200-250 g) were divided into control group (no exposure, n = 10) and exposure group (n = 50) suffered from cigarette smoke exposure and Klebsiella pneumonia inhalation for 8 weeks. Then rats were orally given normal saline (control group or model group), 2.0, 3.0, or 4.5 mg/kg sildenafil for 4 weeks, respectively. Pulmonary pressure, RVHI and morphological analysis of pulmonary vascular remodeling, respiratory functions assay, morphological analysis of pulmonary alveoli, and expression of PCNA and caspase-3 of epithelial cells in bronchioles wall were examined.Results: Compared to model rats, 2.0, 3.0, and 4.5 mg/kg sildenafil increased VT by -0.6 to 9.58%, PEF by 3.12 to 6.49%, EF50 by 0.81 to 6.50%, decreased mPAP by 4.43 to 25.58%, RVHI by 6.54 to 26.41%, showing a dose-dependent improvement. Furthermore, 4.5 mg/kg sildenafil significantly increased MAN by 39.70%, LA/CSA by 37.07%, decreased muscular pulmonary arteries by 48.00%, WT by 12.83%, MT by 22.89%, caspase-3 expression by 17.71%, and showed improvement on abnormality in lung interstitial and bronchioles by microscopy.Discussion and conclusion: Our results demonstrated that sildenafil decreased pathological changes in alveoli, bronchioles, interstitial tissue, and arterioles of rats with COPD and PH.
Collapse
Affiliation(s)
- Zhouxin Ren
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Jiansheng Li
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Junling Shen
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Haibin Yu
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaofeng Mei
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peng Zhao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P. R. China, Zhengzhou, China
| | - Zhenya Xiao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wanliu Wu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
25
|
MiR-200a inversely correlates with Hedgehog and TGF-β canonical/non-canonical trajectories to orchestrate the anti-fibrotic effect of Tadalafil in a bleomycin-induced pulmonary fibrosis model. Inflammopharmacology 2020; 29:167-182. [PMID: 32914382 DOI: 10.1007/s10787-020-00748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
Few reports have documented the ability of phosphodiesterase-5 inhibitors (PDE-5-Is) to ameliorate idiopathic pulmonary fibrosis (IPF) mainly by their anti-inflammatory/antioxidant capacities, without unveiling the possible molecular mechanisms involved. Because of the recent role of miR-200 family and Sonic Hedgehog (SHH) trajectory in IPF, we have studied their impact on the anti-fibrotic potential of tadalafil against bleomycin-induced pulmonary fibrosis. Animals were allocated into normal-control, bleomycin-fibrotic control, and bleomycin post-treated with tadalafil or dexamethasone, as the reference drug. On the molecular level, tadalafil has reverted the bleomycin effect on all the assessed parameters. Tadalafil upregulated the gene expression of miR-200a, but decreased the smoothened (SMO) and the transcription factors glioma-associated oncogene homolog (Gli-1, Gli-2), members of SHH pathway. Additionally, tadalafil ebbed transforming growth factor (TGF)-β, its canonical (SMAD-3/alpha smooth muscle actin [α-SMA] and Snail), and non-canonical (p-Akt/p-Forkhead box O3 (FOXO3) a) pathways. Besides, a strong negative correlation between miR-200a and the analyzed pathways was proved. The effect of tadalafil was further confirmed by the improved lung structure and the reduced Ashcroft score/collagen deposition. The results were comparable to that of dexamethasone. In conclusion, our study has highlighted the involvement of miR-200a in the anti-fibrotic effect of tadalafil with the inhibition of SHH hub and the pro-fibrotic pathways (TGF-β/ SMAD-3/α-SMA, Snail and p-AKT/p-FOXO3a). Potential anti-fibrotic effect of tadalafil. Modulation of miR200a/SHH/canonical and non-canonical TGF-β trajectories. → : stimulatory effect; ┴: inhibitory effect.
Collapse
|
26
|
Schmidt M, Cattani-Cavalieri I, Nuñez FJ, Ostrom RS. Phosphodiesterase isoforms and cAMP compartments in the development of new therapies for obstructive pulmonary diseases. Curr Opin Pharmacol 2020; 51:34-42. [PMID: 32622335 PMCID: PMC7529846 DOI: 10.1016/j.coph.2020.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/17/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022]
Abstract
The second messenger molecule 3'5'-cyclic adenosine monophosphate (cAMP) imparts several beneficial effects in lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). While cAMP is bronchodilatory in asthma and COPD, it also displays anti-fibrotic properties that limit fibrosis. Phosphodiesterases (PDEs) metabolize cAMP and thus regulate cAMP signaling. While some existing therapies inhibit PDEs, there are only broad family specific inhibitors. The understanding of cAMP signaling compartments, some centered around lipid rafts/caveolae, has led to interest in defining how specific PDE isoforms maintain these signaling microdomains. The possible altered expression of PDEs, and thus abnormal cAMP signaling, in obstructive lung diseases has been poorly explored. We propose that inhibition of specific PDE isoforms can improve therapy of obstructive lung diseases by amplifying specific cAMP signals in discreet microdomains.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, GRIAC, Groningen, The Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J Nuñez
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, USA.
| |
Collapse
|
27
|
Hatamipour M, Ramezani M, Tabassi SAS, Johnston TP, Sahebkar A. Demethoxycurcumin: A naturally occurring curcumin analogue for treating non-cancerous diseases. J Cell Physiol 2019; 234:19320-19330. [PMID: 31344992 DOI: 10.1002/jcp.28626] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Turmeric extracts contain three primary compounds, which are commonly referred to as curcuminoids. They are curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin. While curcumin has been the most extensively studied of the curcuminoids, it suffers from low overall oral bioavailability due to extremely low absorption as a result of low water solubility and instability at acidic pH, as well as rapid metabolism and clearance from the body. However, DMC, which lacks the methoxy group on the benzene ring of the parent structure, has much greater chemical stability at physiological pH and has been recently reported to exhibit antitumor properties. However, the treatment of noncancerous diseases with DMC has not been comprehensively reviewed. Therefore, here we evaluate published scientific literature on the therapeutic properties of DMC. The beneficial pharmacological actions of DMC include anti-inflammatory, neuroprotective, antihypertensive, antimalarial, antimicrobial, antifungal, and vasodilatory properties. In addition, DMC's ability to ameliorate the effects of free radicals and an environment characterized by oxidative stress caused by the accumulation of advanced glycation end-products associated with diabetic nephropathy, as well as DMC's capacity to inhibit the migration and proliferation of vascular smooth muscle cells following balloon angioplasty are also addressed. This review collates the available literature regarding the therapeutic possibilities of DMC in noncancerous conditions.
Collapse
Affiliation(s)
- Mahdi Hatamipour
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahin Ramezani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
29
|
Elucidation of Vasodilation Response and Structure Activity Relationships of N², N⁴ -Disubstituted Quinazoline 2,4-Diamines in a Rat Pulmonary Artery Model. Molecules 2019; 24:molecules24020281. [PMID: 30646523 PMCID: PMC6358775 DOI: 10.3390/molecules24020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare and progressive disease arising from various etiologies and pathogenesis. PAH decreases life expectancy due to pulmonary vascular remodeling, elevation of mean pulmonary arterial pressure, and ultimately progresses to heart failure. While clinical treatments are available to reduce the associated symptoms, a complete cure has yet to be found. Phosphodiesterase-5 (PDE-5) inhibition has been identified as a possible intervention point in PAH treatment. The functional vasodilation response to N2,N4-diamino quinazoline analogues with differing PDE-5 inhibitory activities and varying physicochemical properties were assessed in both endothelium-intact and denuded rat pulmonary arteries to gain greater insight into their mode of action. All analogues produced vasorelaxant effects with EC50s ranging from 0.58 ± 0.22 µM to ˃30 µM. It was observed that vasodilation response in intact vessels was highly correlated with that of denuded vessels. The ~10% drop in activity is consistent with a loss of the nitric oxide mediated cyclic guanosine monophosphate (NO/cGMP) pathway in the latter case. A moderate correlation between the vasodilation response and PDE-5 inhibitory activity in the intact vessels was observed. Experimental protocol using the alpha-adrenergic (α1) receptor agonist, phenylephrine (PE), was undertaken to assess whether quinazoline derivatives showed competitive behavior similar to the α1 receptor blocker, prazosin, itself a quinazoline derivative, or to the PDE-5 inhibitor, sildenafil. Competitive experiments with the α1-adrenergic receptor agonist point to quinazoline derivatives under investigation here act via PDE-5 inhibition and not the former. The pre-incubation of pulmonary arterial rings with quinazoline test compounds (10 μM) reduced the contractile response to PE around 40–60%. The most promising compound (9) possessed ~32 folds higher selectivity in terms of vasodilation to its mammalian A549 cell cytotoxicity. This study provides experi0 0mental basis for PDE-5 inhibition as the mode of action for vasodilation by N2,N4-diamino quinazoline analogues along with their safety studies that may be beneficial in the treatment of various cardiovascular pathologies.
Collapse
|
30
|
Li Y, Zhang Y, Zhang Y. Research advances in pathogenesis and prophylactic measures of acute high altitude illness. Respir Med 2018; 145:145-152. [DOI: 10.1016/j.rmed.2018.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022]
|
31
|
Antenatal sildenafil administration to prevent pulmonary hypertension in congenital diaphragmatic hernia (SToP-PH): study protocol for a phase I/IIb placenta transfer and safety study. Trials 2018; 19:524. [PMID: 30261903 PMCID: PMC6161420 DOI: 10.1186/s13063-018-2897-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/31/2018] [Indexed: 01/28/2023] Open
Abstract
Background Congenital diaphragmatic hernia is an orphan disease with high neonatal mortality and significant morbidity. An important cause for this is pulmonary hypertension, for which no effective postnatal therapy is available to date. An innovative strategy aiming at treating or preventing pulmonary hypertension more effectively is urgently needed. Prenatal sildenafil administration to expectant mothers prevented fetal and neonatal vascular changes leading to pulmonary hypertension in several animal models, and is, therefore, a promising approach. Before transferring this antenatal medical approach to the clinic, more information is needed on transplacental transfer and safety of sildenafil in humans. Methods This is a randomized, investigator-blinded, double-armed, parallel-group, phase I/IIb study with as a primary objective to measure the in-vivo transplacental transfer of sildenafil in women in the second and early third trimester of pregnancy (sub-study 1; weeks: 20.0–32.6) and at term (sub-study 2; weeks: 36.6–40). Participants will be randomized to two different sildenafil doses: 25 or 75 mg. In sub-study 1, a single dose of the investigational product will be administered to women undergoing termination of pregnancy, and maternal and fetal blood samples will be collected for determination of sildenafil concentrations. In sub-study 2, sildenafil will be administered three times daily from 3 days before planned delivery until actual delivery, following which maternal and umbilical cord samples will be collected. Proxies of maternal and fetal tolerance as well as markers of fetal pulmonary vasodilation will also be measured. Discussion This is the first study evaluating in-vivo transplacental passage of sildenafil in humans. Trial registration EU Clinical Trials Register 2016–002619-17, validated on 12 August 2016. Trial sponsor: UZ Leuven, Herestraat 49, 3000 Leuven. Electronic supplementary material The online version of this article (10.1186/s13063-018-2897-8) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
33
|
Lo CCW, Moosavi SM, Bubb KJ. The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension. Front Physiol 2018; 9:1167. [PMID: 30190678 PMCID: PMC6116211 DOI: 10.3389/fphys.2018.01167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) is an incurable, chronic disease of small pulmonary vessels. Progressive remodeling of the pulmonary vasculature results in increased pulmonary vascular resistance (PVR). This causes secondary right heart failure. PVR is tightly regulated by a range of pulmonary vasodilators and constrictors. Endothelium-derived substances form the basis of most current PH treatments. This is particularly the case for pulmonary arterial hypertension. The major limitation of current treatments is their inability to reverse morphological changes. Thus, there is an unmet need for novel therapies to reduce the morbidity and mortality in PH. Microvessels in the lungs are highly innervated by sensory C fibers. Substance P and calcitonin gene-related peptide (CGRP) are released from C-fiber nerve endings. These neuropeptides can directly regulate vascular tone. Substance P tends to act as a vasoconstrictor in the pulmonary circulation and it increases in the lungs during experimental PH. The receptor for substance P, neurokinin 1 (NK1R), mediates increased pulmonary pressure. Deactivation of NK1R with antagonists, or depletion of substance P prevents PH development. CGRP is a potent pulmonary vasodilator. CGRP receptor antagonists cause elevated pulmonary pressure. Thus, the balance of these peptides is crucial within the pulmonary circulation (Graphical Abstract). Limited progress has been made in understanding their impact on pulmonary pathophysiology. This is an intriguing area of investigation to pursue. It may lead to promising new candidate therapies to combat this fatal disease. This review provides a summary of the current knowledge in this area. It also explores possible future directions for neuropeptides in PH.
Collapse
Affiliation(s)
- Charmaine C. W. Lo
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
| | - Seyed M. Moosavi
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristen J. Bubb
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
| |
Collapse
|
34
|
Abstract
Tadalafil (Cialis) is one of the most commonly used phosphodiesterase type5 (PDE5) inhibitors. This work aimed to analyze the histological and ultrastructural changes provoked by chronic tadalafil administration in the rat retina, correlate between such changes and PDE5 immunoexpression and to evaluate the possible reversibility of these changes. Thirty Sprague Dawley male rats were randomly distributed into 3 groups. Control group; given 1 ml distilled water daily for 6 weeks. Tadalafil group; given tadalafil in a daily dose of 2.6 mg/kg for 6 weeks. Withdrawal group; given tadalafil 2.6 mg/kg daily for 6 week followed by a withdrawal period of 4 weeks. Retinal specimens were prepared for histological, ultrastructural and immunohistochemical study using anti-PDE5 and anti-Bcl-2 antibodies. Morphometric and statistical studies were performed. Tadalafil group displayed a significant reduction in retinal thickness, diminished cell population of outer and inner nuclear layers, dilated blood capillaries and a significant decline in the number of ganglion cells. Significant reductions of both PDE5 and Bcl-2 immunoexpression were observed. At the ultrastructural level, the photoreceptors showed spacing of outer segments and disorganized membranous discs. Retinal neurons showed ultrastructural degenerative changes in the form of shrunken irregular nuclei, dilated rER, and disrupted mitochondria. Withdrawal group revealed preservation of histological structure and partial restoration of retinal thickness, retinal cells ultrastructure, and PDE5 and Bcl-2 immunoexpressions. In conclusion, chronic use of tadalafil could induce reversible apoptotic and degenerative changes in retinal neurons due to its inhibitory effect on PDE5 expression which affects the metabolism and viability of retinal cells.
Collapse
|
35
|
Stevens KK, Denby L, Patel RK, Mark PB, Kettlewell S, Smith GL, Clancy MJ, Delles C, Jardine AG. Deleterious effects of phosphate on vascular and endothelial function via disruption to the nitric oxide pathway. Nephrol Dial Transplant 2018; 32:1617-1627. [PMID: 27448672 PMCID: PMC5837731 DOI: 10.1093/ndt/gfw252] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/02/2016] [Indexed: 01/16/2023] Open
Abstract
Background Hyperphosphataemia is an independent risk factor for accelerated cardiovascular disease in chronic kidney disease (CKD), although the mechanism for this is poorly understood. We investigated the effects of sustained exposure to a high-phosphate environment on endothelial function in cellular and preclinical models, as well as in human subjects. Methods Resistance vessels from rats and humans (± CKD) were incubated in a normal (1.18 mM) or high (2.5 mM) phosphate concentration solution and cells were cultured in normal- (0.5 mM) or high-phosphate (3 mM) concentration media. A single-blind crossover study was performed in healthy volunteers, receiving phosphate supplements or a phosphate binder (lanthanum), and endothelial function measured was by flow-mediated dilatation. Results Endothelium-dependent vasodilatation was impaired when resistance vessels were exposed to high phosphate; this could be reversed in the presence of a phosphodiesterase-5-inhibitor. Vessels from patients with CKD relaxed normally when incubated in normal-phosphate conditions, suggesting that the detrimental effects of phosphate may be reversible. Exposure to high-phosphate disrupted the whole nitric oxide pathway with reduced nitric oxide and cyclic guanosine monophosphate production and total and phospho endothelial nitric oxide synthase expression. In humans, endothelial function was reduced by chronic phosphate loading independent of serum phosphate, but was associated with higher urinary phosphate excretion and serum fibroblast growth factor 23. Conclusions These directly detrimental effects of phosphate, independent of other factors in the uraemic environment, may explain the increased cardiovascular risk associated with phosphate in CKD.
Collapse
Affiliation(s)
- Kathryn K Stevens
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,The Renal Transplant Unit, Western Infirmary, (Now based at The Queen Elizabeth University Hospital) Glasgow, UK
| | - Laura Denby
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Rajan K Patel
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,The Renal Transplant Unit, Western Infirmary, (Now based at The Queen Elizabeth University Hospital) Glasgow, UK
| | - Patrick B Mark
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,The Renal Transplant Unit, Western Infirmary, (Now based at The Queen Elizabeth University Hospital) Glasgow, UK
| | - Sarah Kettlewell
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Marc J Clancy
- The Renal Transplant Unit, Western Infirmary, (Now based at The Queen Elizabeth University Hospital) Glasgow, UK
| | - Christian Delles
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Alan G Jardine
- BHF Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,The Renal Transplant Unit, Western Infirmary, (Now based at The Queen Elizabeth University Hospital) Glasgow, UK
| |
Collapse
|
36
|
Mokry J, Urbanova A, Kertys M, Mokra D. Inhibitors of phosphodiesterases in the treatment of cough. Respir Physiol Neurobiol 2018; 257:107-114. [PMID: 29337269 DOI: 10.1016/j.resp.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 02/08/2023]
Abstract
A group of 11 enzyme families of metalophosphohydrolases called phosphodiesterases (PDEs) is responsible for a hydrolysis of intracellular cAMP and cGMP. Xanthine derivatives (methylxanthines) inhibit PDEs without selective action on their single isoforms and lead to many pharmacological effects, e.g. bronchodilation, anti-inflammatory and immunomodulating effects, and thus they can modulate the cough reflex. Contrary, selective PDE inhibitors have been developed to inhibit PDE isoforms with different pharmacological effects based on their tissue expression. In this paper, effects of non-selective PDE inhibitors (e.g. theophylline) are discussed, with a description of other putative mechanisms in their effects on cough. Antitussive effects of selective inhibitors of several PDE isoforms are reviewed, focusing on PDE1, PDE3, PDE4, PDE5 and PDE7. The inhibition of PDEs suggests participation of bronchodilation, suppression of TRPV channels and anti-inflammatory action in cough suppression. Selective PDE3, PDE4 and PDE5 inhibitors have demonstrated the most significant cough suppressive effects, confirming their benefits in chronic inflammatory airway diseases associated with bronchoconstriction and cough.
Collapse
Affiliation(s)
- Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | - Anna Urbanova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Kertys
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Daniela Mokra
- Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia; Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
37
|
Fulton DJR, Li X, Bordan Z, Haigh S, Bentley A, Chen F, Barman SA. Reactive Oxygen and Nitrogen Species in the Development of Pulmonary Hypertension. Antioxidants (Basel) 2017; 6:antiox6030054. [PMID: 28684719 PMCID: PMC5618082 DOI: 10.3390/antiox6030054] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease of the lung vasculature that involves the loss of endothelial function together with inappropriate smooth muscle cell growth, inflammation, and fibrosis. These changes underlie a progressive remodeling of blood vessels that alters flow and increases pulmonary blood pressure. Elevated pressures in the pulmonary artery imparts a chronic stress on the right ventricle which undergoes compensatory hypertrophy but eventually fails. How PAH develops remains incompletely understood and evidence for the altered production of reactive oxygen and nitrogen species (ROS, RNS respectively) in the pulmonary circulation has been well documented. There are many different types of ROS and RNS, multiple sources, and collective actions and interactions. This review summarizes past and current knowledge of the sources of ROS and RNS and how they may contribute to the loss of endothelial function and changes in smooth muscle proliferation in the pulmonary circulation.
Collapse
Affiliation(s)
- David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Xueyi Li
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Zsuzsanna Bordan
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Austin Bentley
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Scott A Barman
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
38
|
Mohamed NA, Davies RP, Lickiss PD, Ahmetaj-Shala B, Reed DM, Gashaw HH, Saleem H, Freeman GR, George PM, Wort SJ, Morales-Cano D, Barreira B, Tetley TD, Chester AH, Yacoub MH, Kirkby NS, Moreno L, Mitchell JA. Chemical and biological assessment of metal organic frameworks (MOFs) in pulmonary cells and in an acute in vivo model: relevance to pulmonary arterial hypertension therapy. Pulm Circ 2017; 7:643-653. [PMID: 28447910 PMCID: PMC5841901 DOI: 10.1177/2045893217710224] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and debilitating condition. Despite promoting vasodilation, current drugs have a therapeutic window within which they are limited by systemic side effects. Nanomedicine uses nanoparticles to improve drug delivery and/or reduce side effects. We hypothesize that this approach could be used to deliver PAH drugs avoiding the systemic circulation. Here we report the use of iron metal organic framework (MOF) MIL-89 and PEGylated MIL-89 (MIL-89 PEG) as suitable carriers for PAH drugs. We assessed their effects on viability and inflammatory responses in a wide range of lung cells including endothelial cells grown from blood of donors with/without PAH. Both MOFs conformed to the predicted structures with MIL-89 PEG being more stable at room temperature. At concentrations up to 10 or 30 µg/mL, toxicity was only seen in pulmonary artery smooth muscle cells where both MOFs reduced cell viability and CXCL8 release. In endothelial cells from both control donors and PAH patients, both preparations inhibited the release of CXCL8 and endothelin-1 and in macrophages inhibited inducible nitric oxide synthase activity. Finally, MIL-89 was well-tolerated and accumulated in the rat lungs when given in vivo. Thus, the prototypes MIL-89 and MIL-89 PEG with core capacity suitable to accommodate PAH drugs are relatively non-toxic and may have the added advantage of being anti-inflammatory and reducing the release of endothelin-1. These data are consistent with the idea that these materials may not only be useful as drug carriers in PAH but also offer some therapeutic benefit in their own right.
Collapse
Affiliation(s)
- Nura A Mohamed
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK.,2 Heart Science Centre at Harefield Hospital, Harefield, UK.,3 Qatar Foundation Research and Development Division, Doha, Qatar
| | - Robert P Davies
- 4 Department of Chemistry, South Kensington Campus, Imperial College, London, UK
| | - Paul D Lickiss
- 4 Department of Chemistry, South Kensington Campus, Imperial College, London, UK
| | - Blerina Ahmetaj-Shala
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Daniel M Reed
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Hime H Gashaw
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Hira Saleem
- 4 Department of Chemistry, South Kensington Campus, Imperial College, London, UK
| | - Gemma R Freeman
- 4 Department of Chemistry, South Kensington Campus, Imperial College, London, UK
| | - Peter M George
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Stephen J Wort
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Daniel Morales-Cano
- 5 Department of Pharmacology, Faculty of Medicine, Universidad Complutense de Madrid- Instituto de Investigacion Sanitaria Gregorio Marañón (IiSGM), Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Bianca Barreira
- 5 Department of Pharmacology, Faculty of Medicine, Universidad Complutense de Madrid- Instituto de Investigacion Sanitaria Gregorio Marañón (IiSGM), Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Teresa D Tetley
- 6 Lung Cell Biology Group, National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Magdi H Yacoub
- 2 Heart Science Centre at Harefield Hospital, Harefield, UK
| | - Nicholas S Kirkby
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| | - Laura Moreno
- 5 Department of Pharmacology, Faculty of Medicine, Universidad Complutense de Madrid- Instituto de Investigacion Sanitaria Gregorio Marañón (IiSGM), Ciber Enfermedades Respiratorias (CIBERES), Spain
| | - Jane A Mitchell
- 1 Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
39
|
Aljanabi M, Khatib S, Gharaibeh NS. Does sildenafil improve ventilatory function in asthmatic subjects? Breathe (Sheff) 2017; 13:113-116. [PMID: 28620430 PMCID: PMC5467662 DOI: 10.1183/20734735.019516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sildenafil is well known selective phosphodiesterase-5 (PDE-5) enzyme inhibitor that is used extensively in erectile dysfunction in males. The effect of sildenafil is mediated through raising the tissue level of the second messenger cyclic guanosine monophosphate (cGMP) leading to relaxation of smooth muscle [1] through reduction of intracellular [Ca2+] and downregulation of contractile apparatus [2]. The reduction of intracellular [Ca2+] is through inhibition of Ca2+ influx [3] and decreasing Ca2+ release from the endoplasmic reticulum by blocking Ca2+ channels [4]. PDE-5 is found in high concentrations in the corpus cavernosum and in pulmonary artery smooth muscle, and therefore its inhibition leads to an increase in penile blood flow and a decrease in pulmonary vascular resistance [5]. Levels of cGMP in smooth muscle is also increased by nitric oxide (NO), which is formed from l-arginine through the actions of different types of NO synthase. NO acts a vasodilator, neurotransmitter and inflammatory mediator in human airways [6]. It relaxes tracheal smooth muscle [7] and decreases methacholine-induced bronchoconstriction in experimental animals [8]. Turneret al. [9] presented supporting evidence for a role of NO in airway dilatation by demonstrating that an NO-donating compound potentiates the effects of a β2-adrenoceptor agonist. Can sildenafil be used to treat asthma?http://ow.ly/13Y830bgExG
Collapse
Affiliation(s)
- Mukhallad Aljanabi
- Dept of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Said Khatib
- Dept of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nayef S Gharaibeh
- Dept of Physiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
40
|
Yamamura A, Fujitomi E, Ohara N, Tsukamoto K, Sato M, Yamamura H. Tadalafil induces antiproliferation, apoptosis, and phosphodiesterase type 5 downregulation in idiopathic pulmonary arterial hypertension in vitro. Eur J Pharmacol 2017; 810:44-50. [PMID: 28603047 DOI: 10.1016/j.ejphar.2017.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a fatal disease of the pulmonary artery resulting from a currently unidentified etiology. IPAH is pathologically characterized as sustained vasoconstriction and vascular remodeling of the pulmonary artery. Vascular remodeling is mediated by enhanced proliferation and reduced apoptosis in pulmonary arterial smooth muscle cells (PASMCs). Based on its pathological mechanism, specific phosphodiesterase type 5 (PDE5) inhibitors have been used in the treatment of IPAH. In addition to sildenafil, tadalafil has been approved for the treatment of IPAH. However, the effects of tadalafil on excessive proliferation of IPAH-PASMCs currently remain unknown. In the present study, the in vitro pharmacological profiles of tadalafil for cell proliferation and apoptosis were assessed in IPAH-PASMCs using MTT, BrdU incorporation, and caspase 3/7 assays. Expression analyses revealed that PDE5 mRNA and protein expression levels were markedly higher in IPAH-PASMCs than in normal-PASMCs. The treatment with tadalafil inhibited the excessive proliferation of IPAH-PASMCs in a concentration-dependent manner with an IC50 value of 4.5μM. On the other hand, tadalafil (0.03-100μM) did not affect cell growth of PASMCs from normal subjects and patients with chronic thromboembolic pulmonary hypertension (CTEPH). In addition, tadalafil induced apoptosis in IPAH-PASMCs. The antiproliferative and apoptotic effects of tadalafil were markedly stronger than those of sildenafil and vardenafil. The upregulated expression of PDE5 in IPAH-PASMCs was significantly attenuated by a long-term treatment with tadalafil. Taken together, these results indicate that tadalafil attenuates vascular remodeling by inhibiting cell proliferation, promoting apoptosis, and downregulating PDE5 in IPAH-PASMCs, thereby ameliorating IPAH.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata Nagakute, Aichi 480-1195, Japan; Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori Moriyamaku, Nagoya 463-8521, Japan
| | - Eri Fujitomi
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori Moriyamaku, Nagoya 463-8521, Japan
| | - Naoki Ohara
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori Moriyamaku, Nagoya 463-8521, Japan
| | - Kikuo Tsukamoto
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori Moriyamaku, Nagoya 463-8521, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata Nagakute, Aichi 480-1195, Japan
| | - Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabedori Mizuhoku, Nagoya 467-8603, Japan.
| |
Collapse
|
41
|
Kylhammar D, Rådegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. Acta Physiol (Oxf) 2017; 219:728-756. [PMID: 27381367 DOI: 10.1111/apha.12749] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 06/10/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) serves to optimize ventilation-perfusion matching in focal hypoxia and thereby enhances pulmonary gas exchange. During global hypoxia, however, HPV induces general pulmonary vasoconstriction, which may lead to pulmonary hypertension (PH), impaired exercise capacity, right-heart failure and pulmonary oedema at high altitude. In chronic hypoxia, generalized HPV together with hypoxic pulmonary arterial remodelling, contribute to the development of PH. The present article reviews the principal pathways in the in vivo modulation of HPV, hypoxic pulmonary arterial remodelling and PH with primary focus on the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways. In summary, endothelin-1 and thromboxane A2 may enhance, whereas nitric oxide and prostacyclin may moderate, HPV as well as hypoxic pulmonary arterial remodelling and PH. The production of prostacyclin seems to be coupled primarily to cyclooxygenase-1 in acute hypoxia, but to cyclooxygenase-2 in chronic hypoxia. The potential role of adenine nucleotides in modulating HPV is unclear, but warrants further study. Additional modulators of the pulmonary vascular responses to hypoxia may include angiotensin II, histamine, serotonin/5-hydroxytryptamine, leukotrienes and epoxyeicosatrienoic acids. Drugs targeting these pathways may reduce acute and/or chronic hypoxic PH. Endothelin receptor antagonists and phosphodiesterase-5 inhibitors may additionally improve exercise capacity in hypoxia. Importantly, the modulation of the pulmonary vascular responses to hypoxia varies between species and individuals, with hypoxic duration and age. The review also define how drugs targeting the endothelin-1, nitric oxide, cyclooxygenase and adenine nucleotide pathways may improve pulmonary haemodynamics, but also impair pulmonary gas exchange by interference with HPV in chronic lung diseases.
Collapse
Affiliation(s)
- D. Kylhammar
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| | - G. Rådegran
- Department of Clinical Sciences Lund, Cardiology; Faculty of Medicine; Lund University; Lund Sweden
- The Section for Heart Failure and Valvular Disease; VO Heart and Lung Medicine; Skåne University Hospital; Lund Sweden
| |
Collapse
|
42
|
Sato T, Tsujino I, Sugimoto A, Nakaya T, Watanabe T, Ohira H, Suzuki M, Konno S, Oyama-Manabe N, Nishimura M. The effects of pulmonary vasodilating agents on right ventricular parameters in severe group 3 pulmonary hypertension: a pilot study. Pulm Circ 2017; 6:524-531. [PMID: 28090294 DOI: 10.1086/688712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Pulmonary arterial hypertension (PAH)-approved vasodilators improve right ventricular (RV) function in patients with PAH. However, whether PAH-approved drugs ameliorate RV morphology and function in lung disease-associated pulmonary hypertension (lung-PH) remains unclear. We aimed to prospectively evaluate the changes in RV volume and ejection fraction (RVEF) in 14 consecutive severe lung-PH patients treated with PAH-approved vasodilators. Severe lung-PH was defined as a mean pulmonary arterial pressure (MPAP) of ≥35 mmHg or an MPAP of ≥25 mmHg with a cardiac index (L/min/m2) of <2. Right heart catheterization and cardiac magnetic resonance (CMR) imaging were performed at baseline and at 3 months after starting sildenafil with or without other PAH-approved drugs. Follow-up was conducted at 3 months in 11 participants; compared with baseline values, MPAP and pulmonary vascular resistance (PVR) decreased by 18% and 37%, respectively. Baseline CMR imaging revealed an elevated RV end-diastolic volume index (RVEDVI; mL/m2) of 117.5 ± 35.9 and a below-average RVEF of 25.2% ± 7.2%; after 3 months, RVEDVI decreased by 23.7% (P = 0.0061) and RVEF increased by 32.9% (P = 0.0165). Among the 11 patients, 3 were thought to be a stable and homogenous subset in terms of background lung disease and medical management administered. These 3 patients exhibited similar ameliorations in PVR and RVEF, compared with the other 8 patients. PAH-approved drug treatment may improve RV dilatation and systolic function among patients with severe lung-PH. This study was approved by University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR) on September 1, 2013 (UMIN000011541).
Collapse
Affiliation(s)
- Takahiro Sato
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ichizo Tsujino
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ayako Sugimoto
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Toshitaka Nakaya
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Taku Watanabe
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Ohira
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masaru Suzuki
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Konno
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Noriko Oyama-Manabe
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Masaharu Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
43
|
Wang Y, Ma TT, Gao NN, Zhou XL, Jiang H, Guo R, Jia LN, Chang H, Gao Y, Gao ZM, Pan L. Effect of Tongxinluo on pulmonary hypertension and pulmonary vascular remodeling in rats exposed to a low pressure hypoxic environment. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:668-673. [PMID: 27737815 DOI: 10.1016/j.jep.2016.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongxinluo (TXL), which is a Chinese medicine rooted from traditional used herbs, has been used in clinic to treat cardiovascular and cerebrovascular diseases. However, it remains unknown whether TXL alleviates low pressure hypoxic pulmonary hypertension. AIM OF THE STUDY Here, we aimed to observe the influence of TXL on pulmonary hypertension in a rat model that exposed to high altitude environment characterized by low pressure hypoxia. MATERIALS AND METHODS A total of 32 male Sprague-Dawley rats were divided into four groups: control group (normal pressure and normoxia), pulmonary hypertension group (PAH, the parameter is equal to that in altitude 5000m), TXL group (rats living in environment equal to that at altitude of 5000m received TXL treatment), vardenafil group (VDNF, rats living in environment equal to that altitude of 5000m received vardenafil treatment). The high altitude environment was created in chamber by adjusting the inner pressure and oxygen content concomitantly. Before entering the chamber, the TXL group was given TXL (1.2gkg-1d-1) for 28 days, and the VDNF group was given VDNF (0.1gkg-1d-1) for 28 days. After 28 days, the mean pulmonary artery pressure (mPAP) and right ventricular pressure was measured using right heart catheterization. The weight of the right ventricle (RV), left ventricle (LV) and interventricular septum (IVS) was measured, and the right ventricular mass index was calculated. Lung tissue was subjected to hematoxylin and elastic fiber staining, and the medial wall thickness (MT), medial wall cross-sectional area (MA), MT%, and MA% were measured. Proliferative activity within the pulmonary arteries was quantified by Ki67staining. RESULTS After 28 days, as compared with that in normal control group, animals living in the chamber (PAH group) showed a significant increase in mPAP( 47.5mmHg versus 18mmHg), RV/LV+IVS (0.45 versus 0.21) and MA% (78% versus 44%), respectively. Administration of TXL resulted in a significant decrease of 20mmHg in mPAP, returning of RV/LV+IVS to 0.27, and a 40% reduction in MT% compared with that in PAH group. In the VDNF group, RV/LV+IVS and MT% was 0.268 and 38.77, significantly lower than that in PAH group. While, mPAP increased by 12.5mmHg with treatment by VDNF. In contrast to the PAH group, alpha- Smooth Muscle Actin (α-SMA reduced by 19% in the TXL group (p=0.005) and 16% in the VDNF group (p=0.01). Ki67 expression in the VDNF group was significantly lower than the PAH group (P<0.01). Ki67 expression in the TXL group was significantly lower than the PAH group (P<0.01). Compared with the VDNF group, the indexes above reduced in the TXL group. Our results indicate that TXL significantly reduces pulmonary artery pressure, right ventricular hypertrophy, pulmonary small artery wall thickness, and luminal stenosis. In addition, smooth muscle proliferation markedly decreased and muscular artery decreased. However, TXL was unable to restore parameters to control levels. CONCLUSIONS The automatic-adjusted low pressure hypoxic chamber was capable of establishing a pulmonary hypertension rat model at an altitude of 5000m. Compared with VDNF, TXL decreased mPAP and right ventricular hypertrophy index (RVHI) in the pulmonary hypertension rat model, and prevented vascular remodeling by reducing small pulmonary artery thickening, smooth muscle thickening and proliferation. Thus, TXL may be a potential treatment for pulmonary hypertension.
Collapse
Affiliation(s)
- Yong Wang
- Department of Geriatric Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University; Hypoxia Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Ting-Ting Ma
- Department of Geriatric Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University; Hypoxia Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Na-Na Gao
- Central Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Xiao-Ling Zhou
- Department of Geriatric Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University; Hypoxia Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Hong Jiang
- Department of Geriatric Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University; Hypoxia Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Rui Guo
- Department of Geriatric Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University; Hypoxia Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Li-Na Jia
- Department of Geriatric Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University; Hypoxia Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Hong Chang
- Department of the Pathology, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Ying Gao
- Department of the Pathology, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Zhi-Min Gao
- Central Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University
| | - Lei Pan
- Department of Geriatric Medicine, Beijing Shijitan Hospital Affiliated to Capital Medical University; Hypoxia Laboratory, Beijing Shijitan Hospital Affiliated to Capital Medical University.
| |
Collapse
|
44
|
Calcilytics enhance sildenafil-induced antiproliferation in idiopathic pulmonary arterial hypertension. Eur J Pharmacol 2016; 784:15-21. [DOI: 10.1016/j.ejphar.2016.04.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 01/08/2023]
|
45
|
Kramm T, Guth S, Wiedenroth CB, Ghofrani HA, Mayer E. [Treatment of acute and chronic right ventricular failure]. Med Klin Intensivmed Notfmed 2016; 111:463-80. [PMID: 27241776 DOI: 10.1007/s00063-016-0181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/17/2016] [Accepted: 04/04/2016] [Indexed: 11/28/2022]
Abstract
Acute or chronic right ventricular failure is an often misdiagnosed cause of cardiopulmonary insufficiency. In addition to clinical symptoms or laboratory testing, echocardiography and invasive hemodynamic measurement by means of right-heart catheterization are essential for diagnosis and treatment control. In case of acute right ventricular failure, adequate symptomatic treatment of the life-threatening situation is important. Main issues are maintenance of coronary artery perfusion pressure and myocardial oxygen delivery as well as reduction of right ventricular afterload. In persistent right ventricular failure extracorporeal or intracorporeal assist devices are increasingly used as bridging or destination therapy. On a long-term basis, the targeted therapy of the underlying disease is crucial.
Collapse
Affiliation(s)
- T Kramm
- Abteilung für Thoraxchirurgie, Kerckhoff Klinik gGmbH, Benekestr. 2‑8, 61231, Bad Nauheim, Deutschland.
| | - S Guth
- Abteilung für Thoraxchirurgie, Kerckhoff Klinik gGmbH, Benekestr. 2‑8, 61231, Bad Nauheim, Deutschland
| | - C B Wiedenroth
- Abteilung für Thoraxchirurgie, Kerckhoff Klinik gGmbH, Benekestr. 2‑8, 61231, Bad Nauheim, Deutschland
| | - H A Ghofrani
- Abteilung für allgemeine Pneumologie, Kerckhoff-Klinik gGmbH, Bad Nauheim, Deutschland.,Medizinische Klinik II, Mitglied des Deutschen Zentrums für Lungenforschung (DZL), Universitätsklinikum Gießen und Marburg GmbH, Gießen, Deutschland
| | - E Mayer
- Abteilung für Thoraxchirurgie, Kerckhoff Klinik gGmbH, Benekestr. 2‑8, 61231, Bad Nauheim, Deutschland
| |
Collapse
|
46
|
Kane LB, Klings ES. Present and future treatment strategies for pulmonary arterial hypertension : focus on phosphodiesterase-5 inhibitors. ACTA ACUST UNITED AC 2016; 5:271-82. [PMID: 16808546 DOI: 10.2165/00151829-200605040-00005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare progressive disorder historically associated with mortality in <3 years post-diagnosis. The etiology of PAH is complex, multifactorial, and likely involves the interplay between genetic and environmental factors. These are reviewed with emphasis on the nitric oxide pathway. Use of treatment modalities including vasodilator therapy have resulted in improved symptoms, hemodynamics, and survival in these patients. Vasodilators, including the calcium channel antagonists, prostanoids, and endothelin receptor antagonists, have been used to counteract potential imbalances in vasoactive mediators in PAH patients; all have produced improved long-term symptomatology and hemodynamics. Only the prostanoid epoprostenol has improved survival in IPAH patients. Although these medications have worked well in many patients with PAH, each of them has limitations. The phosphodiesterase-5 (PDE-5) inhibitors are a relatively new form of treatment for PAH. They are designed to potentiate the effects of cyclic guanosine monophosphate, thereby mimicking endogenous nitric oxide within the vasculature. PDE-5 inhibitors are selective pulmonary vasodilators effective in animal models of pulmonary hypertension. The published clinical studies evaluating their use have been small in size to date but appear to demonstrate benefit. The recently completed 12-week randomized placebo-controlled Sildenafil Use in Pulmonary Hypertension (SUPER-1) trial demonstrated improvement in 6-minute walk distance and hemodynamics in patients receiving sildenafil. These data suggest that the PDE-5 inhibitors are effective in treating PAH and that it is likely that their usage will increase over time. The purpose of this review is to present a current view of the pathogenesis and treatment of PAH, with an emphasis on the use of PDE-5 inhibitors in these patients.
Collapse
Affiliation(s)
- Laura B Kane
- The Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
47
|
Rimoldi SF, Rexhaj E, Villena M, Salmon CS, Allemann Y, Scherrer U, Sartori C. Novel Insights into Cardiovascular Regulation in Patients with Chronic Mountain Sickness. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 903:83-100. [PMID: 27343090 DOI: 10.1007/978-1-4899-7678-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies of high-altitude populations, and in particular of maladapted subgroups, may provide important insight into underlying mechanisms involved in the pathogenesis of hypoxemia-related disease in general. Chronic mountain sickness (CMS) is a major public health problem in mountainous regions of the world affecting many millions of high-altitude dwellers. It is characterized by exaggerated chronic hypoxemia, erythrocytosis, and mild pulmonary hypertension. In later stages these patients often present with right heart failure and are predisposed to systemic cardiovascular disease, but the underlying mechanisms are poorly understood. Here, we present recent new data providing insight into underlying mechanisms that may cause these complications.
Collapse
Affiliation(s)
- Stefano F Rimoldi
- Department of Cardiology, Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland.
- Department of Internal Medicine, Botnar Center for Extreme Medicine, University Hospital, Lausanne, CHUV, Switzerland.
| | - Emrush Rexhaj
- Department of Cardiology, Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland
- Department of Internal Medicine, Botnar Center for Extreme Medicine, University Hospital, Lausanne, CHUV, Switzerland
| | | | | | - Yves Allemann
- Department of Cardiology, Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland
| | - Urs Scherrer
- Department of Cardiology, Swiss Cardiovascular Center Bern, University Hospital, Bern, Switzerland
- Department of Internal Medicine, Botnar Center for Extreme Medicine, University Hospital, Lausanne, CHUV, Switzerland
- Departamento de Biología, Facultad de Ciencias, Universidad de Tarapacá, Arica, Chile
| | - Claudio Sartori
- Department of Internal Medicine, Botnar Center for Extreme Medicine, University Hospital, Lausanne, CHUV, Switzerland
| |
Collapse
|
48
|
Development of a Human Model for the Study of Effects of Hypoxia, Exercise, and Sildenafil on Cardiac and Vascular Function in Chronic Heart Failure. J Cardiovasc Pharmacol 2015; 66:229-38. [DOI: 10.1097/fjc.0000000000000262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Domínguez-Fandos D, Valdés C, Ferrer E, Puig-Pey R, Blanco I, Tura-Ceide O, Paul T, Peinado VI, Barberà JA. Sildenafil in a cigarette smoke-induced model of COPD in the guinea-pig. Eur Respir J 2015; 46:346-54. [PMID: 25929951 DOI: 10.1183/09031936.00139914] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 03/05/2015] [Indexed: 12/14/2022]
Abstract
Sildenafil, a phosphodiesterase-5 inhibitor used to treat pulmonary hypertension, may have effects on pulmonary vessel structure and function. We evaluated the effects of sildenafil in a cigarette smoke (CS)-exposed model of chronic obstructive pulmonary disease (COPD).42 guinea-pigs were exposed to cigarette smoke or sham-exposed and treated with sildenafil or vehicle for 12 weeks, divided into four groups. Assessments included respiratory resistance, pulmonary artery pressure (PAP), right ventricle (RV) hypertrophy, endothelial function of the pulmonary artery and lung vessel and parenchymal morphometry.CS-exposed animals showed increased PAP, RV hypertrophy, raised respiratory resistance, airspace enlargement and intrapulmonary vessel remodelling. CS exposure also produced wall thickening, increased contractility and endothelial dysfunction in the main pulmonary artery. CS-exposed animals treated with sildenafil showed lower PAP and a trend to less RV hypertrophy than CS-exposed only animals. Furthermore, sildenafil preserved the intrapulmonary vessel density and attenuated the airspace enlargement induced by CS. No differences in gas exchange, respiratory resistance, endothelial function and vessel remodelling were observed.We conclude that in this experimental model of COPD, sildenafil prevents the development of pulmonary hypertension and contributes to preserve the parenchymal and vascular integrity, reinforcing the notion that the nitric oxide-cyclic guanosine monophosphate axis is perturbed by CS exposure.
Collapse
Affiliation(s)
- David Domínguez-Fandos
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - César Valdés
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Elisabet Ferrer
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Raquel Puig-Pey
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Isabel Blanco
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Olga Tura-Ceide
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Tanja Paul
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Víctor I Peinado
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Joan A Barberà
- Dept of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
50
|
Wilkins MR, Ghofrani HA, Weissmann N, Aldashev A, Zhao L. Pathophysiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation 2015; 131:582-90. [DOI: 10.1161/circulationaha.114.006977] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Martin R. Wilkins
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Hossein-Ardeschir Ghofrani
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Norbert Weissmann
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Almaz Aldashev
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Lan Zhao
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| |
Collapse
|