1
|
Rodrigues-Fernandes CI, Martins-Chaves RR, Vitório JG, Duarte-Andrade FF, Pereira TDSF, Soares CD, Moreira VR, Lebron YAR, Santos LVDS, Lange LC, Canuto GAB, Gomes CC, de Macedo AN, Pontes HAR, Burbano RMR, Martins MD, Pires FR, Mesquita RA, Gomez RS, Santos-Silva AR, Lopes MA, Vargas PA, Fonseca FP. The altered metabolic pathways of diffuse large B-cell lymphoma not otherwise specified. Leuk Lymphoma 2023; 64:1771-1781. [PMID: 37462418 DOI: 10.1080/10428194.2023.2234523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 11/07/2023]
Abstract
Altered metabolic fingerprints of Diffuse large B-cell lymphoma, not otherwise specified (DLBCL NOS) may offer novel opportunities to identify new biomarkers and improve the understanding of its pathogenesis. This study aimed to investigate the modified metabolic pathways in extranodal, germinal center B-cell (GCB) and non-GCB DLBCL NOS from the head and neck. Formalin-fixed paraffin-embedded (FFPE) tissues from eleven DLBCL NOS classified according to Hans' algorithm using immunohistochemistry, and five normal lymphoid tissues (LT) were analyzed by high-performance liquid chromatography-mass spectrometry-based untargeted metabolomics. Partial Least Squares Discriminant Analysis showed that GCB and non-GCB DLBCL NOS have a distinct metabolomics profile, being the former more similar to normal lymphoid tissues. Metabolite pathway enrichment analysis indicated the following altered pathways: arachidonic acid, tyrosine, xenobiotics, vitamin E metabolism, and vitamin A. Our findings support that GCB and non-GCB DLBCL NOS has a distinct metabolomic profile, in which GCB possibly shares more metabolic similarities with LT than non-GCB DLBCL NOS.
Collapse
Affiliation(s)
- Carla Isabelly Rodrigues-Fernandes
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Roberta Rayra Martins-Chaves
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Jéssica Gardone Vitório
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Filipe Fideles Duarte-Andrade
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thaís Dos Santos Fontes Pereira
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Victor Rezende Moreira
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Lucilaine Valéria de Souza Santos
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Liséte Celina Lange
- Department of Sanitation and Environmental Engineering, School of Engineering, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gisele André Baptista Canuto
- Department of Analytical Chemistry, Institute of Chemistry, Universidade Federal da Bahia (UFBA), Salvador, Brazil
| | - Carolina Cavaliéri Gomes
- Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Adriana Nori de Macedo
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Hélder Antônio Rebelo Pontes
- Service of Oral Pathology, João de Barros Barreto University Hospital, Federal University of Pará (UFPA), Belém, Brazil
| | | | - Manoela Domingues Martins
- Department of Pathology, School of Dentistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fábio Ramôa Pires
- Oral Pathology, Dental School, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Ricardo Alves Mesquita
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Semiology and Pathology Areas, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
2
|
Arsiwala T, Pahla J, van Tits LJ, Bisceglie L, Gaul DS, Costantino S, Miranda MX, Nussbaum K, Stivala S, Blyszczuk P, Weber J, Tailleux A, Stein S, Paneni F, Beer JH, Greter M, Becher B, Mostoslavsky R, Eriksson U, Staels B, Auwerx J, Hottiger MO, Lüscher TF, Matter CM. Sirt6 deletion in bone marrow-derived cells increases atherosclerosis - Central role of macrophage scavenger receptor 1. J Mol Cell Cardiol 2020; 139:24-32. [PMID: 31972266 DOI: 10.1016/j.yjmcc.2020.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/19/2022]
Abstract
AIMS Sirtuin 6 (Sirt6) is a NAD+-dependent deacetylase that plays a key role in DNA repair, inflammation and lipid regulation. Sirt6-null mice show severe metabolic defects and accelerated aging. Macrophage-foam cell formation via scavenger receptors is a key step in atherogenesis. We determined the effects of bone marrow-restricted Sirt6 deletion on foam cell formation and atherogenesis using a mouse model. METHODS AND RESULTS Sirt6 deletion in bone marrow-derived cells increased aortic plaques, lipid content and macrophage numbers in recipient Apoe-/- mice fed a high-cholesterol diet for 12 weeks (n = 12-14, p < .001). In RAW macrophages, Sirt6 overexpression reduced oxidized low-density lipoprotein (oxLDL) uptake, Sirt6 knockdown enhanced it and increased mRNA and protein levels of macrophage scavenger receptor 1 (Msr1), whereas levels of other oxLDL uptake and efflux transporters remained unchanged. Similarly, in human primary macrophages, Sirt6 knockdown increased MSR1 protein levels and oxLDL uptake. Double knockdown of Sirt6 and Msr1 abolished the increase in oxLDL uptake observed upon Sirt6 single knockdown. FACS analyses of macrophages from aortic plaques of Sirt6-deficient bone marrow-transplanted mice showed increased MSR1 protein expression. Double knockdown of Sirt6 and the transcription factor c-Myc in RAW cells abolished the increase in Msr1 mRNA and protein levels; c-Myc overexpression increased Msr1 mRNA and protein levels. CONCLUSIONS Loss of Sirt6 in bone marrow-derived cells is proatherogenic; hereby macrophages play an important role given a c-Myc-dependent increase in MSR1 protein expression and an enhanced oxLDL uptake in human and murine macrophages. These findings assign endogenous SIRT6 in macrophages an important atheroprotective role.
Collapse
Affiliation(s)
- Tasneem Arsiwala
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Jürgen Pahla
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Lambertus J van Tits
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Lavinia Bisceglie
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Daniel S Gaul
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Melroy X Miranda
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Kathrin Nussbaum
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Internal Medicine Cantonal Hospital Baden, Baden, Switzerland
| | - Przemyslaw Blyszczuk
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Julien Weber
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Anne Tailleux
- Univ. Lille - EGID; Inserm UMR1011; CHU Lille, Institut Pasteur de Lille, France
| | - Sokrates Stein
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Internal Medicine Cantonal Hospital Baden, Baden, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Raul Mostoslavsky
- Massachusetts General Hospital, Cancer Center, Harvard Medical School, Boston, USA
| | - Urs Eriksson
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Bart Staels
- Univ. Lille - EGID; Inserm UMR1011; CHU Lille, Institut Pasteur de Lille, France
| | - Johan Auwerx
- Laboratory of Integrative & Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Cardiology, Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland; Department of Cardiology, University Heart Center, Zurich University Hospital, Zurich, Switzerland.
| |
Collapse
|
3
|
Functional pathways associated with human carotid atheroma: a proteomics analysis. Hypertens Res 2019; 42:362-373. [PMID: 30617313 DOI: 10.1038/s41440-018-0192-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/24/2018] [Accepted: 08/14/2018] [Indexed: 01/14/2023]
Abstract
Advances in large-scale analysis are becoming very useful in understanding health and disease. Here, we used high-throughput mass spectrometry to identify differentially expressed proteins between early and advanced lesions. Carotid endarterectomy samples were collected and dissected into early and advanced atherosclerotic lesion portions. Proteins were extracted and subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Differentially expressed proteins were identified and verified using multiple reaction monitoring (MRM), on which advanced systems biology and enrichment analyses were performed. The identified proteins were further compared to the transcriptomic data of 32 paired samples obtained from early and advanced atherosclerotic lesions. A total of 95 proteins were upregulated, and 117 proteins were downregulated in advanced lesions compared to early atherosclerotic lesions (p < 0.05). The upregulated proteins were associated with proatherogenic processes, whereas downregulated proteins were involved in extracellular matrix organization and vascular smooth muscle cytoskeleton. Many of the identified proteins were linked to various "upstream regulators", among which TGFβ had the highest connections. Specifically, a total of 19 genes were commonly upregulated, and 30 genes were downregulated at the mRNA and protein levels. These genes were involved in vascular smooth muscle cell activity, for which enriched transcription factors were identified. This study deciphers altered pathways in atherosclerosis and identifies upstream regulators that could be candidate targets for treatment.
Collapse
|
4
|
Steger CM, Bonaros N, Rieker RJ, Bonatti J, Schachner T. Gene therapy with antisense oligonucleotides silencing c-myc reduces neointima formation and vessel wall thickness in a mouse model of vein graft disease. Exp Mol Pathol 2018; 105:1-9. [PMID: 29775572 DOI: 10.1016/j.yexmp.2018.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
Abstract
Gene therapy for avoiding intimal hyperplasia of vein grafts after coronary artery bypass grafting is still discussed controversially. A promising application of gene therapy in vein grafts is the use of antisense oligonucleotides to block the expression of genes encoding cell cycle regulatory proteins in vascular smooth muscle cells. C-myc, either directly or by regulating the expression of other proteins, controls cell proliferation, apoptosis and cell survival, tissue remodeling, angiogenesis, cell metabolism, production of inflammatory and anti-inflammatory cytokines, and also participates in cell transformation. Forty C57BL/6J mice underwent interposition of the inferior vena cava from isogenic donor mice into the common carotid artery using a previously described cuff technique. Twenty mice received periadventitial administration of antisense oligonucleotides directed against c-myc (treatment group), the other twenty mice received no treatment (control group). All vein grafts were harvested two weeks after surgery, dehydrated, wax embedded, cut into slides of 2 μm thickness, stained and histologically and immunohistochemically examined under light microscope. In our study, we could show the promising effects of antisense oligonucleotide treatment in a mouse model of vein graft disease including the significant reduction of neointimal, media and total vessel wall thickness with a significantly lower percentage of SMA positive cells, elastic fibres and acid mucopolysaccharides in the neointima and media, a decreased vascularization, and a lower expression of PDGFR ß, MMP-9 and VEGF-A positive cells throughout the whole vein graft wall.
Collapse
Affiliation(s)
- Christina Maria Steger
- Department of Pathology, Academic Teaching Hospital Feldkirch, Carinagasse 47, 6800 Feldkirch, Austria.
| | - Nikolaos Bonaros
- Department of Cardiac Surgery, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| | | | - Johannes Bonatti
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Thomas Schachner
- Department of Cardiac Surgery, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
A Novel β-adaptin/c-Myc Complex Formation Modulated by Oxidative Stress in the Control of the Cell Cycle in Macrophages and its Implication in Atherogenesis. Sci Rep 2017; 7:13442. [PMID: 29044181 PMCID: PMC5647411 DOI: 10.1038/s41598-017-13880-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
Our study tested the proposal that c-Myc activation in macrophages is differentially carried out dependent on the intracellular oxidative state of cells and potentially associated to the process of atherogenesis. Under our experimental conditions, the generation of reactive oxygen species carried out by the presence of oxidized low density lipoproteins (oxLDL) or Gram negative bacterial lipopolysaccharides (LPS) modifies the expression of cellular adhesion molecules such as c-Abl, calcium transport proteins such as the plasma membrane Ca2+-ATPase (PMCA), CD47, procaspase-7, CASP7, CHOP, transcriptional activators such as c-Jun and c-Myc and molecules that participate in the process of endocytosis like α- and β-adaptin. We present the first evidence showing that a state of oxidative stress alters c-Myc-dependent activity pathways in macrophages through binding to molecules such as β-adaptin promoting the reversible formation of a complex that presents the ability to regulate the development of the cell cycle. We propose that the subtle regulation carried out through the formation of this c-Myc/β-adaptin complex when cells change from a normal physiological condition to a state of oxidative stress, represents a defense mechanism against the deleterious effects caused by the loss of cell homeostasis.
Collapse
|
6
|
Tawa M, Okamura T. Soluble guanylate cyclase redox state under oxidative stress conditions in isolated monkey coronary arteries. Pharmacol Res Perspect 2016; 4:e00261. [PMID: 27713826 PMCID: PMC5045941 DOI: 10.1002/prp2.261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/23/2022] Open
Abstract
Coronary artery disease is associated with oxidative stress due to the excessive generation of free radicals in the vascular wall. This study investigated the impact of tert‐butyl hydroperoxide (t‐BuOOH), a peroxyl radical generator, on the redox state of soluble guanylate cyclase (sGC) in isolated monkey coronary arteries. Helically cut strips of endothelium‐intact monkey coronary arteries treated with the nitric oxide synthase inhibitor NG‐nitro‐L‐arginine (10 μmol/L) were exposed for approximately 60 min to either no drug or t‐BuOOH (100 μmol/L) in the presence and absence of α‐tocopherol (300 μmol/L). Relaxation and cGMP levels in response to the sGC stimulator BAY 41‐2272 and the sGC activator BAY 60‐2770 were assessed by organ chamber technique and enzyme immunoassay, respectively. The relaxant response to BAY 41‐2272 was significantly impaired by the exposure to t‐BuOOH, whereas the response to BAY 60‐2770 was significantly augmented. In addition, vascular cGMP accumulation caused by BAY 41‐2272 was decreased by the exposure to t‐BuOOH, whereas for BAY 60‐2770, it was increased. These effects of t‐BuOOH were abolished by coincubation with α‐tocopherol. Furthermore, correlations were observed between BAY compound‐induced relaxant magnitudes and cGMP levels. Therefore, it is concluded that increased oxidative stress leads to disruption of the sGC redox state in monkey coronary arteries. This finding is of great importance for understanding coronary physiology in primates.
Collapse
Affiliation(s)
- Masashi Tawa
- Department of Pharmacology Shiga University of Medical Science Otsu Shiga Japan
| | - Tomio Okamura
- Department of Pharmacology Shiga University of Medical Science Otsu Shiga Japan
| |
Collapse
|
7
|
LI YIN, CONG YAN, ZHAO YUN. Network motif-based method for identifying coronary artery disease. Exp Ther Med 2016; 12:257-261. [PMID: 27347046 PMCID: PMC4907106 DOI: 10.3892/etm.2016.3299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/01/2016] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to develop a more efficient method for identifying coronary artery disease (CAD) than the conventional method using individual differentially expressed genes (DEGs). GSE42148 gene microarray data were downloaded, preprocessed and screened for DEGs. Additionally, based on transcriptional regulation data obtained from ENCODE database and protein-protein interaction data from the HPRD, the common genes were downloaded and compared with genes annotated from gene microarrays to screen additional common genes in order to construct an integrated regulation network. FANMOD was then used to detect significant three-gene network motifs. Subsequently, GlobalAncova was used to screen differential three-gene network motifs between the CAD group and the normal control data from GSE42148. Genes involved in the differential network motifs were then subjected to functional annotation and pathway enrichment analysis. Finally, clustering analysis of the CAD and control samples was performed based on individual DEGs and the top 20 network motifs identified. In total, 9,008 significant three-node network motifs were detected from the integrated regulation network; these were categorized into 22 interaction modes, each containing a minimum of one transcription factor. Subsequently, 1,132 differential network motifs involving 697 genes were screened between the CAD and control group. The 697 genes were enriched in 154 gene ontology terms, including 119 biological processes, and 14 KEGG pathways. Identifying patients with CAD based on the top 20 network motifs provided increased accuracy compared with the conventional method based on individual DEGs. The results of the present study indicate that the network motif-based method is more efficient and accurate for identifying CAD patients than the conventional method based on individual DEGs.
Collapse
Affiliation(s)
- YIN LI
- Emergency Department, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - YAN CONG
- Emergency Department, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - YUN ZHAO
- Emergency Department, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
8
|
YUAN YE, ZHANG YINGYING, ZHANG XIAOXU, YU YANAN, LI BING, WANG PENGQIAN, LI HAIXIA, ZHAO YIJUN, SHEN CHUNTI, WANG ZHONG. Deciphering the genetic and modular connections between coronary heart disease, idiopathic pulmonary arterial hypertension and pulmonary heart disease. Mol Med Rep 2016; 14:661-70. [PMID: 27221156 PMCID: PMC4918609 DOI: 10.3892/mmr.2016.5298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 04/26/2016] [Indexed: 01/13/2023] Open
Abstract
Coronary heart disease (CHD), idiopathic pulmonary arterial hypertension (IPAH) and pulmonary heart disease (PHD) are circulatory system diseases that may simultaneously emerge in a patient and they are often treated together in clinical practice. However, the molecular mechanisms connecting these three diseases remain unclear. In order to determine the multidimensional characteristic correlations between these three diseases based on genomic networks to aid in medical decision-making, genes from the Online Mendelian Inheritance in Man database were obtained, and applied network construction and modularized analysis were conducted. Functional enrichment analysis was conducted to explore the associations between overlapping genes, modules and pathways. A total of 29 overlapping genes and 3 common modules were identifed for the 3 diseases. Glycosphingolipid biosynthesis and the arachidonic acid metabolism are common pathways, and the biosynthetic process is suggested to be the major function involved in the three diseases. The current study reported, to the best of our knowledge for the first time, the role of glycosphingolipid biosynthesis in IPAH and PHD. The present study provided an improved understanding of the pathological mechanisms underlying CHD, IPAH and PHD. The overlapping genes, modules and pathways suggest novel areas for further research, and drug targets. The observations of the current study additionally suggest that drug indications can be broadened because of the presence of common targets.
Collapse
Affiliation(s)
- YE YUAN
- Department of Respiration, Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - YINGYING ZHANG
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - XIAOXU ZHANG
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - YANAN YU
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - BING LI
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - PENGQIAN WANG
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - HAIXIA LI
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - YIJUN ZHAO
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - CHUNTI SHEN
- Department of Respiration, Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - ZHONG WANG
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
9
|
Wang Z, Guo D, Yang B, Wang J, Wang R, Wang X, Zhang Q. Integrated analysis of microarray data of atherosclerotic plaques: modulation of the ubiquitin-proteasome system. PLoS One 2014; 9:e110288. [PMID: 25333956 PMCID: PMC4201353 DOI: 10.1371/journal.pone.0110288] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a typical complex multi-factorial disease and many molecules at different levels and pathways were involved in its development. Some studies have investigated the dysregulation in atherosclerosis at mRNA, miRNA or DNA methylation level, respectively. However, to our knowledge, the studies that integrated these data and revealed the abnormal networks of atherosclerosis have not been reported. Using microarray technology, we analyzed the omics data in atherosclerosis at mRNA, miRNA and DNA methylation levels. Our results demonstrated that the global DNA methylation and expression of miRNA/mRNA were significantly decreased in atherosclerotic plaque than in normal vascular tissue. The interaction network constructed using the integrative data revealed many genes, cellular processes and signaling pathways which were widely considered to play crucial roles in atherosclerosis and also revealed some genes, miRNAs or signaling pathways which have not been investigated in atherosclerosis until now (e.g. miR-519d and SNTB2). Moreover, the overall protein ubiquitination in atherosclerotic plaque was significantly increased. The proteasome activity was increased early but decreased in advanced atherosclerosis. Our study revealed many classic and novel genes and miRNAs involved in atherosclerosis and indicated the effects of ubiquitin-proteasome system on atherosclerosis might be closely related to the course of atherosclerosis. However, the efficacy of proteasome inhibitors in the treatment of atherosclerosis still needs more research.
Collapse
Affiliation(s)
- Zhe Wang
- Division of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Dong Guo
- Department of Neurology, Liaocheng People's Hospital, Medical School of Liaocheng, Taishan Medical University, Liaocheng, Shandong, China
| | - Bin Yang
- School of Information Science and Engineering, Zaozhuang University, Zaozhuang, Shandong, China
| | - Jian Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Rong Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaowei Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research Chinese Ministry of Education and Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
- * E-mail:
| |
Collapse
|
10
|
Florea V, Bhagavatula N, Simovic G, Macedo FY, Fock RA, Rodrigues CO. c-Myc is essential to prevent endothelial pro-inflammatory senescent phenotype. PLoS One 2013; 8:e73146. [PMID: 24039874 PMCID: PMC3765198 DOI: 10.1371/journal.pone.0073146] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022] Open
Abstract
The proto-oncogene c-Myc is vital for vascular development and promotes tumor angiogenesis, but the mechanisms by which it controls blood vessel growth remain unclear. In the present work we investigated the effects of c-Myc knockdown in endothelial cell functions essential for angiogenesis to define its role in the vasculature. We provide the first evidence that reduction in c-Myc expression in endothelial cells leads to a pro-inflammatory senescent phenotype, features typically observed during vascular aging and pathologies associated with endothelial dysfunction. c-Myc knockdown in human umbilical vein endothelial cells using lentivirus expressing specific anti-c-Myc shRNA reduced proliferation and tube formation. These functional defects were associated with morphological changes, increase in senescence-associated-β-galactosidase activity, upregulation of cell cycle inhibitors and accumulation of c-Myc-deficient cells in G1-phase, indicating that c-Myc knockdown in endothelial cells induces senescence. Gene expression analysis of c-Myc-deficient endothelial cells showed that senescent phenotype was accompanied by significant upregulation of growth factors, adhesion molecules, extracellular-matrix components and remodeling proteins, and a cluster of pro-inflammatory mediators, which include Angptl4, Cxcl12, Mdk, Tgfb2 and Tnfsf15. At the peak of expression of these cytokines, transcription factors known to be involved in growth control (E2f1, Id1 and Myb) were downregulated, while those involved in inflammatory responses (RelB, Stat1, Stat2 and Stat4) were upregulated. Our results demonstrate a novel role for c-Myc in the prevention of vascular pro-inflammatory phenotype, supporting an important physiological function as a central regulator of inflammation and endothelial dysfunction.
Collapse
Affiliation(s)
- Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Nithya Bhagavatula
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Gordana Simovic
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Francisco Y. Macedo
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Ricardo A. Fock
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
| | - Claudia O. Rodrigues
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
11
|
Smedts HPM, van Uitert EM, Valkenburg O, Laven JSE, Eijkemans MJC, Lindemans J, Steegers EAP, Steegers-Theunissen RPM. A derangement of the maternal lipid profile is associated with an elevated risk of congenital heart disease in the offspring. Nutr Metab Cardiovasc Dis 2012; 22:477-485. [PMID: 21186113 DOI: 10.1016/j.numecd.2010.07.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 05/18/2010] [Accepted: 07/25/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND AND AIMS Maternal hyperglycaemia and hyperhomocysteinaemia are risk factors for congenital heart disease (CHD). These metabolic derangements and deranged lipid levels are associated with adult cardiovascular disease. We examined whether maternal lipid levels are associated with the risk of CHD offspring. METHODS AND RESULTS From 2003 onwards, a case-control study was conducted. Participants were mothers of children with (n = 261) and without (n = 325) CHD. At around 16 months after the index-pregnancy, maternal lipid levels were determined. Maternal characteristics and lipid levels were compared by Student's t-test. In a multivariable logistic regression model, risk estimates were calculated for associations between CHD and lipid levels. Adjustments were made for maternal age, diabetes, ethnicity, body mass index (BMI), parity, periconception folic acid use and total homocysteine levels. Outcome measures are presented in (geometric) means (p5-p95) and odds ratios (ORs) with 95% confidence intervals (CIs). Case mothers showed higher cholesterol (4.9 vs. 4.7 mmol l(-1), P < 0.05), low-density lipoprotein (LDL)-cholesterol (3.2 vs. 3.0 mmol l(-1), P < 0.05), apolipoprotein B (84.0 vs. 80.0 mg dl(-1), P < 0.01) and homocysteine (10.8 vs. 10.2 μmol l(-1), P < 0.05) than controls. LDL-cholesterol above 3.3 mmol l(-1) (OR 1.6 (95%CI, 1.1-2.3)) and apolipoprotein B above 85.0 mg dl(-1) were associated with an almost twofold increased CHD risk (OR 1.8 (95%CI, 1.2-2.6)). This was supported by elevated CHD risks per unit standard deviation increase in cholesterol (OR 1.2 (95% CI 1.03-1.5)), LDL-cholesterol (OR 1.3 (95%CI, 1.1-1.6) and apolipoprotein B (OR 1.3 (95% CI 1.1-1.6)). Apolipoprotein B was most strongly associated with CHD risk. CONCLUSION A mildly deranged maternal lipid profile is associated with an increased risk of CHD offspring.
Collapse
Affiliation(s)
- H P M Smedts
- Obstetrics and Gynaecology, Division of Obstetrics and Prenatal Medicine, Erasmus MC, University Medical Centre, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kobayashi T, Ito T, Shiomi M. Roles of the WHHL rabbit in translational research on hypercholesterolemia and cardiovascular diseases. J Biomed Biotechnol 2011; 2011:406473. [PMID: 21541231 PMCID: PMC3085394 DOI: 10.1155/2011/406473] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/17/2011] [Accepted: 02/15/2011] [Indexed: 02/02/2023] Open
Abstract
Conquering cardiovascular diseases is one of the most important problems in human health. To overcome cardiovascular diseases, animal models have played important roles. Although the prevalence of genetically modified animals, particularly mice and rats, has contributed greatly to biomedical research, not all human diseases can be investigated in this way. In the study of cardiovascular diseases, mice and rats are inappropriate because of marked differences in lipoprotein metabolism, pathophysiological findings of atherosclerosis, and cardiac function. On the other hand, since lipoprotein metabolism and atherosclerotic lesions in rabbits closely resemble those in humans, several useful animal models for these diseases have been developed in rabbits. One of the most famous of these is the Watanabe heritable hyperlipidemic (WHHL) rabbit, which develops hypercholesterolemia and atherosclerosis spontaneously due to genetic and functional deficiencies of the low-density lipoprotein (LDL) receptor. The WHHL rabbit has been improved to develop myocardial infarction, and the new strain was designated the myocardial infarction-prone WHHL (WHHLMI) rabbit. This review summarizes the importance of selecting animal species for translational research in biomedical science, the development of WHHL and WHHLMI rabbits, their application to the development of hypocholesterolemic and/or antiatherosclerotic drugs, and future prospects regarding WHHL and WHHLMI rabbits.
Collapse
Affiliation(s)
- Tsutomu Kobayashi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Takashi Ito
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masashi Shiomi
- Institute for Experimental Animals, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
- Section of Animal Models for Cardiovascular Disease, Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
13
|
Perales S, Alejandre MJ, Morales RP, Torres C, Linares A. Fish oil supplementation reverses the effect of cholesterol on apoptotic gene expression in smooth muscle cells. Lipids Health Dis 2010; 9:70. [PMID: 20630092 PMCID: PMC2914009 DOI: 10.1186/1476-511x-9-70] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 07/14/2010] [Indexed: 01/17/2023] Open
Abstract
Background Nutritional control of gene regulation guides the transformation of smooth muscle cells (SMC) into foam cells in atherosclerosis. Oxidative stress has been reported in areas of lipid accumulation, activating proliferation genes. Suppression of oxidative stress by antioxidant administration reduces this activation and the progression of lesions. We hypothesized that fish oil consumption may protect against atherosclerotic vascular disease. The study objective was to determine the effects of dietary cholesterol and fish-oil intake on the apoptotic pathways induced by 25-hydroxycholesterol (25-HC) in SMC cultures. Methods An in vivo/in vitro cell model was used, culturing SMC isolated from chicks exposed to an atherogenic cholesterol-rich diet with 5% of cholesterol (SMC-Ch) alone or followed by an anti-atherogenic fish oil-rich diet with 10% of menhaden oil (SMC-Ch-FO) and from chicks on standard diet (SMC-C). Cells were exposed to 25-HC, studying apoptosis levels by flow cytometry (Annexin V) and expressions of caspase-3, c-myc, and p53 genes by quantitative real-time reverse transcriptase-polymerase chain reaction. Results: Exposure to 25-HC produced apoptosis in all three SMC cultures, which was mediated by increases in caspase-3, c-myc, and p53 gene expression. Changes were more marked in SMC-Ch than in SMC-C, indicating that dietary cholesterol makes SMC more susceptible to 25-HC-mediated apoptosis. Expression of p53 gene was elevated in SMC-Ch-FO. This supports the proposition that endogenous levels of p53 protect SMC against apoptosis and possibly against the development of atherosclerosis. Fish oil attenuated the increase in c-myc levels observed in SMC-C and SMC-Ch, possibly through its influence on the expression of antioxidant genes. Conclusion Replacement of a cholesterol-rich diet with a fish oil-rich diet produces some reversal of the cholesterol-induced changes, increasing the resistance of SMC to apoptosis.
Collapse
Affiliation(s)
- Sonia Perales
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, Campus Universitario de Fuentenueva Avenida Severo Ochoa s/n 18071 University of Granada, Spain
| | | | | | | | | |
Collapse
|
14
|
Barillari G, Iovane A, Bonuglia M, Albonici L, Garofano P, Di Campli E, Falchi M, Condò I, Manzari V, Ensoli B. Fibroblast growth factor-2 transiently activates the p53 oncosuppressor protein in human primary vascular smooth muscle cells: Implications for atherogenesis. Atherosclerosis 2010; 210:400-6. [DOI: 10.1016/j.atherosclerosis.2010.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 12/31/2009] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
|
15
|
Xu C, Lu C, Hua L, Jin H, Yin L, Chen S, Qian R. Rhythm changes of clock genes, apoptosis-related genes and atherosclerosis-related genes in apolipoprotein E knockout mice. Can J Cardiol 2009; 25:473-9. [PMID: 19668782 DOI: 10.1016/s0828-282x(09)70122-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Acute myocardial infarction and stroke occur more frequently in the morning, suggesting a role of the circadian clock in these main causes of death, secondary to atherosclerosis. OBJECTIVES To investigate the expression of clock genes, apoptosis-related genes and atherosclerosis-related genes in the process of atherosclerosis. METHODS Apolipoprotein E knockout (ApoE-/-) mice were used to establish animal models of early and advanced atherosclerosis. Real-time polymerase chain reaction, Western blotting and microarray assays were used to detect the expression of clock genes, apoptosis-related genes and atherosclerosis-related genes. RESULTS Clock genes in ApoE-/- and C57BL/6J mouse hearts exhibited daily oscillations at the messenger RNA level. However, the expression level and rhythm between ApoE-/- and C57BL/6J mice were significantly different. Moreover, the changes became more significant as atherosclerosis developed. c-Myc and p53 genes exhibited circadian expression in C57BL/6J mice at messenger RNA and protein levels. However, the rhythm in ApoE-/- mice disappeared completely. Bcl-2 and Bax did not show daily rhythm in either strain of mouse. Aside from apoptosis-related genes, several atherosclerosis-related genes expressed time-dependent behaviour in C57BL/6J mice but not in ApoE-/- mice. CONCLUSIONS Rhythm changes of clock genes, apoptosis-related genes and atherosclerosis-related genes may play important roles in atherosclerosis and its complications.
Collapse
Affiliation(s)
- Chen Xu
- Department of Physiology and Pathophysiology, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Handa S, Sadi AM, Cybulsky MI, Stewart DJ, Husain M. Region-specific patterns of vascular remodelling occur early in atherosclerosis and without loss of smooth muscle cell markers. Atherosclerosis 2007; 196:617-23. [PMID: 17692318 DOI: 10.1016/j.atherosclerosis.2007.06.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 06/08/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND Vascular remodelling is characterized by increased smooth muscle cell (SMC) proliferation and migration. Coincident with these events, SMC markers of differentiation are known to down-regulate in advanced stages of atherosclerosis, a process known as phenotypic modulation. However, it is not known when this first begins. Here we sought to determine if regions of the mouse aorta with varying susceptibilities for atherosclerosis display differential vascular remodelling and SMC gene expression at the earliest stages of disease. METHODS AND RESULTS LDLrKO mice were fed normal or high cholesterol diet for 0-98 days. In the latter, ORO and H&E staining of arch, thoracic and abdominal aortic sections revealed infrequent occurrences of lipid deposition at d28, but significant region-specific vascular remodelling. Immunostaining for PCNA revealed increased cellular proliferation in the intima and inner media at d28 in all three regions. qRT-PCR of SMC revealed increased expression of SM22alpha and SM-MHC in the arch by d28, which subsequently decreased by d98. By contrast, eNOS gene expression was consistently decreased in the arch over these times. A temporal increase in macrophage-specific CD68 expression was observed in the arch but not thoracic or abdominal regions. CONCLUSION Remodelling of the vascular myocyte compartment due to cellular proliferation is an early event in atherosclerosis and is associated with increases in SMC-specific gene expression. These events precede subsequent lesion formation and SMC phenotypic modulation.
Collapse
Affiliation(s)
- Shivalika Handa
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
18
|
Munteanu A, Zingg JM. Cellular, molecular and clinical aspects of vitamin E on atherosclerosis prevention. Mol Aspects Med 2007; 28:538-90. [PMID: 17825403 DOI: 10.1016/j.mam.2007.07.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/23/2007] [Indexed: 02/07/2023]
Abstract
Randomised clinical trials and epidemiologic studies addressing the preventive effects of vitamin E supplementation against cardiovascular disease reported both positive and negative effects, and recent meta-analyses of the clinical studies were rather disappointing. In contrast to that, many animal studies clearly show a preventive action of vitamin E in several experimental settings, which can be explained by the molecular and cellular effects of vitamin E observed in cell cultures. This review is focusing on the molecular effects of vitamin E on the cells playing a role during atherosclerosis, in particular on the endothelial cells, vascular smooth muscle cells, monocytes/macrophages, T cells, and mast cells. Vitamin E may act by normalizing aberrant signal transduction and gene expression in antioxidant and non-antioxidant manners; in particular, over-expression of scavenger receptors and consequent foam cell formation can be prevented by vitamin E. In addition to that, the cellular effects of alpha-tocopheryl phosphate and of EPC-K1, a composite molecule between alpha-tocopheryl phosphate and l-ascorbic acid, are summarized.
Collapse
Affiliation(s)
- Adelina Munteanu
- Physiology Department, Faculty of Medicine, University of Medicine and Pharmacy Bucharest, Romania
| | | |
Collapse
|
19
|
Qiao C, Zhang K, Xia J. Influence of oxidized low density lipoprotein on the proliferation of human artery smooth muscle cells in vitro. ACTA ACUST UNITED AC 2007; 27:20-3. [PMID: 17393100 DOI: 10.1007/s11596-007-0106-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Indexed: 10/23/2022]
Abstract
The effects of oxidized low density lipoprotein (ox-LDL) on the proliferation of cultured human vascular smooth muscle cells (vSMC) were investigated in vitro. By using NaBr density gradient centrifugation, LDL was isolated and purified from human plasma. Ox-LDL was produced from LDL by being incubated with CuSO(4). ox-LDL was then added to the culture medium at different concentrations (35, 60, 85, 110, 135 and 160 microg/mL) for 7 days. The influence of ox-LDL on vSMC proliferation was observed in growth curve, mitosis index, and in situ determination of apoptosis. The data were analyzed with SPSS 10.0 software. The results showed that the ox-LDL produced in vitro had a good purity and optimal oxidative degree, which was similar to the intrinsic ox-LDL in atherosclerotic plaque. ox-LDL at a concentration of 35 microg/mL demonstrated the strongest proliferation inducement, and at a concentration of 135 microg/mL, ox-LDL could inhibit the growth of vSMC. ox-LDL at concentrations of 35 and 50 microg/mL presented powerful mitotic trigger, and with the increase of ox-LDL concentration, the mitotic index of vSMC was decreased gradually. ox-LDL at higher concentrations promoted more apoptotic vSMCs. ox-LDL at lower concentrations triggered proliferation of vSMCs, and at higher concentrations induced apoptosis in vSMCs. ox-LDL played a promotional role in the pathogenesis and development of atherosclerosis by affecting vSMC proliferation and apoptosis.
Collapse
Affiliation(s)
- Chenhui Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | |
Collapse
|
20
|
de Nigris F, Botti C, de Chiara A, Rossiello R, Apice G, Fazioli F, Fiorito C, Sica V, Napoli C. Expression of transcription factor Yin Yang 1 in human osteosarcomas. Eur J Cancer 2006; 42:2420-4. [PMID: 16962318 DOI: 10.1016/j.ejca.2006.06.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
The transcription factor Yin Yang 1 (YY1) is known to be present in some human cancer cell lines and its expression correlates with immune-mediated apoptosis. By using Western blot analysis, we have shown that the YY1 protein is strongly expressed in human osteosarcoma cells and localised mainly in the nucleus. Moreover, by using immunohistochemistry and RT-PCR techniques, we have analysed the expression of YY1 protein in biopsies from human osteosarcomas. The YY1 protein was not detectable by immunohistochemistry in osteoid tissue. However, its expression was restricted to osteosarcoma tissues. These data were confirmed by densitometric analysis of RT-PCR for YY1 expression. Thus, YY1 gene activation appears to be an early event in the process of osteoblastic transformation and its detection may represent, together with the analysis of other established markers, a useful diagnostic tool in human osteosarcomas.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of General Pathology, Division of Clinical Pathology, 1st School of Medicine, II University of Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Guo F, Zarella C, Wagner WD. STAT4 and the proliferation of artery smooth muscle cells in atherosclerosis. Exp Mol Pathol 2006; 81:15-22. [PMID: 16797528 DOI: 10.1016/j.yexmp.2006.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Artery smooth muscle cell proliferation is of key importance in the development of atherosclerosis and restenosis following PTCA. In order to understand gene regulation involved in these processes, vascular smooth muscle cells (VSMCs) from atherosclerosis-susceptible White Carneau (WC) and atherosclerosis-resistant Show Racer (SR) pigeons were used to identify transcription factors involved in the enhanced proliferation of WC VSMCs. With protein/DNA array, signal transducer and activator of transcription 4 (STAT4) was found to have over a 10-fold increase in expression in WC compared to SR VSMCs. The difference was confirmed with electrophoretic-mobility shift assay (EMSA) and Western blot. Cells cultured under low serum had 5-fold higher levels of STAT4 in WC compared to SR. By Western analysis, aortic tissue from newly hatched WC pigeons had 1.7-2.0 times greater STAT4 expression than in SR pigeons. A pathway whereby enhanced STAT4 may be associated with enhanced proliferation was identified following IL-12 stimulation of WC VSMCs where 3-fold increases in proliferation and 2-fold higher expression of STAT4 were measured. The findings suggest STAT4 may play a role in VSMC proliferation and describe a unique pigeon model system in which to study STAT4 as a gene target for atherosclerosis therapy.
Collapse
Affiliation(s)
- Feng Guo
- Department of Pathology, Wake Forest University, School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
22
|
de Nigris F, Botti C, Rossiello R, Crimi E, Sica V, Napoli C. Cooperation between Myc and YY1 provides novel silencing transcriptional targets of alpha3beta1-integrin in tumour cells. Oncogene 2006; 26:382-94. [PMID: 16878156 DOI: 10.1038/sj.onc.1209804] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We show that human osteosarcoma cells (Saos-2) have downregulation of alpha3beta1-integrin compared to normal bone cells; this was further described in human osteosarcomas and in a primary murine sarcoma. The alpha3 gene was silenced in Saos-2 cells causing a low expression of alpha3beta1-integrin and reduction in collagen attachment with increasing migratory capacity. Chromatin immunoprecipitation assay performed on alpha3 promoter established that Myc and Yin Yang protein (YY1) cooperate in tandem to downregulate the alpha3 gene. This silencing mechanism involves the binding of Myc and YY1 to DNA and formation of complexes among Myc/Max, YY1, CREB-binding protein and deacetylation activity. The promoter containing deletions of E-boxes or YY1 cassettes failed to downregulate the transcription of a reporter gene as well as the inhibition of deacetylation activity. Overexpression of both Myc and YY1 was necessary to determine the alpha3-integrin promoter downregulation in normal osteoblasts. This downregulation of alpha3beta1-integrin can contribute to the acquisition of a more aggressive phenotype. YY1 regulated negatively the Myc activity through a direct interaction with the Myc/Max and deacetylase complexes. This represents a novel silencing mechanism with broad implications in the transcription machinery of tumours.
Collapse
Affiliation(s)
- F de Nigris
- Department of General Pathology, Division of Clinical Pathology, 1st School of Medicine, II University of Naples, Naples, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Weinberg PD. Analysis of the variable effect of dietary vitamin E supplements on experimental atherosclerosis. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:823-33. [PMID: 16008111 DOI: 10.1016/j.jplph.2005.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Vitamin E inhibits processes thought to be important in the development of atherosclerosis but clinical trials to determine its effect on cardiovascular disease have given variable results, the majority being negative. The reasons for this are unclear. Animal trials can be better controlled and use more rigorous measures of lesion progression than human trials. The present study reviewed trials using rabbits and mice to determine whether they also are variable and, if so, to uncover methodological differences that may account for the different outcomes. A large number of trials examining the effect of vitamin E supplements on experimental atherosclerosis were identified. Using rigorous selection criteria, a well-defined group was selected for further investigation. Almost all the mice trials showed a significant effect of vitamin E, but only around one-third of the rabbit trials did so. When the rabbit trials were divided into those that did and those that did not observe significant effects, no single factor was found that could account for the dichotomy. However, when the percentage reduction in disease was considered, rather than the within-trial significance level, there were clear dose-dependent effects of vitamin E on disease severity in heritable hyperlipidaemic rabbits, and in genetically normal rabbits made hyperlipidaemic with cholesterol alone; the dose dependence was different in the two groups, the heritable hyperlipidaemic rabbits showing a near ten-fold lower sensitivity. The high doses required to affect experimental atherosclerosis may, if applicable to other species, help explain the absence of effects in many human trials.
Collapse
Affiliation(s)
- Peter D Weinberg
- Physiological Flow Studies Group, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
24
|
de Nigris F, Williams-Ignarro S, Lerman LO, Crimi E, Botti C, Mansueto G, D'Armiento FP, De Rosa G, Sica V, Ignarro LJ, Napoli C. Beneficial effects of pomegranate juice on oxidation-sensitive genes and endothelial nitric oxide synthase activity at sites of perturbed shear stress. Proc Natl Acad Sci U S A 2005; 102:4896-901. [PMID: 15781875 PMCID: PMC555721 DOI: 10.1073/pnas.0500998102] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Atherosclerosis is enhanced in arterial segments exposed to disturbed flow. Perturbed shear stress increases the expression of oxidation-sensitive responsive genes (such as ELK-1 and p-JUN) in the endothelium. Evidence suggests that polyphenolic antioxidants contained in the juice derived from the pomegranate can contribute to the reduction of oxidative stress and atherogenesis. The aim of the present study was to evaluate the effects of intervention with pomegranate juice (PJ) on oxidation-sensitive genes and endothelial NO synthase (eNOS) expression induced by high shear stress in vitro and in vivo. Cultured human coronary artery endothelial cells (EC) exposed to high shear stress in vitro and hypercholesterolemic mice were used in this study. PJ concentrate reduced the activation of redox-sensitive genes (ELK-1 and p-JUN) and increased eNOS expression (which was decreased by perturbed shear stress) in cultured EC and in atherosclerosis-prone areas of hypercholesterolemic mice. Moreover, oral administration of PJ to hypercholesterolemic mice at various stages of disease reduced significantly the progression of atherosclerosis. This experimental study indicates that the proatherogenic effects induced by perturbed shear stress can be reversed by chronic administration of PJ. This approach may have implications for the prevention or treatment of atherosclerosis and its clinical manifestations.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of General Pathology, School of Medicine, University of Naples, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Qin G, Zhang Y, Cao W, An R, Gao Z, Li G, Xu W, Zhang K, Li S. Molecular imaging of atherosclerotic plaques with technetium-99m-labelled antisense oligonucleotides. Eur J Nucl Med Mol Imaging 2004; 32:6-14. [PMID: 15605287 DOI: 10.1007/s00259-004-1700-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 09/01/2004] [Indexed: 11/29/2022]
Abstract
PURPOSE The purpose of this study was to visualise experimental atherosclerotic lesions using radiolabelled antisense oligonucleotides (ASONs). METHODS Atherosclerosis was induced in New Zealand White rabbits fed 1% cholesterol for approximately 60 days. In vivo and ex vivo imaging was performed in atherosclerotic rabbits and normal control rabbits after i.v. injection of 92.5+/-18.5 MBq (99m)Tc-labelled ASON or (99m)Tc-labelled sense oligonucleotides. Immediately after the in vivo imaging, the animals were sacrificed and ex vivo imaging of the aortic specimens was performed. Biodistribution of radiolabelled c-myc ASON was evaluated in vivo in atherosclerotic rabbits. RESULTS Planar imaging revealed accumulation of (99m)Tc-labelled c-myc ASON in atherosclerotic lesions along the artery wall. Ex vivo imaging further demonstrated that the area of activity accumulation matched the area of atherosclerotic lesions. In contrast, no atherosclerotic lesions were found in the vessel wall and no positive imaging results were obtained in animals of the control group. CONCLUSION This molecular imaging approach has potential for non-invasive imaging of atherosclerotic plaques at an early stage.
Collapse
Affiliation(s)
- Guangming Qin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
A plethora of studies in cultured cells have established that oxidized low-density lipoprotein (oxLDL) may enhance arterial apoptosis that involves both mitochondrial and death receptor pathways (Fas/FasL, TNF receptors I and II), thereby activating caspase cascade and other proteases. When apoptosis is inhibited by Bcl-2 overexpression, oxLDL may trigger necrosis through a calcium-dependent pathway. Despite this effort, the pathophysiological relevance of apoptosis in vivo remains to be elucidated. In principle, apoptosis occurring in atherosclerotic areas could be involved in endothelial cell lining defects, necrotic core formation, and plaque rupture or fissuring. This complex pathogenic framework may favor coronary atherothrombotic events. To date, the pathogenic role of apoptosis in thrombosis is attractive, but a solid evidence is still needed. When the precise role of oxLDL in vascular programmed cell death occurring in vivo is clarified, this may aid in the development of novel therapeutic approaches to adverse atherogenesis and its clinical sequelae.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, University of Naples, Naples, Italy.
| |
Collapse
|
27
|
de Nigris F, Lerman A, Ignarro LJ, Williams-Ignarro S, Sica V, Baker AH, Lerman LO, Geng YJ, Napoli C. Oxidation-sensitive mechanisms, vascular apoptosis and atherosclerosis. Trends Mol Med 2003; 9:351-9. [PMID: 12928037 DOI: 10.1016/s1471-4914(03)00139-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Increased generation of oxidants, resulting from disruption of aerobic metabolism and from respiratory burst, is an essential defense mechanism against pathogens and aberrant cells. However, oxidative stress can also trigger and enhance deregulated apoptosis or programmed cell death, characteristic of atherosclerotic lesions. Oxidation-sensitive mechanisms also modulate cellular signaling pathways that regulate vascular expression of cytokines and growth factors, and influence atherogenesis, in particular when increased levels of plasma lipoproteins provide ample substrate for lipid peroxidation and lead to increased formation of adducts with lipoprotein amino acids. In some cases, increased oxidation and apoptosis in a group of cells might be beneficial for survival and function of other groups of arterial cells. However, overall, oxidation and apoptosis appear to promote the progression of diseased arteries towards a lesion that is vulnerable to rupture, and to give rise to myocardial infarction and ischemic stroke. Recent rapid advances in our understanding of the interactions between oxidative stress, apoptosis and arterial gene regulation suggest that selective interventions targeting these biological functions have great therapeutic potential.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Pharmacological Sciences, University of Salerno, 84084 Salerno, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Gulonolactone oxidase (GLO) is the enzyme responsible for the last step of ascorbic acid biosynthesis. The aim of this study was to investigate the effect of dietary alpha-tocopherol and ascorbic acid on GLO activity in a lower vertebrate, the white sturgeon (Acipenser transmontanus). Both alpha-tocopherol and ascorbic acid modulated renal GLO activity. The increase of dietary levels of alpha-tocopherol and/or ascorbic acid significantly raised the liver concentrations of these two antioxidants and concomitantly lowered kidney's GLO activity. The results suggest that the enzyme of ascorbic acid synthetic pathway responded to the animal's antioxidant status and that its activity was downregulated by alpha-tocopherol. This is the first record of alpha-tocopherol being involved in the regulation of ascorbic acid synthesis. This new observation may provide a hypothesis for the evolutionary loss of GLO expression in teleost fishes.
Collapse
Affiliation(s)
- Régis Moreau
- School of Natural Resources, The Ohio State University, Columbus OH, USA
| | | |
Collapse
|
29
|
de Nigris F, Lerman LO, Ignarro SW, Sica G, Lerman A, Palinski W, Ignarro LJ, Napoli C. Beneficial effects of antioxidants and L-arginine on oxidation-sensitive gene expression and endothelial NO synthase activity at sites of disturbed shear stress. Proc Natl Acad Sci U S A 2003; 100:1420-5. [PMID: 12525696 PMCID: PMC298788 DOI: 10.1073/pnas.0237367100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atherogenesis is enhanced in arterial segments exposed to disturbed blood flow, indicating the active participation of the hemodynamic environment in lesion formation. Turbulent shear stress selectively regulates responsive genes in the endothelium and increases the damage induced by free radicals. The purpose of the present study was to evaluate the effects of intervention with antioxidants and l-arginine on endothelial NO synthase (eNOS) and oxidation-sensitive gene perturbation induced by disturbed flow in vitro and in vivo. Both human endothelial cells exposed to shear stress and high atherosclerosis-prone areas of hypercholesterolemic low-density lipoprotein receptor knockout (LDLR(-/-)) mice showed increased activities of redox-transcription factors (ELK-1, p-Jun, and p-CREB) and decreased expression of eNOS. Intervention with antioxidants and l-arginine reduced the activation of redox-transcription factors and increased eNOS expression in cells and in vivo. These results demonstrate that atherogenic effects induced by turbulent shear stress can be prevented by cotreatment with antioxidants and l-arginine. The therapeutic possibility to modulate shear stress-response genes may have important implications for the prevention of atherosclerosis and its clinical manifestations.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Medicine-0682, University of California, San Diego, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Schwenke DC, Rudel LL, Sorci-Thomas MG, Thomas MJ. Alpha-tocopherol protects against diet induced atherosclerosis in New Zealand white rabbits. J Lipid Res 2002; 43:1927-38. [PMID: 12401892 DOI: 10.1194/jlr.m200261-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we asked the question "does alpha-tocopherol supplementation prevent an increase in total plasma cholesterol (TPC) concentration and reduce the deposition of cholesterol in arterial plaques of rabbits fed atherogenic diets?" Isocaloric diets containing 0.1% cholesterol to induce atherosclerosis were enriched in one of three fats: saturated fats (SAT), monounsaturated fats (MONO), or n-6 polyunsaturated fats (POLY). Half of each of the three diets were supplemented with 2,500 IU alpha-tocopherol/kg-diet. Unsupplemented diets contained 25 IU alpha-tocopherol/kg-diet. Rabbits supplemented with alpha-tocopherol had plasma alpha-tocopherol concentrations 10-fold higher and an average TPC concentration 31% lower, P = 0.017, than rabbits fed unsupplemented diets. Among the three fat-fed groups, the difference was greatest for the POLY fat fed group (54%, P = 0.041). POLY fat-fed rabbits without alpha-tocopherol supplementation had plasma HDL cholesterol concentrations that were less than half that of rabbits fed other fats, P < or = 0.0001. In general, differences in mean esterified artery cholesterol concentrations among the three fat-fed groups, with and without alpha-tocopherol supplementation, paralleled differences in TPC concentration among the groups. This study suggests that for rabbits fed high pharmacological doses of alpha-tocopherol, atherosclerosis can be diminished in situations where the plasma cholesterol concentrations are also significantly lower.
Collapse
Affiliation(s)
- Dawn C Schwenke
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | |
Collapse
|
31
|
Napoli C, Lerman LO, de Nigris F, Loscalzo J, Ignarro LJ. Glycoxidized low-density lipoprotein downregulates endothelial nitricoxide synthase in human coronary cells. J Am Coll Cardiol 2002; 40:1515-22. [PMID: 12392844 DOI: 10.1016/s0735-1097(02)02306-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We examined the hypothesis that low-density lipoprotein (LDL) that is both oxidized and glycosylated potently downregulates the expression of endothelial nitric oxide synthase III (NOSIII) in human coronary endothelial cells. BACKGROUND Diabetes mellitus is accompanied by both oxidation and glycosylation of LDL, but the potential interaction of these processes or the pathophysiologic effects of these modified lipoproteins on arteries are poorly understood. METHODS Low-density lipoprotein was glycoxidized in vitro, and Western and Northern blot analyses were used to investigate NOSIII expression in human coronary endothelial cells. Nitric oxide (NO) bioactivity was represented by both basal and bradykinin-stimulated cellular cyclic guanosine monophosphate accumulation and L-citrulline conversion from L-arginine. Nuclear run-on experiments were performed to study the transcription rate of nascent NOSIII messenger ribonucleic acid (mRNA). RESULTS Data showed a significant decrease in NOSIII expression after 24-h treatment with glycosylated low-density lipoprotein (glycLDL) and oxidized low-density lipoprotein (oxLDL). Accordingly, we observed a significant dose-dependent reduction in NO bioactivity (p < 0.05 to p < 0.001 vs. untreated cells, native low density lipoprotein [nLDL], glycLDL, and oxLDL). Glyc-oxLDL did not reduce the half-life of NOSIII mRNA or significantly enhance L-citrulline conversion. Nuclear run-on experiments showed that high doses of glyc-oxLDL can reduce the transcription rate of nascent NOSIII mRNA (densitometric analysis revealed a reduction of 25% [p < 0.05 vs. untreated cells, nLDL, and glycLDL] after treatment of cells with 300 microg/ml glyc-oxLDL). The effects of glyc-oxLDL are not related to the higher levels of oxidative compounds in comparison to those of oxLDL. CONCLUSIONS These results indicate that glyc-oxLDL, per se, may influence signal transduction pathways involving NO-mediated regulatory signals and NOSIII activity in human endothelial cells. This phenomenon can adversely influence the evolution of clinical vascular complications, coronary heart disease, and atherogenesis in diabetic patients.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine-0682, University of California, San Diego, California 92093, USA.
| | | | | | | | | |
Collapse
|
32
|
Ambra R, Di Nardo P, Fantini C, Minieri M, Canali R, Natella F, Virgili F. Selective changes in DNA binding activity of transcription factors in UM-X7.1 cardiomyopathic hamsters. Life Sci 2002; 71:2369-81. [PMID: 12231398 DOI: 10.1016/s0024-3205(02)02020-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UM-X7.1 hamsters (CH) are considered a representative model for human cardiomyopathy. CH display the loss of the cytoskeletal delta-sarcoglycan protein, associated with myocardium remodeling and fatal reduction of heart functional efficiency. Even though altered redox balance and calcium homeostasis have already been reported to affect cardiomyocyte function, the molecular mechanisms underlying this pathology are largely unknown. We found no significant differences in DNA binding activity of redox-related (NF-kappaB, Sp1, AP-1 and AP-2) transcription factors in heart ventricles of 90 day-old CH, compared to normal animals. On the other hand, DNA binding activity of calcium-dependent transcription factors NF-AT3 and CREB were increased and decreased respectively in CH vs. normal ventricles. Western blot experiments confirmed the down regulation of CREB levels and suggest a novel regulation mechanism for this transcription factor in the heart. Our results are consistent with recent studies on NF-AT3, GATA4 and CREB transgenic mice, and provide clues for the comprehension of pathogenetic mechanisms of hamster hereditary cardiomyopathy.
Collapse
Affiliation(s)
- R Ambra
- Free Radicals Research Group, National Institute for Food and Nutrition Research, via Ardeatina 546, 00178, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
33
|
Napoli C, Ackah E, De Nigris F, Del Soldato P, D'Armiento FP, Crimi E, Condorelli M, Sessa WC. Chronic treatment with nitric oxide-releasing aspirin reduces plasma low-density lipoprotein oxidation and oxidative stress, arterial oxidation-specific epitopes, and atherogenesis in hypercholesterolemic mice. Proc Natl Acad Sci U S A 2002; 99:12467-70. [PMID: 12209007 PMCID: PMC129468 DOI: 10.1073/pnas.192244499] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2002] [Indexed: 11/18/2022] Open
Abstract
The effects of chronic treatment with nitric oxide-containing aspirin (NO-aspirin, NCX-4016) in comparison with regular aspirin or placebo on the development of a chronic disease such as atherosclerosis were investigated in hypercholesterolemic low-density lipoprotein (LDL)-receptor-deficient mice. Male mice were assigned randomly to receive in a volume of 10 ml/kg either placebo (n = 10), 30 mg/kg/day NO-aspirin (n = 10), or 18 mg/kg/day of regular aspirin (n = 10). After 12 weeks of treatment, the computer-assisted imaging analysis revealed that NO-aspirin reduced the aortic cumulative lesion area by 39.8 +/- 12.3% compared with that of the placebo (P < 0.001). Regular aspirin did not reduce significantly aortic lesions (-5.1 +/- 2.3%) compared with the placebo [P = 0.867, not significant (NS)]. Furthermore, NO-aspirin reduced significantly plasma LDL oxidation compared with aspirin and placebo, as shown by the significant reduction of malondialdehyde content (P < 0.001) as well as by the prolongation of lag-time (P < 0.01). Similarly, systemic oxidative stress, measured by plasma isoprostanes, was significantly reduced by treatment with NCX-4016 (P < 0.05). More importantly, mice treated with NO-aspirin revealed by immunohistochemical analysis of aortic serial sections a significant decrease in the intimal presence of oxidation-specific epitopes of oxLDL (E06 monoclonal antibody, P < 0.01), and macrophages-derived foam cells (F4/80 monoclonal antibody, P < 0.05), compared with placebo or aspirin. These data indicate that enhanced NO release by chronic treatment with the NO-containing aspirin has antiatherosclerotic and antioxidant effects in the arterial wall of hypercholesterolemic mice.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Arteriosclerosis/etiology
- Arteriosclerosis/prevention & control
- Aspirin/administration & dosage
- Aspirin/analogs & derivatives
- Aspirin/pharmacology
- Foam Cells/drug effects
- Foam Cells/pathology
- Hypercholesterolemia/complications
- Hypercholesterolemia/drug therapy
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Donors/administration & dosage
- Nitric Oxide Donors/pharmacology
- Oxidation-Reduction
- Oxidative Stress/drug effects
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, School of Medicine, Federico II University of Naples, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Palinski W, Napoli C. The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J 2002; 16:1348-60. [PMID: 12205026 DOI: 10.1096/fj.02-0226rev] [Citation(s) in RCA: 176] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has long been postulated that pathogenic events during fetal development influence atherosclerosis-related diseases later in life, but the mechanisms involved are unknown. This review focuses on the evidence indicating that maternal hypercholesterolemia during pregnancy is responsible for one cascade of pathogenic events. Maternal hypercholesterolemia is associated with greatly increased fatty streak formation in human fetal arteries and accelerated progression of atherosclerosis during childhood. Recent experiments in genetically more homogeneous rabbits established that temporary diet-induced maternal hypercholesterolemia is sufficient to enhance fetal lesion formation. More important, maternal hypercholesterolemia or ensuing pathogenic events in the fetus increase postnatal atherogenesis in response to hypercholesterolemia. Maternal treatment with cholesterol-lowering agents or antioxidants greatly reduces fetal and postnatal atherogenesis, indicating a pathogenic role of lipid peroxidation and a potential involvement of oxidation-sensitive signaling pathways. Experiments in a murine model showed that differences in arterial gene expression between offspring of normo- and hypercholesterolemic mothers persist long after birth, supporting the assumption that fetal lesion formation is associated with genetic programming, which may in turn affect postnatal atherogenesis. A better understanding of pathogenic programming events in utero may lead to the identification of genes determining the susceptibility to atherosclerosis and define novel preventive approaches.
Collapse
Affiliation(s)
- Wulf Palinski
- Department of Medicine 0682, University of California San Diego, La Jolla, California 92093-0682, USA.
| | | |
Collapse
|
35
|
Abstract
There is a growing interest regarding the complex pathophysiological relationship between nitric oxide (NO) and the development of atherosclerosis. The endothelial damage induced by atherogenesis may lead to the reduction in concentration or activity both of inducible and endothelial NO synthase with subsequent impaired release of NO. Moreover, impaired NO diffusion from endothelium to vascular smooth muscle cells is followed by decreased sensitivity to its vasodilator action. Finally, an important mechanism would be a local enhanced degradation of NO by increased generation of reactive oxygen species and other free radicals with subsequent cascade of oxidation-sensitive mechanisms in the arterial wall. Therefore, one target for new drugs should be the restoration of NO-mediated signaling pathways in atherosclerotic arteries. Such novel therapeutic strategies may include administration of L-arginine, the precursor of NO, as well as antioxidants, NO donors, and tissue-specific gene-therapy approaches.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, University of California, San Diego California, USA.
| |
Collapse
|
36
|
Napoli C, Lerman LO, de Nigris F, Sica V. c-Myc oncoprotein: a dual pathogenic role in neoplasia and cardiovascular diseases? Neoplasia 2002; 4:185-90. [PMID: 11988837 PMCID: PMC1531691 DOI: 10.1038/sj.neo.7900232] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2001] [Accepted: 11/21/2001] [Indexed: 12/17/2022]
Abstract
A growing body of evidence indicates that c-Myc can play a pivotal role both in neoplasia and cardiovascular diseases. Indeed, alterations of the basal machinery of the cell and perturbations of c-Myc-dependent signaling network are involved in the pathogenesis of certain cardiovascular disorders. Down-regulation of c-Myc induced by intervention with antioxidants or by antisense technology may protect the integrity of the arterial wall as well as neoplastic tissues. Further intervention studies are necessary to investigate the effects of tissue-specific block of c-Myc overexpression in the development of cardiovascular diseases.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Medicine, University of California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
37
|
De Nigris F, Lerman LO, Condorelli M, Lerman A, Napoli C. Oxidation-sensitive transcription factors and molecular mechanisms in the arterial wall. Antioxid Redox Signal 2001; 3:1119-30. [PMID: 11813985 DOI: 10.1089/152308601317203620] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Adaptation to various forms of cellular stress involves signal transduction into the cytoplasm and subsequently into the cellular nucleus, and ultimately alteration of gene regulation and expression. Increased oxidative stress, which is associated with increased production of reactive oxygen species and other radical species, plays a pivotal role in vascular dysfunction and contributes substantially to the structural and functional changes leading to vascular disease progression. Activation of oxidation-sensitive transcription factors and molecular mechanisms can be triggered in the systemic, tissue, cellular, and molecular environments, thereby affecting a multitude of pathophysiological events involved in the pathogenesis of atherosclerosis and other vascular diseases. Radicals per se also participate in the pathophysiological vascular response to shear stress and injury. Among the oxidation-sensitive transcription factors, important roles have been ascribed to nuclear factor-kappaB, c-Myc, and the peroxisome proliferator-activated receptor family. Regulation of nuclear events has also been recently proposed to involve corepressor and coactivator molecules. Identification of the genes that are involved in these processes has been facilitated by recent development of microarray chip techniques, which allow simultaneous evaluation of differential gene expression. As many of the transcription factors or their interactions are redox-regulated, antioxidant intervention may affect their bioactivity.
Collapse
Affiliation(s)
- F De Nigris
- Department of Medicine, University of Naples, Italy
| | | | | | | | | |
Collapse
|
38
|
Napoli C, de Nigris F, Palinski W. Multiple role of reactive oxygen species in the arterial wall. J Cell Biochem 2001; 82:674-82. [PMID: 11500945 DOI: 10.1002/jcb.1198] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Increased oxidative stress plays an important role in vascular dysfunction and atherogenesis. Both systemic factors, such as hypercholesterolemia and hyperglycemia, and local factors, such as activation of macrophages and T cells, may contribute to oxidative stress. Oxidation of lipids in lipoproteins and cell membranes leads to functionally important modifications of proteins that affect their recognition by cell surface receptors and protein-protein interactions within the cell, including DNA binding. Oxidized LDL and extracellular oxidation modulate oxidation-sensitive signaling pathways, but it is not clear to what extent this results from receptor-mediated activation or from direct effects on the intracellular redox-balance. Extensive evidence indicates that reactive oxygen species (ROS) regulate gene expression by modulating a large number of transcription factors, including the nuclear transcription factor kappa B (NFkappaB), the peroxisome proliferator activated receptorgamma (PPARgamma), and pathways linked to apoptosis. It is also increasingly recognized that cell differentiation and proliferation, cytokine expression, and programmed cell death are determined by the interactions between oxidation-sensitive regulatory pathways previously thought to lead to distinct outcomes. Because hypercholesterolemia exerts pro-oxidant effects both intra- and extracellularly and because increased ROS formation affects vascular reactivity and atherogenesis by modulating multiple signaling pathways and transcriptional events, future investigations of its atherogenic mechanisms should place greater emphasis on the net effect of such modulation on the expression of a large spectrum of genes. One way of doing this will be by defining clusters of genes responding to hypercholesterolemic stimuli--or interventions with structurally unrelated antioxidants--in analogous ways, irrespective of what regulatory pathway they are controlled by. Microarray technologies that allow simultaneous assessment of large numbers of genes may provide a tool for this approach.
Collapse
Affiliation(s)
- C Napoli
- University of California San Diego, Department of Medicine 0682, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
39
|
Condorelli G, Aycock JK, Frati G, Napoli C. Mutated p21/WAF/CIP transgene overexpression reduces smooth muscle cell proliferation, macrophage deposition, oxidation-sensitive mechanisms, and restenosis in hypercholesterolemic apolipoprotein E knockout mice. FASEB J 2001; 15:2162-70. [PMID: 11641242 DOI: 10.1096/fj.01-0032com] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have investigated whether by introducing a mutated p21 cyclin-dependent kinase inhibitor through a standard type 5 adenovirus (Ad), it would be possible to interfere with restenosis in hypercholesterolemic apolipoprotein E knockout mice. Restenosis is a clinically relevant, undesired effect of percutaneous transluminal coronary angioplasty (PTCA). A critical event underlying restenosis is smooth muscle cell (SMC) proliferation leading to neointimal formation and vessel reocclusion. Recent data demonstrated that it is possible to reduce restenosis by introducing various genes blocking the cell cycle through Ad vectors. Nonetheless, most experiments were conducted in the healthy carotid artery of rat, which is far from the condition of human disease. Therefore, we investigated whether antiproliferative or proapoptotic genes affect restenosis in a model of atherosclerosis closer to clinical settings. Ad-mutated(m)-p21WAF/CIP1 transgene overexpression induces a significant reduction of restenosis in hypercholesterolemic apolipoprotein E knockout mice subjected to injury of common carotid artery. This was associated with reduced SMC density and proliferation, macrophage deposition, and oxidation-sensitive mechanisms. Treatment with p21/WAF also enhanced TUNEL positivity of arterial cells. We show that in an experimental model of atherosclerosis, braking the cell proliferation through increased vascular apoptosis and reduced oxidation-sensitive signal transduction and macrophage accumulation can significantly ameliorate the deleterious effects of vascular injuries similar to those that occur during PTCA and related procedures.
Collapse
Affiliation(s)
- G Condorelli
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| | | | | | | |
Collapse
|
40
|
Napoli C, Lerman LO. Involvement of oxidation-sensitive mechanisms in the cardiovascular effects of hypercholesterolemia. Mayo Clin Proc 2001; 76:619-31. [PMID: 11393501 DOI: 10.4065/76.6.619] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hypercholesterolemia is a common clinical metabolic and/or genetic disorder that promotes functional and structural vascular wall injury. The underlying mechanisms for these deleterious effects involve a local inflammatory response and release of cytokines and growth factors. Consequent activation of oxidation-sensitive mechanisms in the arterial wall, modulation of intracellular signaling pathways, increased oxidation of low-density lipoprotein cholesterol, and quenching of nitric oxide can all impair the functions controlled by the vascular wall and lead to the development of atherosclerosis. This cascade represents a common pathological mechanism activated by various cardiovascular risk factors and may partly underlie synergism among them as well as the early pathogenesis of atherosclerosis. Antioxidant intervention and restoration of the bioavailability of nitric oxide have been shown to mitigate functional and structural arterial alterations and improve cardiovascular outcomes. Elucidation of the precise nature and role of early transductional signaling pathways and transcriptional events activated in hypercholesterolemia in children and adults, including mothers during pregnancy, and understanding their downstream effects responsible for atherogenesis may help in directing preventive and interventional measures against atherogenesis and vascular dysfunction.
Collapse
Affiliation(s)
- C Napoli
- Department of Medicine, University of Naples, Italy.
| | | |
Collapse
|
41
|
de Nigris F, Lerman LO, Rodriguez-Porcel M, De Montis MP, Lerman A, Napoli C. c-myc activation in early coronary lesions in experimental hypercholesterolemia. Biochem Biophys Res Commun 2001; 281:945-50. [PMID: 11237752 DOI: 10.1006/bbrc.2001.4431] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that c-Myc activation, an oxidation-sensitive transcription factor, and its binding partner Max occurs in coronary arteries of hypercholesterolemic (HC) pigs, and can be attenuated by chronic antioxidant intervention. Coronary arteries were isolated from normal, HC pigs, or HC supplemented with antioxidant vitamins (HC + vitamins). The expression of the c-Myc/Max complex, and its target genes GADD45 and p53, was studied in nonatherosclerotic, early lesions (LL), positively staining for oil-red-O, in adjacent lesion-prone regions (PL), and in healthy segments (HV). The expression of c-Myc and Max in HC was 2- to 3-fold greater in PL, and 4-fold in LL, compared to normal vessels (P < 0.01). The expression of GADD45 was down-regulated, and of p53 increased, in the same regions. These alterations were attenuated in the HC + vitamins. Thus, c-Myc activation is an early atherosclerosis, in both PL and LL coronary arterial regions, and can be blunted by chronic dietary antioxidant intervention.
Collapse
Affiliation(s)
- F de Nigris
- Department of Medicine, University of Naples, Naples, 80131, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Napoli C, Cirino G, Del Soldato P, Sorrentino R, Sica V, Condorelli M, Pinto A, Ignarro LJ. Effects of nitric oxide-releasing aspirin versus aspirin on restenosis in hypercholesterolemic mice. Proc Natl Acad Sci U S A 2001; 98:2860-4. [PMID: 11226331 PMCID: PMC30230 DOI: 10.1073/pnas.041602898] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Restenosis is due to neointimal hyperplasia, which occurs in the coronary artery after percutaneous transluminal coronary angioplasty (PTCA). During restenosis, an impairment of nitric oxide (NO)-dependent pathways may occur. Concomitant hypercholesterolemia may exacerbate restenosis in patients undergoing PTCA. Here, we show that a NO-releasing aspirin derivative (NCX-4016) reduces the degree of restenosis after balloon angioplasty in low-density lipoprotein receptor-deficient mice and this effect is associated with reduced vascular smooth muscle cell (VSMC) proliferation and macrophage deposition at the site of injury. Drugs were administered following both therapeutic or preventive protocols. We demonstrate that NCX-4016 is effective both in prevention and treatment of restenosis in the presence of hypercholesterolemia. These data indicate that impairment of NO-dependent mechanisms may be involved in the development of restenosis in hypercholesterolemic mice. Although experimental models of restenosis may not reflect restenosis in humans in all details, we suggest that a NO-releasing aspirin derivative could be an effective drug in reducing restenosis following PTCA, especially in the presence of hypercholesterolemia and/or gastrointestinal damage.
Collapse
Affiliation(s)
- C Napoli
- Department of Medicine, Federico II University of Naples, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|