1
|
Tran P, Lau C, Joshi M, Kuehl M, Maddock H, Banerjee P. Exploring Changes in Myocyte Structure, Contractility, and Energetics From Mechanical Unloading in Patients With Heart Failure Undergoing Ventricular Assist Device Implantation: A Systematic Review and Meta-Analysis. Heart Lung Circ 2024; 33:1097-1116. [PMID: 38704332 DOI: 10.1016/j.hlc.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 05/06/2024]
Abstract
AIMS Recent reports of myocardial recovery after mechanical unloading with left ventricular assist devices (LVADs) have challenged the prevailing notion that end-stage heart failure (HF) is irreversible. To improve our understanding of this phenomenon, we comprehensively analysed the structural, functional, and energetic changes in failing human cardiomyocytes after LVAD implantation. METHODS Based on a prospectively registered protocol (PROSPERO-CRD42022380214), 30 eligible studies were identified from 940 records with a pooled population of 648 patients predominantly with non-ischaemic cardiomyopathy. RESULTS LVAD led to a substantial regression in myocyte size similar to that of donor hearts (standardised mean difference, -1.29; p<0.001). The meta-regression analysis revealed that HF duration was a significant modifier on the changes in myocyte size. There were some suggestions of fibrosis reversal (-5.17%; p=0.009); however, this was insignificant after sensitivity analysis. Developed force did not improve in cardiac trabeculae (n=5 studies); however, non-physiological isometric contractions were tested. At the myocyte level (n=4 studies), contractile kinetics improved where the time-to-peak force reduced by 41.7%-50.7% and time to 50% relaxation fell by 47.4%-62.1% (p<0.05). Qualitatively, LVAD enhanced substrate utilisation and mitochondrial function (n=6 studies). Most studies were at a high risk of bias. CONCLUSION The regression of maladaptive hypertrophy, partial fibrosis reversal, and normalisation in metabolic pathways after LVAD may be a testament to the heart's remarkable plasticity, even in the advanced stages of HF. However, inconsistencies exist in force-generating capabilities. Using more physiological force-length work-loop assays, addressing the high risks of bias and clinical heterogeneity are crucial to better understand the phenomenon of reverse remodelling.
Collapse
Affiliation(s)
- Patrick Tran
- Centre for Health & Life Sciences, Coventry University, Coventry, UK; Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK.
| | - Clement Lau
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Mithilesh Joshi
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Michael Kuehl
- Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Helen Maddock
- Centre for Health & Life Sciences, Coventry University, Coventry, UK
| | - Prithwish Banerjee
- Centre for Health & Life Sciences, Coventry University, Coventry, UK; Cardiology Department, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Hørsdal OK, Moeslund N, Berg-Hansen K, Nielsen R, Møller N, Eiskjær H, Wiggers H, Gopalasingam N. Lactate infusion elevates cardiac output through increased heart rate and decreased vascular resistance: a randomised, blinded, crossover trial in a healthy porcine model. J Transl Med 2024; 22:285. [PMID: 38493167 PMCID: PMC10943846 DOI: 10.1186/s12967-024-05064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Lactate is traditionally recognized as a by-product of anaerobic metabolism. However, lactate is a preferred oxidative substrate for stressed myocardium. Exogenous lactate infusion increases cardiac output (CO). The exact mechanism underlying this mechanism has yet to be elucidated. The aim of this study was to investigate the cardiovascular mechanisms underlying the acute haemodynamic effects of exogenous lactate infusion in an experimental model of human-sized pigs. METHODS In this randomised, blinded crossover study in eight 60-kg-pigs, the pigs received infusions with one molar sodium lactate and a control infusion of tonicity matched hypertonic saline in random order. We measured CO and pulmonary pressures using a pulmonary artery catheter. A pressure-volume admittance catheter in the left ventricle was used to measure contractility, afterload, preload and work-related parameters. RESULTS Lactate infusion increased circulating lactate levels by 9.9 mmol/L (95% confidence interval (CI) 9.1 to 11.0) and CO by 2.0 L/min (95% CI 1.2 to 2.7). Afterload decreased as arterial elastance fell by -1.0 mmHg/ml (95% CI -2.0 to -0.1) and systemic vascular resistance decreased by -548 dynes/s/cm5 (95% CI -261 to -835). Mixed venous saturation increased by 11 percentage points (95% CI 6 to 16), whereas ejection fraction increased by 16.0 percentage points (95% CI 1.1 to 32.0) and heart rate by 21 bpm (95% CI 8 to 33). No significant changes in contractility nor preload were observed. CONCLUSION Lactate infusion increased cardiac output by increasing heart rate and lowering afterload. No differences were observed in left ventricular contractility or preload. Lactate holds potential as a treatment in situations with lowered CO and should be investigated in future clinical studies.
Collapse
Affiliation(s)
- Oskar Kjærgaard Hørsdal
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Moeslund
- Department of Heart, Lung, and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Kristoffer Berg-Hansen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Møller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Metabolism, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nigopan Gopalasingam
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Cardiology, Gødstrup Hospital, Herning, Denmark.
| |
Collapse
|
3
|
Galeone A, Buccoliero C, Barile B, Nicchia GP, Onorati F, Luciani GB, Brunetti G. Cellular and Molecular Mechanisms Activated by a Left Ventricular Assist Device. Int J Mol Sci 2023; 25:288. [PMID: 38203459 PMCID: PMC10779015 DOI: 10.3390/ijms25010288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Left ventricular assist devices (LVADs) represent the final treatment for patients with end-stage heart failure (HF) not eligible for transplantation. Although LVAD design has been further improved in the last decade, their use is associated with different complications. Specifically, inflammation, fibrosis, bleeding events, right ventricular failure, and aortic valve regurgitation may occur. In addition, reverse remodeling is associated with substantial cellular and molecular changes of the failing myocardium during LVAD support with positive effects on patients' health. All these processes also lead to the identification of biomarkers identifying LVAD patients as having an augmented risk of developing associated adverse events, thus highlighting the possibility of identifying new therapeutic targets. Additionally, it has been reported that LVAD complications could cause or exacerbate a state of malnutrition, suggesting that, with an adjustment in nutrition, the general health of these patients could be improved.
Collapse
Affiliation(s)
- Antonella Galeone
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Cinzia Buccoliero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| | - Francesco Onorati
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Division of Cardiac Surgery, University of Verona, 37129 Verona, Italy; (A.G.); (F.O.); (G.B.L.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (C.B.); (B.B.); (G.P.N.)
| |
Collapse
|
4
|
Pamias-Lopez B, Ibrahim ME, Pitoulis FG. Cardiac mechanics and reverse remodelling under mechanical support from left ventricular assist devices. Front Cardiovasc Med 2023; 10:1212875. [PMID: 37600037 PMCID: PMC10433771 DOI: 10.3389/fcvm.2023.1212875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/05/2023] [Indexed: 08/22/2023] Open
Abstract
In recent years, development of mechanical circulatory support devices has proved to be a new treatment modality, in addition to standard pharmacological therapy, for patients with heart failure or acutely depressed cardiac function. These include left ventricular assist devices, which mechanically unload the heart when implanted. As a result, they profoundly affect the acute cardiac mechanics, which in turn, carry long-term consequences on myocardial function and structural function. Multiple studies have shown that, when implanted, mechanical circulatory assist devices lead to reverse remodelling, a process whereby the diseased myocardium reverts to a healthier-like state. Here, we start by first providing the reader with an overview of cardiac mechanics and important hemodynamic parameters. We then introduce left ventricular assist devices and describe their mode of operation as well as their impact on the hemodynamics. Changes in cardiac mechanics caused by device implantation are then extrapolated in time, and the long-term consequences on myocardial phenotype, as well as the physiological basis for these, is investigated.
Collapse
Affiliation(s)
- Blanca Pamias-Lopez
- Department of Myocardial Function, Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Michael E. Ibrahim
- Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Fotios G. Pitoulis
- Department of Myocardial Function, Imperial College London, National Heart and Lung Institute, London, United Kingdom
- Division of Cardiovascular Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Packer M. The First Dedicated Comprehensive Heart Failure Program in the United States: The Division of Circulatory Physiology at Columbia Presbyterian (1992-2004). J Card Fail 2023; 29:1078-1090. [PMID: 37075940 DOI: 10.1016/j.cardfail.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/21/2023]
Abstract
The first dedicated multidisciplinary heart failure program in the United States was founded as the Division of Circulatory Physiology at the Columbia University College of Physicians & Surgeons in 1992. The Division was administratively and financially independent of the Division of Cardiology and grew to 24 faculty members at its peak. Its administrative innovations included (1) a comprehensive full-integrated service line, with 2 differentiated clinical teams, one devoted to drug therapy and the other to heart transplantation and ventricular assist devices; (2) a nurse specialist/physician assistant-led clinical service; and (3) a financial structure independent of (and not supported by) other cardiovascular medical or surgical services. The division had 3 overarching missions: (1) to promote a unique career development path for each faculty member to be linked to recognition in a specific area of heart failure expertise; (2) to change the trajectory and enhance the richness of intellectual discourse in the discipline of heart failure, so as to foster an understanding of fundamental mechanisms and to develop new therapeutics; and (3) to provide optimal medical care to patients and to promote the ability of other physicians to provide optimal care. The major research achievements of the division included (1) the development of beta-blockers for heart failure, from initial hemodynamic assessments to proof-of-concept studies to large-scale international trials; (2) the development and definitive assessment of flosequinan, amlodipine, and endothelin antagonists; (3) initial clinical trials and concerns with nesiritide; (4) large-scale trials evaluating dosing of angiotensin converting-enzyme inhibitors and the efficacy and safety of neprilysin inhibition; (5) identification of key mechanisms in heart failure, including neurohormonal activation, microcirculatory endothelial dysfunction, deficiencies in peripheral vasodilator pathways, noncardiac factors in driving dyspnea, and the first identification of subphenotypes of heart failure and a preserved ejection fraction; (6) the development of a volumetric approach to the assessment of myocardial shortening; (7) conceptualization and early studies of cardiac contractility modulation as a treatment for heart failure; (8) novel approaches to the identification of cardiac allograft rejection and new therapeutics to prevent allograft vasculopathy; and (9) demonstration of the effect of left ventricular assist devices to induce reverse remodeling, and the first randomized trial showing a survival benefit with ventricular assist devices. Above all, the division served as an exceptional incubator for a generation of leaders in the field of heart failure.
Collapse
Affiliation(s)
- Milton Packer
- From the Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas, and Imperial College, London, UK.
| |
Collapse
|
6
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
7
|
Ozturk N, Erkan O, Uslu S, Ozdemir S. Role of adenosine triphosphate and protein kinase A in the force-frequency relationship in isolated rat cardiomyocytes. ARCH BIOL SCI 2023; 75:47-56. [DOI: 10.2298/abs221213004o] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The physiological heart rate of rodents is around 4-6 Hz, although a stimulus frequency of 1 Hz is generally used in isolated cardiomyocytes to study changes in the contraction-relaxation cycle in cardiac muscle physiology and pathophysiology. Our study investigated the contraction parameters in isolated cardiomyocytes at 1, 2 and 4 Hz stimulation, and the roles of ATP and protein kinase A (PKA) in the force-frequency relationship in isolated cardiomyocytes. The contraction of the cell and intracellular Ca2+ changes were recorded simultaneously during cell stimulation by applying pulses of 6-8 V amplitude with frequencies of 1, 2 and 4 Hz. The increase in stimulus frequency caused a significant decrease in the percentage of shortening, relaxation times, slowing of the relaxation rate, and a significant increase in diastolic Ca2+ levels, but had no effect on the contraction rate and Ca2+ transients. Administration of ATP and N6-benzoyladenosine-3'-5'-cyclic monophosphate (6-BNZ-cAMP) caused an increase in contraction amplitude and speed which were proportional to the stimulus frequency but had no effect on the relaxation times. The experimental results show that the force-stimulus frequency has a negative correlation in isolated myocytes and that energy metabolism and the ?-adrenergic system may be responsible for this relationship.
Collapse
Affiliation(s)
- Nihal Ozturk
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| | - Orhan Erkan
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| | - Serkan Uslu
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| | - Semir Ozdemir
- Akdeniz University Faculty of Medicine Department of Biophysics, Antalya, Turkey
| |
Collapse
|
8
|
Jedrzejewska A, Braczko A, Kawecka A, Hellmann M, Siondalski P, Slominska E, Kutryb-Zajac B, Yacoub MH, Smolenski RT. Novel Targets for a Combination of Mechanical Unloading with Pharmacotherapy in Advanced Heart Failure. Int J Mol Sci 2022; 23:9886. [PMID: 36077285 PMCID: PMC9456495 DOI: 10.3390/ijms23179886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022] Open
Abstract
LVAD therapy is an effective rescue in acute and especially chronic cardiac failure. In several scenarios, it provides a platform for regeneration and sustained myocardial recovery. While unloading seems to be a key element, pharmacotherapy may provide powerful tools to enhance effective cardiac regeneration. The synergy between LVAD support and medical agents may ensure satisfying outcomes on cardiomyocyte recovery followed by improved quality and quantity of patient life. This review summarizes the previous and contemporary strategies for combining LVAD with pharmacotherapy and proposes new therapeutic targets. Regulation of metabolic pathways, enhancing mitochondrial biogenesis and function, immunomodulating treatment, and stem-cell therapies represent therapeutic areas that require further experimental and clinical studies on their effectiveness in combination with mechanical unloading.
Collapse
Affiliation(s)
- Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Piotr Siondalski
- Department of Cardiac Surgery, Medical University of Gdansk, Debinki 7 Street, 80-211 Gdansk, Poland
| | - Ewa Slominska
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| | - Magdi H. Yacoub
- Heart Science Centre, Imperial College of London at Harefield Hospital, Harefield UB9 6JH, UK
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 Street, 80-211 Gdansk, Poland
| |
Collapse
|
9
|
(Physiology of Continuous-flow Left Ventricular Assist Device Therapy. Translation of the document prepared by the Czech Society of Cardiology). COR ET VASA 2022. [DOI: 10.33678/cor.2022.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Hnat T, Veselka J, Honek J. Left ventricular reverse remodelling and its predictors in non-ischaemic cardiomyopathy. ESC Heart Fail 2022; 9:2070-2083. [PMID: 35437948 PMCID: PMC9288763 DOI: 10.1002/ehf2.13939] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/16/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Adverse remodelling following an initial insult is the hallmark of heart failure (HF) development and progression. It is manifested as changes in size, shape, and function of the myocardium. While cardiac remodelling may be compensatory in the short term, further neurohumoral activation and haemodynamic overload drive this deleterious process that is associated with impaired prognosis. However, in some patients, the changes may be reversed. Left ventricular reverse remodelling (LVRR) is characterized as a decrease in chamber volume and normalization of shape associated with improvement in both systolic and diastolic function. LVRR might occur spontaneously or more often in response to therapeutic interventions that either remove the initial stressor or alleviate some of the mechanisms that contribute to further deterioration of the failing heart. Although the process of LVRR in patients with new‐onset HF may take up to 2 years after initiating treatment, there is a significant portion of patients who do not improve despite optimal therapy, which has serious clinical implications when considering treatment escalation towards more aggressive options. On the contrary, in patients that achieve delayed improvement in cardiac function and architecture, waiting might avoid untimely implantable cardioverter‐defibrillator implantation. Therefore, prognostication of successful LVRR based on clinical, imaging, and biomarker predictors is of utmost importance. LVRR has a positive impact on prognosis. However, reverse remodelled hearts continue to have abnormal features. In fact, most of the molecular, cellular, interstitial, and genome expression abnormalities remain and a susceptibility to dysfunction redevelopment under biomechanical stress persists in most patients. Hence, a distinction should be made between reverse remodelling and true myocardial recovery. In this comprehensive review, current evidence on LVRR, its predictors, and implications on prognostication, with a specific focus on HF patients with non‐ischaemic cardiomyopathy, as well as on novel drugs, is presented.
Collapse
Affiliation(s)
- Tomas Hnat
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| | - Josef Veselka
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| | - Jakub Honek
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84/1, Prague, 15006, Czech Republic
| |
Collapse
|
11
|
Transcriptomic Signatures of End-Stage Human Dilated Cardiomyopathy Hearts with and without Left Ventricular Assist Device Support. Int J Mol Sci 2022; 23:ijms23042050. [PMID: 35216165 PMCID: PMC8878549 DOI: 10.3390/ijms23042050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Left ventricular assist device (LVAD) use in patients with dilated cardiomyopathy (DCM) can lead to a differential response in the LV and right ventricle (RV), and RV failure remains the most common complication post-LVAD insertion. We assessed transcriptomic signatures in end-stage DCM, and evaluated changes in gene expression (mRNA) and regulation (microRNA/miRNA) following LVAD. LV and RV free-wall tissues were collected from end-stage DCM hearts with (n = 8) and without LVAD (n = 8). Non-failing control tissues were collected from donated hearts (n = 6). Gene expression (for mRNAs/miRNAs) was determined using microarrays. Our results demonstrate that immune response, oxygen homeostasis, and cellular physiological processes were the most enriched pathways among differentially expressed genes in both ventricles of end-stage DCM hearts. LV genes involved in circadian rhythm, muscle contraction, cellular hypertrophy, and extracellular matrix (ECM) remodelling were differentially expressed. In the RV, genes related to the apelin signalling pathway were affected. Following LVAD use, immune response genes improved in both ventricles; oxygen homeostasis and ECM remodelling genes improved in the LV and, four miRNAs normalized. We conclude that LVAD reduced the expression and induced additional transcriptomic changes of various mRNAs and miRNAs as an integral component of the reverse ventricular remodelling in a chamber-specific manner.
Collapse
|
12
|
Rosenbaum AN, Antaki JF, Behfar A, Villavicencio MA, Stulak J, Kushwaha SS. Physiology of Continuous-Flow Left Ventricular Assist Device Therapy. Compr Physiol 2021; 12:2731-2767. [PMID: 34964115 DOI: 10.1002/cphy.c210016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The expanding use of continuous-flow left ventricular assist devices (CF-LVADs) for end-stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure-flow (H-Q) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF-LVAD therapy on right ventricular filling and function, through right-sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF-LVAD therapy has physiologic consequences for end-organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device-circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1-37, 2021.
Collapse
Affiliation(s)
- Andrew N Rosenbaum
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - James F Antaki
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA.,VanCleve Cardiac Regenerative Medicine Program, Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - John Stulak
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Chou BP, Critsinelis A, Lamba HK, Long G, Civitello AB, Delgado RM, Chatterjee S. Continuous-Flow Left Ventricular Assist Device Support in Patients with Ischemic Versus Nonischemic Cardiomyopathy. Tex Heart Inst J 2021; 48:469799. [PMID: 34468765 DOI: 10.14503/thij-20-7241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To determine whether the cause of cardiomyopathy affects outcomes in patients who undergo continuous-flow left ventricular assist device support, we compared postimplant adverse events and survival between patients with ischemic and nonischemic cardiomyopathy. The inclusion criteria for the ischemic group were a history of myocardial infarction or revascularization (coronary artery bypass grafting or percutaneous coronary intervention), ≥75% stenosis of the left main or proximal left anterior descending coronary artery, or ≥75% stenosis of ≥2 epicardial vessels. From November 2003 through March 2016, 526 patients underwent device support: 256 (48.7%) in the ischemic group and 270 (51.3%) in the nonischemic group. The ischemic group was older (60.0 vs 50.0 yr), included more men than women (84.0% vs 72.6%), and had more comorbidities. More patients in the nonischemic group were able to have their devices explanted after left ventricular recovery (5.9% vs 2.0%; P=0.02). More patients in the ischemic group had gastrointestinal bleeding (31.2% vs 22.6%; P=0.03), particularly from arteriovenous malformations (20.7% vs 11.9%; P=0.006) and ulcers (16.4% vs 9.3%; P=0.01). Kaplan-Meier analysis revealed no difference in overall survival between groups (P=0.24). Older age, previous sternotomy, higher total bilirubin level, and concomitant procedures during device implantation independently predicted death (P ≤0.03), whereas cause of heart failure did not (P=0.08). Despite the similarity in overall survival between groups, ischemic cardiomyopathy was associated with more frequent gastrointestinal bleeding. This information may help guide the care of patients with ischemic cardiomyopathy who receive continuous-flow left ventricular assist device support.
Collapse
Affiliation(s)
- Brendan P Chou
- Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, Texas
| | - Andre Critsinelis
- Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, Texas
| | - Harveen K Lamba
- Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, Texas
| | - Gregory Long
- Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, Texas
| | - Andrew B Civitello
- Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, Texas.,Department of Cardiopulmonary Transplantation and Center for Cardiac Support, Texas Heart Institute, Houston, Texas
| | - Reynolds M Delgado
- Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, Texas.,Department of Cardiopulmonary Transplantation and Center for Cardiac Support, Texas Heart Institute, Houston, Texas
| | - Subhasis Chatterjee
- Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Effects of carvedilol and metoprolol on the myocardium during mechanical unloading in a rat heterotopic heart transplantation model. Cardiol Young 2021; 31:1269-1274. [PMID: 33745465 DOI: 10.1017/s1047951121000196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Left ventricular assist devices enable recovery from severe heart failure and serve as a bridge to heart transplantation. However, chronic mechanical unloading can impair myocardial recovery. We aimed to assess myocyte size, fibrosis, apoptosis, and β-adrenoreceptor levels after rats with left ventricle unloading induced by heterotopic heart transplantation were administered carvedilol and metoprolol. METHODS Thirty rats with heart transplants were divided randomly into control, carvedilol treatment, and metoprolol treatment groups. Follow-up was conducted after 2 and 4 weeks of unloading. RESULTS Carvedilol and metoprolol treatments did not prevent the decrease in myocyte diameter in unloaded left ventricles. Metoprolol significantly decreased the ratio of the fibrotic area in the unloaded heart, measured using Masson's trichrome staining after 2 weeks. However, carvedilol and metoprolol did not reduce apoptosis, based on measurements of terminal deoxynucleotidyl-transferase-mediated dUTP nick end-labelling positive cells and the expression of caspase-3 in unloaded hearts after 2 and 4 weeks. Metoprolol treatment did not significantly decrease the mRNA expression of myocardial SERCA2a in the unloaded heart after 2 weeks. CONCLUSIONS Compared to carvedilol treatment, metoprolol treatment improved myocardial fibrosis and SERCA2a expression to a greater extent; however, neither drug prevented myocardial apoptosis.
Collapse
|
15
|
Shen S, Sewanan LR, Campbell SG. Evidence for synergy between sarcomeres and fibroblasts in an in vitro model of myocardial reverse remodeling. J Mol Cell Cardiol 2021; 158:11-25. [PMID: 33992697 DOI: 10.1016/j.yjmcc.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
We have created a novel in-vitro platform to study reverse remodeling of engineered heart tissue (EHT) after mechanical unloading. EHTs were created by seeding decellularized porcine myocardial sections with a mixture of primary neonatal rat ventricular myocytes and cardiac fibroblasts. Each end of the ribbon-like constructs was fixed to a plastic clip, allowing the tissues to be statically stretched or slackened. Inelastic deformation was introduced by stretching tissues by 20% of their original length. EHTs were subsequently unloaded by returning tissues to their original, shorter length. Mechanical characterization of EHTs immediately after unloading and at subsequent time points confirmed the presence of a reverse-remodeling process, through which stress-free tissue length was increased after chronic stretch but gradually decreased back to its original value within 9 days. When a cardiac myosin inhibitor was applied to tissues after unloading, EHTs failed to completely recover their passive and active mechanical properties, suggesting a role for actomyosin contraction in reverse remodeling. Selectively inhibiting cardiomyocyte contraction or fibroblast activity after mechanical unloading showed that contractile activity of both cell types was required to achieve full remodeling. Similar tests with EHTs formed from human induced pluripotent stem cell-derived cardiomyocytes also showed reverse remodeling that was enhanced when treated with omecamtiv mecarbil, a myosin activator. These experiments suggest essential roles for active sarcomeric contraction and fibroblast activity in reverse remodeling of myocardium after mechanical unloading. Our findings provide a mechanistic rationale for designing potential therapies to encourage reverse remodeling in patient hearts.
Collapse
Affiliation(s)
- Shi Shen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Shah P, Psotka M, Taleb I, Alharethi R, Shams MA, Wever-Pinzon O, Yin M, Latta F, Stehlik J, Fang JC, Diao G, Singh R, Ijaz N, Kyriakopoulos CP, Zhu W, May CW, Cooper LB, Desai SS, Selzman CH, Kfoury A, Drakos SG. Framework to Classify Reverse Cardiac Remodeling With Mechanical Circulatory Support: The Utah-Inova Stages. Circ Heart Fail 2021; 14:e007991. [PMID: 33947201 PMCID: PMC8137588 DOI: 10.1161/circheartfailure.120.007991] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Variable definitions and an incomplete understanding of the gradient of reverse cardiac remodeling following continuous flow left ventricular assist device (LVAD) implantation has limited the field of myocardial plasticity. We evaluated the continuum of LV remodeling by serial echocardiographic imaging to define 3 stages of reverse cardiac remodeling following LVAD. METHODS The study enrolled consecutive LVAD patients across 4 study sites. A blinded echocardiographer evaluated the degree of structural (LV internal dimension at end-diastole [LVIDd]) and functional (LV ejection fraction [LVEF]) change after LVAD. Patients experiencing an improvement in LVEF ≥40% and LVIDd ≤6.0 cm were termed responders, absolute change in LVEF of ≥5% and LVEF <40% were termed partial responders, and the remaining patients with no significant improvement in LVEF were termed nonresponders. RESULTS Among 358 LVAD patients, 34 (10%) were responders, 112 (31%) partial responders, and the remaining 212 (59%) were nonresponders. The use of guideline-directed medical therapy for heart failure was higher in partial responders and responders. Structural changes (LVIDd) followed a different pattern with significant improvements even in patients who had minimal LVEF improvement. With mechanical unloading, the median reduction in LVIDd was -0.6 cm (interquartile range [IQR], -1.1 to -0.1 cm; nonresponders), -1.1 cm (IQR, -1.8 to -0.4 cm; partial responders), and -1.9 cm (IQR, -2.9 to -1.1 cm; responders). Similarly, the median change in LVEF was -2% (IQR, -6% to 1%), 9% (IQR, 6%-14%), and 27% (IQR, 23%-33%), respectively. CONCLUSIONS Reverse cardiac remodeling associated with durable LVAD support is not an all-or-none phenomenon and manifests in a continuous spectrum. Defining 3 stages across this continuum can inform clinical management, facilitate the field of myocardial plasticity, and improve the design of future investigations.
Collapse
Affiliation(s)
- Palak Shah
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Mitchell Psotka
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Iosif Taleb
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Rami Alharethi
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Mortada A. Shams
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia,Division of Cardiology, George Washington University, Washington DC
| | - Omar Wever-Pinzon
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael Yin
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Federica Latta
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia,Department of Cardiology, University of Brescia, Italy, Brescia, Italy
| | - Josef Stehlik
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - James C. Fang
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Guoqing Diao
- Department of Biostatistics and Bioinformatics, George Washington University, Washington DC
| | - Ramesh Singh
- Cardiac Surgery, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Naila Ijaz
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Christos P. Kyriakopoulos
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Wei Zhu
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Christopher W. May
- Heart Failure, Mechanical Circulatory Support & Transplant, Inova Heart and Vascular Institute, Falls Church, Virginia
| | - Lauren B. Cooper
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Shashank S. Desai
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Craig H. Selzman
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| | - Abdallah Kfoury
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah
| | - Stavros G. Drakos
- Utah Transplant Affiliated Hospitals (U.T.A.H.) Cardiac Transplant Program (University of Utah Health & School of Medicine, Intermountain Medical Center & Salt Lake VA Medical Center), Salt Lake City, Utah,Nora Eccles Harrison Cardiovascular Research and Training Institute (CVRTI), University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
17
|
Zhang H, Viveiros A, Nikhanj A, Nguyen Q, Wang K, Wang W, Freed DH, Mullen JC, MacArthur R, Kim DH, Tymchak W, Sergi CM, Kassiri Z, Wang S, Oudit GY. The Human Explanted Heart Program: A translational bridge for cardiovascular medicine. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165995. [PMID: 33141063 PMCID: PMC7581399 DOI: 10.1016/j.bbadis.2020.165995] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022]
Abstract
The progression of cardiovascular research is often impeded by the lack of reliable disease models that fully recapitulate the pathogenesis in humans. These limitations apply to both in vitro models such as cell-based cultures and in vivo animal models which invariably are limited to simulate the complexity of cardiovascular disease in humans. Implementing human heart tissue in cardiovascular research complements our research strategy using preclinical models. We established the Human Explanted Heart Program (HELP) which integrates clinical, tissue and molecular phenotyping thereby providing a comprehensive evaluation into human heart disease. Our collection and storage of biospecimens allow them to retain key pathogenic findings while providing novel insights into human heart failure. The use of human non-failing control explanted hearts provides a valuable comparison group for the diseased explanted hearts. Using HELP we have been able to create a tissue repository which have been used for genetic, molecular, cellular, and histological studies. This review describes the process of collection and use of explanted human heart specimens encompassing a spectrum of pediatric and adult heart diseases, while highlighting the role of these invaluable specimens in translational research. Furthermore, we highlight the efficient procurement and bio-preservation approaches ensuring analytical quality of heart specimens acquired in the context of heart donation and transplantation.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Anissa Viveiros
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anish Nikhanj
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Quynh Nguyen
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wei Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John C Mullen
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Roderick MacArthur
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel H Kim
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wayne Tymchak
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Consolato M Sergi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Anatomical Pathology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zamaneh Kassiri
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada; Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
18
|
Røe ÅT, Ruud M, Espe EK, Manfra O, Longobardi S, Aronsen JM, Nordén ES, Husebye T, Kolstad TRS, Cataliotti A, Christensen G, Sejersted OM, Niederer SA, Andersen GØ, Sjaastad I, Louch WE. Regional diastolic dysfunction in post-infarction heart failure: role of local mechanical load and SERCA expression. Cardiovasc Res 2020; 115:752-764. [PMID: 30351410 PMCID: PMC6432054 DOI: 10.1093/cvr/cvy257] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 01/08/2023] Open
Abstract
Aims Regional heterogeneities in contraction contribute to heart failure with reduced ejection fraction (HFrEF). We aimed to determine whether regional changes in myocardial relaxation similarly contribute to diastolic dysfunction in post-infarction HFrEF, and to elucidate the underlying mechanisms. Methods and results Using the magnetic resonance imaging phase-contrast technique, we examined local diastolic function in a rat model of post-infarction HFrEF. In comparison with sham-operated animals, post-infarction HFrEF rats exhibited reduced diastolic strain rate adjacent to the scar, but not in remote regions of the myocardium. Removal of Ca2+ within cardiomyocytes governs relaxation, and we indeed found that Ca2+ transients declined more slowly in cells isolated from the adjacent region. Resting Ca2+ levels in adjacent zone myocytes were also markedly elevated at high pacing rates. Impaired Ca2+ removal was attributed to a reduced rate of Ca2+ sequestration into the sarcoplasmic reticulum (SR), due to decreased local expression of the SR Ca2+ ATPase (SERCA). Wall stress was elevated in the adjacent region. Using ex vivo experiments with loaded papillary muscles, we demonstrated that high mechanical stress is directly linked to SERCA down-regulation and slowing of relaxation. Finally, we confirmed that regional diastolic dysfunction is also present in human HFrEF patients. Using echocardiographic speckle-tracking of patients enrolled in the LEAF trial, we found that in comparison with controls, post-infarction HFrEF subjects exhibited reduced diastolic train rate adjacent to the scar, but not in remote regions of the myocardium. Conclusion Our data indicate that relaxation varies across the heart in post-infarction HFrEF. Regional diastolic dysfunction in this condition is linked to elevated wall stress adjacent to the infarction, resulting in down-regulation of SERCA, disrupted diastolic Ca2+ handling, and local slowing of relaxation.
Collapse
Affiliation(s)
- Åsmund T Røe
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Emil K Espe
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ornella Manfra
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Stefano Longobardi
- Biomedical Engineering Department, The Rayne Institute, King's College, London, London, UK
| | - Jan M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Einar Sjaastad Nordén
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Trygve Husebye
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Terje R S Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ole M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Steven A Niederer
- Biomedical Engineering Department, The Rayne Institute, King's College, London, London, UK
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Stoll VM, Hess AT, Rodgers CT, Bissell MM, Dyverfeldt P, Ebbers T, Myerson SG, Carlhäll CJ, Neubauer S. Left Ventricular Flow Analysis. Circ Cardiovasc Imaging 2020; 12:e008130. [PMID: 31109184 DOI: 10.1161/circimaging.118.008130] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cardiac remodeling, after a myocardial insult, often causes progression to heart failure. The relationship between alterations in left ventricular blood flow, including kinetic energy (KE), and remodeling is uncertain. We hypothesized that increasing derangements in left ventricular blood flow would relate to (1) conventional cardiac remodeling markers, (2) increased levels of biochemical remodeling markers, (3) altered cardiac energetics, and (4) worsening patient symptoms and functional capacity. Methods Thirty-four dilated cardiomyopathy patients, 30 ischemic cardiomyopathy patients, and 36 controls underwent magnetic resonance including 4-dimensional flow, BNP (brain-type natriuretic peptide) measurement, functional capacity assessment (6-minute walk test), and symptom quantification. A subgroup of dilated cardiomyopathy and control subjects underwent cardiac energetic assessment. Left ventricular flow was separated into 4 components: direct flow, retained inflow, delayed ejection flow, and residual volume. Average KE throughout the cardiac cycle was calculated. RESULTS Patients had reduced direct flow proportion and direct-flow average KE compared with controls ( P<0.0001). The residual volume proportion and residual volume average KE were increased in patients ( P<0.0001). Importantly, in a multiple linear regression model to predict the patient's 6-minute walk test, the independent predictors were age (β=-0.3015; P=0.019) and direct-flow average KE (β=0.280, P=0.035; R2 model, 0.466, P=0.002). In contrast, neither ejection fraction nor left ventricular volumes were independently predictive. CONCLUSIONS This study demonstrates an independent predictive relationship between the direct-flow average KE and a prognostic measure of functional capacity. Intracardiac 4-dimensional flow parameters are novel biomarkers in heart failure and may provide additive value in monitoring new therapies and predicting prognosis.
Collapse
Affiliation(s)
- Victoria M Stoll
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, United Kingdom (V.M.S., A.T.H., C.T.R., M.M.B., S.G.M., S.N.)
| | - Aaron T Hess
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, United Kingdom (V.M.S., A.T.H., C.T.R., M.M.B., S.G.M., S.N.)
| | - Christopher T Rodgers
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, United Kingdom (V.M.S., A.T.H., C.T.R., M.M.B., S.G.M., S.N.).,Wolfson Brain Imaging Centre, University of Cambridge, United Kingdom (C.T.R.)
| | - Malenka M Bissell
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, United Kingdom (V.M.S., A.T.H., C.T.R., M.M.B., S.G.M., S.N.)
| | - Petter Dyverfeldt
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences (P.D., T.E., C.-J.C.), Linköping University, Sweden.,Center for Medical Image Science and Visualization (P.D., T.E., C.-J.C.), Linköping University, Sweden
| | - Tino Ebbers
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences (P.D., T.E., C.-J.C.), Linköping University, Sweden.,Center for Medical Image Science and Visualization (P.D., T.E., C.-J.C.), Linköping University, Sweden
| | - Saul G Myerson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, United Kingdom (V.M.S., A.T.H., C.T.R., M.M.B., S.G.M., S.N.)
| | - Carl-Johan Carlhäll
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences (P.D., T.E., C.-J.C.), Linköping University, Sweden.,Center for Medical Image Science and Visualization (P.D., T.E., C.-J.C.), Linköping University, Sweden.,Department of Clinical Physiology (C.-J.C.), Linköping University, Sweden.,Department of Medical and Health Sciences (C.-J.C.), Linköping University, Sweden
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, United Kingdom (V.M.S., A.T.H., C.T.R., M.M.B., S.G.M., S.N.)
| |
Collapse
|
20
|
Novel re-expression of L-type calcium channel Ca v1.3 in left ventricles of failing human heart. Heart Rhythm 2020; 17:1193-1197. [PMID: 32113898 DOI: 10.1016/j.hrthm.2020.02.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
|
21
|
Martins RP, Leclercq C, Bourenane H, Auffret V, Boulé S, Loobuyck V, Dambrin C, Mondoly P, Sacher F, Bordachar P, Kindo M, Cardi T, Gaudard P, Rouvière P, Michel M, Gourraud JB, Defaye P, Chavanon O, Kerneis C, Ghodhbane W, Pelcé E, Gariboldi V, Pozzi M, Grinberg D, Litzler PY, Anselme F, Babatasi G, Belin A, Garnier F, Bielefeld M, Hamon D, Lellouche N, Pierre B, Bourguignon T, Eschallier R, D'Ostrevy N, Bories MC, Jouan J, Vanhuyse F, Sadoul N, Flécher E, Galand V. Incidence, predictors, and clinical impact of electrical storm in patients with left ventricular assist devices: New insights from the ASSIST-ICD study. Heart Rhythm 2019; 16:1506-1512. [PMID: 31255846 DOI: 10.1016/j.hrthm.2019.06.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Ventricular arrhythmias (VAs) can occur after continuous flow left ventricular assist device (LVAD) implantation as a single arrhythmic event or as electrical storm (ES) with multiple repetitive VA episodes. OBJECTIVE We aimed at analyzing the incidence, predictors, and clinical impact of ES in LVAD recipients. METHODS Patients analyzed were those included in the multicenter ASSIST-ICD observational study. ES was consensually defined as occurrence of ≥3 separate episodes of sustained VAs within a 24-hour interval. RESULTS Of 652 patients with an LVAD, 61 (9%) presented ES during a median follow-up period of 9.1 (interquartile range [IQR] 2.5-22.1) months. The first ES occurred after 17 (IQR 4.0-56.2) days post LVAD implantation, most of them during the first month after the device implantation (63%). The incidence then tended to decrease during the initial years of follow-up and increased again after the third year post LVAD implantation. History of VAs before LVAD implantation and heart failure duration > 84 months were independent predictors of ES. The occurrence of ES was associated with an increased early mortality since 20 patients (33%) died within the first 2 weeks of ES. Twenty-two patients (36.1%) presented at least 1 recurrence of ES, occurring 43.0 (IQR 8.0-69.0) days after the initial ES. Patients experiencing ES had a significantly lower 1-year survival rate than did those free from ES (log-rank, P = .039). CONCLUSION There is a significant incidence of ES in patients with an LVAD. The short-term mortality after ES is high, and one-third of patients will die within 15 days. Whether radiofrequency ablation of arrhythmias improves outcomes would require further studies.
Collapse
Affiliation(s)
| | | | - Hamed Bourenane
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, Rennes, France
| | - Vincent Auffret
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, Rennes, France
| | - Stéphane Boulé
- Department of Cardiology, CHU Lille, Institut Coeur-Poumons, Lille, France
| | - Valentin Loobuyck
- Department of Cardiology, CHU Lille, Institut Coeur-Poumons, Lille, France
| | | | - Pierre Mondoly
- Department of Cardiology, CHU de Toulouse, Toulouse, France
| | - Frédéric Sacher
- Hôpital Cardiologique du Haut-Lévêque, Université Bordeaux, Bordeaux, France
| | - Pierre Bordachar
- Hôpital Cardiologique du Haut-Lévêque, Université Bordeaux, Bordeaux, France
| | - Michel Kindo
- Département de chirurgie cardiovasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Thomas Cardi
- Département de chirurgie cardiovasculaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Philippe Gaudard
- Department of Cardiac Surgery, Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHRU Montpellier, Montpellier, France
| | - Philippe Rouvière
- Department of Cardiac Surgery, Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHRU Montpellier, Montpellier, France
| | - Magali Michel
- Department of Cardiology and Heart Transplantation Unit, CHU Nantes, Nantes, France
| | | | - Pascal Defaye
- Department of Cardiology and Cardiovascular Surgery, CHU Michallon, Grenoble, France
| | - Olivier Chavanon
- Department of Cardiology and Cardiovascular Surgery, CHU Michallon, Grenoble, France
| | - Caroline Kerneis
- Department of Cardiology and Cardiac Surgery, Bichat-Hospital, Paris, France
| | - Walid Ghodhbane
- Department of Cardiology and Cardiac Surgery, Bichat-Hospital, Paris, France
| | - Edeline Pelcé
- Department of Cardiac Surgery, La Timone Hospital, Marseille, France
| | - Vlad Gariboldi
- Department of Cardiac Surgery, La Timone Hospital, Marseille, France
| | - Matteo Pozzi
- Department of Cardiac Surgery, "Louis Pradel" Cardiologic Hospital, Lyon, France
| | - Daniel Grinberg
- Department of Cardiac Surgery, "Louis Pradel" Cardiologic Hospital, Lyon, France
| | - Pierre-Yves Litzler
- Department of Cardiology and Cardiovascular Surgery, Hospital Charles Nicolle, Rouen, France
| | - Frédéric Anselme
- Department of Cardiology and Cardiovascular Surgery, Hospital Charles Nicolle, Rouen, France
| | - Gerard Babatasi
- Department of Cardiology, University of Caen and University Hospital of Caen, Caen, France
| | - Annette Belin
- Department of Cardiology, University of Caen and University Hospital of Caen, Caen, France
| | - Fabien Garnier
- Department of Cardiology and Cardiac Surgery, University Hospital, Dijon, France
| | - Marie Bielefeld
- Department of Cardiology and Cardiac Surgery, University Hospital, Dijon, France
| | - David Hamon
- Department of Cardiology and Cardiac Surgery, AP-HP CHU Henri Mondor, Créteil, France
| | - Nicolas Lellouche
- Department of Cardiology and Cardiac Surgery, AP-HP CHU Henri Mondor, Créteil, France
| | - Bertrand Pierre
- Department of Cardiology and Cardiac Surgery, Tours University Hospital, Tours, France
| | - Thierry Bourguignon
- Department of Cardiology and Cardiac Surgery, Tours University Hospital, Tours, France
| | - Romain Eschallier
- Department of Cardiology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas D'Ostrevy
- Department of Cardiology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Jérôme Jouan
- Department of Cardiology, European Georges Pompidou Hospital, Paris, France
| | - Fabrice Vanhuyse
- Department of Cardiology and Cardiac Surgery, CHU de Nancy, Hopital de Brabois, Nancy, France
| | - Nicolas Sadoul
- Department of Cardiology and Cardiac Surgery, CHU de Nancy, Hopital de Brabois, Nancy, France
| | - Erwan Flécher
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, Rennes, France
| | - Vincent Galand
- Univ Rennes, CHU Rennes, INSERM, LTSI - UMR 1099, Rennes, France
| |
Collapse
|
22
|
Saucerman JJ, Tan PM, Buchholz KS, McCulloch AD, Omens JH. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat Rev Cardiol 2019; 16:361-378. [PMID: 30683889 PMCID: PMC6525041 DOI: 10.1038/s41569-019-0155-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intact heart undergoes complex and multiscale remodelling processes in response to altered mechanical cues. Remodelling of the myocardium is regulated by a combination of myocyte and non-myocyte responses to mechanosensitive pathways, which can alter gene expression and therefore function in these cells. Cellular mechanotransduction and its downstream effects on gene expression are initially compensatory mechanisms during adaptations to the altered mechanical environment, but under prolonged and abnormal loading conditions, they can become maladaptive, leading to impaired function and cardiac pathologies. In this Review, we summarize mechanoregulated pathways in cardiac myocytes and fibroblasts that lead to altered gene expression and cell remodelling under physiological and pathophysiological conditions. Developments in systems modelling of the networks that regulate gene expression in response to mechanical stimuli should improve integrative understanding of their roles in vivo and help to discover new combinations of drugs and device therapies targeting mechanosignalling in heart disease.
Collapse
Affiliation(s)
- Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Philip M Tan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Kyle S Buchholz
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jeffrey H Omens
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
23
|
Endoh M. SERCA in heterogeneity of diastolic dysfunction in post-infarction heart failure with reduced ejection fraction. Cardiovasc Res 2019; 115:693-695. [DOI: 10.1093/cvr/cvz017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masao Endoh
- Department of Pharmacology, Yamagata University School of Medicine, 2-2-2 Iida-nishi, Yamagata, Japan
| |
Collapse
|
24
|
Grinstein J, Kruse E, Sayer G, Kim GH, Raikhelkar J, Kalantari S, Sarswat N, Adatya S, Ota T, Jeevanandam V, Mor-Avi V, Lang RM, Uriel N. Outflow Cannula Systolic Slope in Patients With Left Ventricular Assist Devices: A Novel Marker of Myocardial Contractility. ASAIO J 2019; 65:160-166. [PMID: 29677035 PMCID: PMC10039434 DOI: 10.1097/mat.0000000000000799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Left ventricular (LV) unloading with a LV assist device (LVAD) reverse remodels the heart and may lead to favorable changes in cellular architecture and LV geometry promoting myocardial recovery. Currently, there are no standardized methods for evaluating myocardial recovery. This study assesses the systolic slope of the LVAD outflow cannula as a marker for myocardial contractility. Doppler echocardiography (transthoracic echocardiogram [TTE]) of the LVAD outflow cannula and TTE of the LV cavity were prospectively collected in 57 patients with LVADs. Systolic acceleration of the LVAD outflow cannula was measured in each patient as the peak change of velocity over time (dv/dt) during systole from continuous-wave Doppler signal acquired from the LVAD outflow cannula. Ventricular volumes were concurrently measured by TTE. In a subset of 10 patients, the systolic slope was measured during each stage of a ramp study to study the properties of this parameter across a variety of loading conditions. The systolic slope of the LVAD outflow cannula was successfully measured in 53 of 57 patients (93%). Systolic slope strongly correlated with ejection fraction (EF) (R = 0.92). Analysis of systolic slope stratified by EF (EF >30%, EF 20-30%, EF 10-20%, and EF <10%) revealed systolic slopes that were significantly different between the groups (1,371 cm/s ± 324; 983 cm/s ± 122; 578 cm/s ± 139; and 495 cm/s ± 107, respectively; p < 0.001). Systolic slope did not change significantly across variable preload and afterload conditions during a ramp study. Systolic slope of the LVAD outflow cannula strongly correlates with EF and can be used to assess underlying myocardial contractility across a variety of LVAD loading conditions.
Collapse
Affiliation(s)
- Jonathan Grinstein
- Division of Cardiology, MedStar Heart and Vascular Institute, Washington, DC
| | - Eric Kruse
- University of Chicago Medical Center, Chicago, Illinois
| | - Gabriel Sayer
- University of Chicago Medical Center, Chicago, Illinois
- Division of cardiology, Chicago, Illinois
| | - Gene H. Kim
- University of Chicago Medical Center, Chicago, Illinois
- Division of cardiology, Chicago, Illinois
| | - Jayant Raikhelkar
- University of Chicago Medical Center, Chicago, Illinois
- Division of cardiology, Chicago, Illinois
| | - Sara Kalantari
- University of Chicago Medical Center, Chicago, Illinois
- Division of cardiology, Chicago, Illinois
| | - Nitasha Sarswat
- University of Chicago Medical Center, Chicago, Illinois
- Division of cardiology, Chicago, Illinois
| | - Sirtaz Adatya
- Kaiser Permanente Advanced Heart Failure, Santa Clara, California
| | - Takeyoshi Ota
- University of Chicago Medical Center, Chicago, Illinois
- Department of Surgery, Chicago, Illinois
| | - Valluvan Jeevanandam
- University of Chicago Medical Center, Chicago, Illinois
- Department of Surgery, Chicago, Illinois
| | - Victor Mor-Avi
- University of Chicago Medical Center, Chicago, Illinois
- Division of cardiology, Chicago, Illinois
| | - Roberto M. Lang
- University of Chicago Medical Center, Department of Medicine, Chicago, Illinois
| | - Nir Uriel
- University of Chicago Medical Center, Chicago, Illinois
- Division of cardiology, Chicago, Illinois
| |
Collapse
|
25
|
Dandel M, Hetzer R. Recovery of failing hearts by mechanical unloading: Pathophysiologic insights and clinical relevance. Am Heart J 2018; 206:30-50. [PMID: 30300847 DOI: 10.1016/j.ahj.2018.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 09/08/2018] [Indexed: 12/23/2022]
Abstract
By reduction of ventricular wall-tension and improving the blood supply to vital organs, ventricular assist devices (VADs) can eliminate the major pathophysiological stimuli for cardiac remodeling and even induce reverse remodeling occasionally accompanied by clinically relevant reversal of cardiac structural and functional alterations allowing VAD explantation, even if the underlying cause for the heart failure (HF) was dilated cardiomyopathy. Accordingly, a tempting potential indication for VADs in the future might be their elective implantation as a therapeutic strategy to promote cardiac recovery in earlier stages of HF, when the reversibility of morphological and functional alterations is higher. However, the low probability of clinically relevant cardiac improvement after VAD implantation and the lack of criteria which can predict recovery already before VAD implantation do not allow so far VAD implantations primarily designed as a bridge to cardiac recovery. The few investigations regarding myocardial reverse remodeling at cellular and sub-cellular level in recovered patients who underwent VAD explantation, the differences in HF etiology and pre-implant duration of HF in recovered patients and also the differences in medical therapy used by different institutions during VAD support make it currently impossible to understand sufficiently all the biological processes and mechanisms involved in cardiac improvement which allows even VAD explantation in some patients. This article aims to provide an overview of the existing knowledge about VAD-promoted cardiac improvement focusing on the importance of bench-to-bedside research which is mandatory for attaining the future goal to use long-term VADs also as therapy-devices for reversal of chronic HF.
Collapse
|
26
|
LVAD Pulsatility Assesses Cardiac Contractility: In Vitro Model Utilizing the Total Artificial Heart and Mock Circulation. ASAIO J 2018; 65:580-586. [PMID: 30074963 DOI: 10.1097/mat.0000000000000861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
There is a need for a consistent, reproducible, and cost-effective method of determining cardiac recovery in patients who receive emerging novel therapeutics for advanced and end-stage heart failure (HF). With the increasing use of ventricular assist devices (VADs) in end-stage HF, objective device diagnostics are available for analysis. Pulsatility, one of the accessible diagnostic measures, is a variable gage of the differential between peak systolic and minimum diastolic flow during a single cardiac cycle. Following implantation of the VAD, HeartWare's HVAD records pulsatility regularly. Thus, we hypothesize that this measurement relates to the contractility of the heart and could be utilized as a metric for determining patient response to various therapeutics. In this study, therefore, we develop a translatable and effective predictive model characterizing pulsatility to determine HF status and potential HF recovery using the SynCardia Total Artificial Heart (TAH) in conjunction with a Donovan Mock Circulation System to create a simulation platform for the collection of pulsatility data. We set the simulation platform to patient conditions ranging from critical heart failure to a normal operating condition through the variation preload, afterload, and left ventricular (LV) pumping force or TAH "contractility." By manipulating these variables, pulsatility was found to accurately indicate significant (p < 0.05) improvements in LV contractility at every recorded afterload and preload, suggesting that it is a valuable parameter for the assessment of cardiac recovery in patients.
Collapse
|
27
|
Sustained Cardiac Recovery Hinges on Timing and Natural History of Underlying Condition. Am J Med Sci 2018; 356:47-55. [DOI: 10.1016/j.amjms.2018.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 02/21/2018] [Indexed: 01/12/2023]
|
28
|
Clinical Implications of Physiologic Flow Adjustment in Continuous-Flow Left Ventricular Assist Devices. ASAIO J 2018; 63:241-250. [PMID: 28459742 DOI: 10.1097/mat.0000000000000477] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
There is increasing evidence for successful management of end-stage heart failure with continuous-flow left ventricular assist device (CF-LVAD) technology. However, passive flow adjustment at fixed CF-LVAD speed is susceptible to flow balancing issues as well as adverse hemodynamic effects relating to the diminished arterial pulse pressure and flow. With current therapy, flow cannot be adjusted with changes in venous return, which can vary significantly with volume status. This limits the performance and safety of CF-LVAD. Active flow adjustment strategies have been proposed to improve the synchrony between the pump and the native cardiovascular system, mimicking the Frank-Starling mechanism of the heart. These flow adjustment strategies include modulation by CF-LVAD pump speed by synchrony and maintenance of constant flow or constant pressure head, or a combination of these variables. However, none of these adjustment strategies have evolved sufficiently to gain widespread attention. Herein we review the current challenges and future directions of CF-LVAD therapy and sensor technology focusing on the development of a physiologic, long-term active flow adjustment strategy for CF-LVADs.
Collapse
|
29
|
Abstract
Advances in medical and device therapies have demonstrated the capacity of the heart to reverse the failing phenotype. The development of normative changes to ventricular size and function led to the concept of reverse remodelling. Among heart failure therapies, durable mechanical circulatory support is most consistently associated with the largest degree of reverse remodelling. Accordingly, research to analyse human tissue after a period of mechanical circulatory support continues to yield a wealth of information. In this Review, we summarize the latest findings on reverse remodelling and myocardial recovery. Accumulating evidence shows that the molecular changes associated with heart failure, in particular in the transcriptome, metabalome, and extracellular matrix, persist in the reverse-remodelled myocardium despite apparent normalization of macrolevel properties. Therefore, reverse remodelling should be distinguished from true myocardial recovery, in which a failing heart regains both normal function and molecular makeup. These findings have implications for future research to develop therapies to repair fully the failing myocardium. Meanwhile, recognition by society guidelines of this new clinical phenotype, which is coming to be known as a state of heart failure remission, underscores the need to accurately define and identify reverse modelled myocardium for the establishment of appropriate therapies.
Collapse
|
30
|
Heterotopic Abdominal Rat Heart Transplantation as a Model to Investigate Volume Dependency of Myocardial Remodeling. Transplantation 2017; 101:498-505. [PMID: 27906830 DOI: 10.1097/tp.0000000000001585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heterotopic abdominal rat heart transplantation has been extensively used to investigate ischemic-reperfusion injury, immunological consequences during heart transplantations and also to study remodeling of the myocardium due to volume unloading. We provide a unique review on the latter and present a summary of the experimental studies on rat heart transplantation to illustrate changes that occur to the myocardium due to volume unloading. We divided the literature based on whether normal or failing rat heart models were used. This analysis may provide a basis to understand the physiological effects of mechanical circulatory support therapy.
Collapse
|
31
|
Luo J, Chen X, Luo C, Lu G, Peng L, Gao X, Zuo Z. Hydrochlorothiazide modulates ischemic heart failure-induced cardiac remodeling via inhibiting angiotensin II type 1 receptor pathway in rats. Cardiovasc Ther 2017; 35. [PMID: 28039944 DOI: 10.1111/1755-5922.12246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS Our previous study indicates that hydrochlorothiazide inhibits transforming growth factor (TGF)-β/Smad signaling pathway, improves cardiac function and reduces fibrosis. We determined whether these effects were common among the diuretics and whether angiotensin II receptor type 1 (AT1) signaling pathway played a role in these effects. METHODS Heart failure was produced by ligating the left anterior descending coronary artery in adult male Sprague Dawley rats. Two weeks after the ligation, 70 rats were randomly divided into five groups: sham-operated group, control group, valsartan group (80 mg/kg/d), hydrochlorothiazide group (12.5 mg/kg/d) and furosemide group (20 mg/kg/d). In addition, neonatal rat ventricular fibroblasts were treated with angiotensin II. RESULTS After eight-week drug treatment, hydrochlorothiazide group and valsartan group but not furosemide group had improved cardiac function (ejection fraction was 49.4±2.1%, 49.5±1.8% and 39.9±1.9%, respectively, compared with 40.1±2.2% in control group), reduced cardiac interstitial fibrosis and collagen volume fraction (9.7±1.2%, 10.0±1.3% and 14.1±0.8%, respectively, compared with 15.9±1.1% in control group), and decreased expression of AT1, TGF-β and Smad2 in the cardiac tissues. In addition, hydrochlorothiazide reduced plasma angiotensin II and aldosterone levels. Furthermore, hydrochlorothiazide inhibited angiotensin II-induced TGF-β1 and Smad2 protein expression in the neonatal rat ventricular fibroblasts. CONCLUSIONS Our study indicates that the cardiac function and remodeling improvement after ischemic heart failure may not be common among the diuretics. Hydrochlorothiazide may reduce the left ventricular wall stress and angiotensin II signaling pathway to provide these beneficial effects.
Collapse
Affiliation(s)
- Jinghong Luo
- Department of Cardiology, First Affiliated Hospital, Zhong-Shan University, Guangzhou, China.,Department of Geriatrics, Huizhou Municipal Central Hospital, Guangdong, China
| | - Xuanlan Chen
- Department of Cardiology, First Affiliated Hospital, Zhong-Shan University, Guangzhou, China
| | - Chufan Luo
- Department of Cardiology, First Affiliated Hospital, Zhong-Shan University, Guangzhou, China
| | - Guihua Lu
- Department of Cardiology, First Affiliated Hospital, Zhong-Shan University, Guangzhou, China
| | - Longyun Peng
- Department of Cardiology, First Affiliated Hospital, Zhong-Shan University, Guangzhou, China
| | - Xiuren Gao
- Department of Cardiology, First Affiliated Hospital, Zhong-Shan University, Guangzhou, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
32
|
Ton VK, Vunjak-Novakovic G, Topkara VK. Transcriptional patterns of reverse remodeling with left ventricular assist devices: a consistent signature. Expert Rev Med Devices 2016; 13:1029-1034. [PMID: 27685648 DOI: 10.1080/17434440.2016.1243053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Left ventricular assist device (LVAD) therapy has revolutionized the treatment of patients with advanced heart failure. Although originally intended for bridge-to-transplantation and destination therapy indications, a small subset of patients supported with LVADs exhibit complete myocardial recovery leading to device explanation. However, genetic and molecular determinants of partial and/or complete myocardial recovery remain largely unknown. Areas covered: We summarize current knowledge on alterations in heart failure transcriptome in response to LVAD support, as well as discuss common gene signatures potentially responsible for the reverse remodeling phenotype in the failing human heart. Expert commentary: Reverse remodeling after LVAD is likely a continuum between fully and partially recovered myocardium. Multicenter cardiac tissue repositories linked with detailed phenotype information may facilitate identification of genetic signals responsible for myocardial recovery in LVAD supported patients in the foreseeable future.
Collapse
Affiliation(s)
- Van-Khue Ton
- a Division of Cardiology, Department of Medicine , Columbia University Medical Center , New York , NY , USA.,b Division of Cardiovascular Medicine, Department of Medicine , University of Maryland School of Medicine , Baltimore , MD , USA
| | | | - Veli K Topkara
- a Division of Cardiology, Department of Medicine , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
33
|
Thyagarajan B, Kumar MP, Sikachi RR, Agrawal A. Endocarditis in left ventricular assist device. Intractable Rare Dis Res 2016; 5:177-84. [PMID: 27672540 PMCID: PMC4995417 DOI: 10.5582/irdr.2016.01049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/28/2023] Open
Abstract
Heart failure is one of the leading causes of death in developed nations. End stage heart failure often requires cardiac transplantation for survival. The left ventricular assist device (LVAD) has been one of the biggest evolvements in heart failure management often serving as bridge to transplant or destination therapy in advanced heart failure. Like any other medical device, LVAD is associated with complications with infections being reported in many patients. Endocarditis developing secondary to the placement of LVAD is not a frequent, serious and difficult to treat condition with high morbidity and mortality. Currently, there are few retrospective studies and case reports reporting the same. In our review, we found the most common cause of endocarditis in LVAD was due to bacteria. Both bacterial and fungal endocarditis were associated with high morbidity and mortality. In this review we will be discussing the risk factors, organisms involved, diagnostic tests, management strategies, complications, and outcomes in patients who developed endocarditis secondary to LVAD placement.
Collapse
Affiliation(s)
| | | | - Rutuja R Sikachi
- Department of Anesthesiology, Lilavati Hospital and Research Center, Mumbai, India
| | - Abhinav Agrawal
- Department of Medicine, Monmouth Medical Center, Long Branch, New Jersey, USA
| |
Collapse
|
34
|
Chaggar PS, Williams SG, Yonan N, Fildes J, Venkateswaran R, Shaw SM. Myocardial recovery with mechanical circulatory support. Eur J Heart Fail 2016; 18:1220-1227. [DOI: 10.1002/ejhf.575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/24/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Affiliation(s)
- Parminder S. Chaggar
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
- The Manchester Collaborative Centre for Inflammation Research; University of Manchester; Manchester UK
| | - Simon G. Williams
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - Nizar Yonan
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - James Fildes
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
- The Manchester Collaborative Centre for Inflammation Research; University of Manchester; Manchester UK
| | - Rajamiyer Venkateswaran
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - Steven M. Shaw
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| |
Collapse
|
35
|
Rodrigues PG, Leite-Moreira AF, Falcão-Pires I. Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 2016; 310:H1402-22. [PMID: 26993225 DOI: 10.1152/ajpheart.00696.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions.
Collapse
Affiliation(s)
- Patrícia G Rodrigues
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Heckle MR, Flatt DM, Sun Y, Mancarella S, Marion TN, Gerling IC, Weber KT. Atrophied cardiomyocytes and their potential for rescue and recovery of ventricular function. Heart Fail Rev 2016; 21:191-8. [DOI: 10.1007/s10741-016-9535-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Fischer TH, Kleinwächter A, Herting J, Eiringhaus J, Hartmann N, Renner A, Gummert J, Haverich A, Schmitto JD, Sossalla S. Inhibition of CaMKII Attenuates Progressing Disruption of Ca2+Homeostasis Upon Left Ventricular Assist Device Implantation in Human Heart Failure. Artif Organs 2016; 40:719-26. [DOI: 10.1111/aor.12677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Thomas H. Fischer
- Department for Cardiology and Pulmonology; Georg-August University; Göttingen Germany
- German Center for Cardiovascular Research (DZHK); Göttingen Germany
| | - Astrid Kleinwächter
- Department for Cardiology and Pulmonology; Georg-August University; Göttingen Germany
| | - Jonas Herting
- Department for Cardiology and Pulmonology; Georg-August University; Göttingen Germany
- German Center for Cardiovascular Research (DZHK); Göttingen Germany
| | - Jörg Eiringhaus
- Department for Cardiology and Pulmonology; Georg-August University; Göttingen Germany
| | - Nico Hartmann
- Department for Cardiology and Pulmonology; Georg-August University; Göttingen Germany
- German Center for Cardiovascular Research (DZHK); Göttingen Germany
| | - André Renner
- Department for Heart and Transplantation Surgery; Heart Center; Bad Oeynhausen Germany
| | - Jan Gummert
- Department for Heart and Transplantation Surgery; Heart Center; Bad Oeynhausen Germany
| | - Axel Haverich
- Department for Thoracic and Heart Surgery; Medical University of Hannover; Hannover Germany
| | - Jan D. Schmitto
- Department for Thoracic and Heart Surgery; Medical University of Hannover; Hannover Germany
| | - Samuel Sossalla
- Department for Cardiology and Pulmonology; Georg-August University; Göttingen Germany
- German Center for Cardiovascular Research (DZHK); Göttingen Germany
- Department for Internal Medicine III, Cardiology, Angiology, and Intensive Care Medicine; University Medical Center; Kiel Germany
| |
Collapse
|
38
|
Castillero E, Akashi H, Pendrak K, Yerebakan H, Najjar M, Wang C, Naka Y, Mancini D, Sweeney HL, D Armiento J, Ali ZA, Schulze PC, George I. Attenuation of the unfolded protein response and endoplasmic reticulum stress after mechanical unloading in dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2015; 309:H459-70. [PMID: 26055788 DOI: 10.1152/ajpheart.00056.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/28/2015] [Indexed: 11/22/2022]
Abstract
Abnormal intracellular calcium (Ca(2+)) handling can trigger endoplasmic reticulum (ER) stress, leading to activation of the unfolded protein response (UPR) in an attempt to prevent cell death. Mechanical unloading with a left ventricular assist device (LVAD) relieves pressure-volume overload and promotes reverse remodeling of the failing myocardium. We hypothesized that mechanical unloading would alter the UPR in patients with advanced heart failure (HF). UPR was analyzed in paired myocardial tissue from 10 patients with dilated cardiomyopathy obtained during LVAD implantation and explantation. Samples from healthy hearts served as controls. Markers of UPR [binding immunoglobulin protein (BiP), phosphorylated (P-) eukaryotic initiation factor (eIF2α), and X-box binding protein (XBP1)] were significantly increased in HF, whereas LVAD support significantly decreased BiP, P-eIF2α, and XBP1s levels. Apoptosis as reflected by C/EBP homologous protein and DNA damage were also significantly reduced after LVAD support. Improvement in left ventricular dimensions positively correlated with P-eIF2α/eIF2α and apoptosis level recovery. Furthermore, significant dysregulation of calcium-handling proteins [P-ryanodine receptor, Ca(2+) storing protein calsequestrin, Na(+)-Ca(2+) exchanger, sarcoendoplasmic reticulum Ca(2+)-ATPase (SERCA2a), ER chaperone protein calreticulin] was normalized after LVAD support. Reduced ER Ca(2+) content as a causative mechanism for UPR was confirmed using AC16 cells treated with a calcium ionophore (A23187) and SERCA2a inhibitor (thapsigargin). UPR activation and apoptosis are reduced after mechanical unloading, which may be mediated by the improvement of Ca(2+) handling in patients with advanced HF. These changes may impact the potential for myocardial recovery.
Collapse
Affiliation(s)
- Estibaliz Castillero
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York
| | - Hirokazu Akashi
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York
| | - Klara Pendrak
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Halit Yerebakan
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York
| | - Marc Najjar
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York
| | - Catherine Wang
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York
| | - Yoshifumi Naka
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York
| | - Donna Mancini
- Division of Cardiology, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - H Lee Sweeney
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeanine D Armiento
- Department of Anesthesiology, Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Ziad A Ali
- Division of Cardiology, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - P Christian Schulze
- Division of Cardiology, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York; and
| | - Isaac George
- Division of Cardiothoracic Surgery, New York Presbyterian Hospital - College of Physicians and Surgeons of Columbia University, New York, New York;
| |
Collapse
|
39
|
Weia BC, Adachi I, Jacot JG. Clinical and Molecular Comparison of Pediatric and Adult Reverse Remodeling With Ventricular Assist Devices. Artif Organs 2015; 39:691-700. [DOI: 10.1111/aor.12451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Iki Adachi
- Congenital Heart Surgery; Texas Children's Hospital; Houston TX USA
- Michael E. DeBakey Department of Surgery; Baylor College of Medicine; Texas Medical Center; Houston TX USA
| | - Jeffrey G. Jacot
- Department of Bioengineering; Rice University; Houston TX USA
- Congenital Heart Surgery; Texas Children's Hospital; Houston TX USA
| |
Collapse
|
40
|
Arkolaki EG, Simantirakis EN, Kontaraki JE, Chrysostomakis SI, Patrianakos AP, Chlouverakis GI, Nakou ES, Vardas PE. Alterations in the expression of genes related to contractile function and hypertrophy of the left ventricle in chronically paced patients from the right ventricular apex. Europace 2015; 17:1563-70. [PMID: 25851726 DOI: 10.1093/europace/euv071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/27/2015] [Indexed: 12/16/2022] Open
Abstract
AIM Long-term right ventricular apical (RVA) pacing may lead to left ventricular (LV) remodelling and heart failure. This study assessed changes in the expression of genes regulating LV contractile function and hypertrophy, after permanent RVA pacing and investigated whether such changes proceed or even predict LV remodelling. METHODS AND RESULTS We enrolled 52 consecutive patients (age 79.1 ± 7.7 years, 34 males) who underwent pacemaker implantation for bradycardic indications: Group A, 24 individuals with atrioventricular conduction disturbances and group B, 28 patients with sinus node disease. In group A, peripheral blood mRNA levels of gene sarcoplasmic reticulum calcium ATPase decreased at 3, 6, and 12 months' follow-up, while α-myosin heavy chain (MHC) decreased and β-MHC increased until 6 months follow-up. In this group, 25% of patients demonstrated significant LV remodelling. At 4 years, LV end-systolic diameter increased from 29.67 ± 3.39 mm at baseline to 35.38 ± 4.22 mm, LV end-diastolic diameter increased from 50 ± 4.95 to 56.71 ± 5.52 mm, and ejection fraction declined from 63.04 ± 10.22 to 52.83 ± 10.81%. Early alterations in gene expression were associated with a deterioration in LV function and geometry that became apparent months later. In group B, echocardiographic indexes and mRNA levels of the evaluated genes demonstrated no statistically significant changes. CONCLUSIONS Permanent RVA pacing in patients with preserved ejection fraction is associated with alterations in the expression of genes regulating LV contractile function and hypertrophy, measured in the peripheral blood. These alterations are traceable at an early stage, before echocardiographic changes are apparent and are associated with LV remodelling that becomes evident in the long term.
Collapse
Affiliation(s)
- Eva G Arkolaki
- University Hospital of Heraklion, PO box 1352, Stavrakia, Heraklion Crete, Greece
| | | | | | | | | | | | - Eleni S Nakou
- University Hospital of Heraklion, PO box 1352, Stavrakia, Heraklion Crete, Greece
| | - Panos E Vardas
- University Hospital of Heraklion, PO box 1352, Stavrakia, Heraklion Crete, Greece
| |
Collapse
|
41
|
Sardu C, Marfella R, Santulli G, Paolisso G. Functional role of miRNA in cardiac resynchronization therapy. Pharmacogenomics 2015; 15:1159-68. [PMID: 25084208 DOI: 10.2217/pgs.14.76] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Heart failure (HF) disease progression is related to numerous adaptive processes including cardiac fibrosis, hypertrophy and apoptosis by activation of the 'fetal' gene program and downregulation of mRNA signatures, suggesting the importance of molecular mechanisms that suppress mRNA steady-state levels. miRNAs (miRs) are small, noncoding RNAs that bind mRNAs at their 3'-UTRs, leading to mRNA degradation or inhibition of protein translation. Several miRs are unregulated in response to cellular stress and can modify cellular functions such as proliferation, differentiation and programmed death; these miRs are also regulated in cardiac disease. Cardiac resynchronization therapy improves cardiac performance and myocardial mechanical efficiency. In this updated critical appraisal we report on the main miRs that play a key role in response to cardiac resynchronization therapy (i.e., responder vs nonresponder HF patients), focusing on the miR-mediated modulation of cardiac angiogenesis, apoptosis, fibrosis and membrane ionic currents.
Collapse
Affiliation(s)
- Celestino Sardu
- Department of Medical, Surgical, Neurological, Metabolic & Geriatric Sciences, Second University of Naples, Piazza Miraglia, 2, 80138, Naples, Italy
| | | | | | | |
Collapse
|
42
|
Large stem cell-derived cardiomyocyte grafts: cellular ventricular assist devices? Mol Ther 2015; 22:1240-1242. [PMID: 24981440 DOI: 10.1038/mt.2014.97] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
43
|
Zheng L, Han P, Liu J, Li R, Yin W, Wang T, Zhang W, Kang YJ. Role of copper in regression of cardiac hypertrophy. Pharmacol Ther 2014; 148:66-84. [PMID: 25476109 DOI: 10.1016/j.pharmthera.2014.11.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 11/17/2014] [Indexed: 02/07/2023]
Abstract
Pressure overload causes an accumulation of homocysteine in the heart, which is accompanied by copper depletion through the formation of copper-homocysteine complexes and the excretion of the complexes. Copper supplementation recovers cytochrome c oxidase (CCO) activity and promotes myocardial angiogenesis, along with the regression of cardiac hypertrophy and the recovery of cardiac contractile function. Increased copper availability is responsible for the recovery of CCO activity. Copper promoted expression of angiogenesis factors including vascular endothelial growth factor (VEGF) in endothelial cells is responsible for angiogenesis. VEGF receptor-2 (VEGFR-2) is critical for hypertrophic growth of cardiomyocytes and VEGFR-1 is essential for the regression of cardiomyocyte hypertrophy. Copper, through promoting VEGF production and suppressing VEGFR-2, switches the VEGF signaling pathway from VEGFR-2-dependent to VEGFR-1-dependent, leading to the regression of cardiomyocyte hypertrophy. Copper is also required for hypoxia-inducible factor-1 (HIF-1) transcriptional activity, acting on the interaction between HIF-1 and the hypoxia responsible element and the formation of HIF-1 transcriptional complex by inhibiting the factor inhibiting HIF-1. Therefore, therapeutic targets for copper supplementation-induced regression of cardiac hypertrophy include: (1) the recovery of copper availability for CCO and other critical cellular events; (2) the activation of HIF-1 transcriptional complex leading to the promotion of angiogenesis in the endothelial cells by VEGF and other factors; (3) the activation of VEGFR-1-dependent regression signaling pathway in the cardiomyocytes; and (4) the inhibition of VEGFR-2 through post-translational regulation in the hypertrophic cardiomyocytes. Future studies should focus on target-specific delivery of copper for the development of clinical application.
Collapse
Affiliation(s)
- Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Pengfei Han
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaming Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Rui Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wen Yin
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tao Wang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Wenjing Zhang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
44
|
Jhun CS, Sun K, Cysyk JP. Continuous flow left ventricular pump support and its effect on regional left ventricular wall stress: finite element analysis study. Med Biol Eng Comput 2014; 52:1031-40. [PMID: 25284220 DOI: 10.1007/s11517-014-1205-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/22/2014] [Indexed: 11/25/2022]
Abstract
Left ventricular assist device (LVAD) support unloads left ventricular (LV) pressure and volume and decreases wall stress. This study investigated the effect of systematic LVAD unloading on the 3-dimensional myocardial wall stress by employing finite element models containing layered fiber structure, active contractility, and passive stiffness. The HeartMate II(®) (Thoratec, Inc., Pleasanton, CA) was used for LV unloading. The model geometries and hemodynamic conditions for baseline (BL) and LVAD support (LVsupport) were acquired from the Penn State mock circulatory cardiac simulator. Myocardial wall stress of BL was compared with that of LVsupport at 8,000, 9,000, 10,000 RPM, providing mean pump flow (Q(mean)) of 2.6, 3.2, and 3.7 l/min, respectively. LVAD support was more effective at unloading during diastole as compared to systole. Approximately 40, 50, and 60% of end-diastolic wall stress reduction were achieved at Q(mean) of 2.6, 3.2, and 3.7 l/min, respectively, as compared to only a 10% reduction of end-systolic wall stress at Q(mean) of 3.7 l/min. In addition, there was a stress concentration during systole at the apex due to the cannulation and reduced boundary motion. This modeling study can be used to further understand optimal unloading, pump control, patient management, and cannula design.
Collapse
Affiliation(s)
- Choon-Sik Jhun
- Division of Artificial Organs, Department of Surgery, College of Medicine, The Pennsylvania State University, 500 University Drive, Hershey, PA, 17033, USA,
| | | | | |
Collapse
|
45
|
Navaratnarajah M, Siedlecka U, Ibrahim M, van Doorn C, Soppa G, Gandhi A, Shah A, Kukadia P, Yacoub MH, Terracciano CM. Impact of combined clenbuterol and metoprolol therapy on reverse remodelling during mechanical unloading. PLoS One 2014; 9:e92909. [PMID: 25268495 PMCID: PMC4181979 DOI: 10.1371/journal.pone.0092909] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/26/2014] [Indexed: 01/19/2023] Open
Abstract
Background Clenbuterol (Cl), a β2 agonist, is associated with enhanced myocardial recovery during left ventricular assist device (LVAD) support, and exerts beneficial remodelling effects during mechanical unloading (MU) in rodent heart failure (HF). However, the specific effects of combined Cl+β1 blockade during MU are unknown. Methods and Results We studied the chronic effects (4 weeks) of β2-adrenoceptor (AR) stimulation via Cl (2 mg/kg/day) alone, and in combination with β1-AR blockade using metoprolol ((Met), 250 mg/kg/day), on whole heart/cell structure, function and excitation-contraction (EC) coupling in failing (induced by left coronary artery (LCA) ligation), and unloaded (induced by heterotopic abdominal heart transplantation (HATx)) failing rat hearts. Combined Cl+Met therapy displayed favourable effects in HF: Met enhanced Cl's improvement in ejection fraction (EF) whilst preventing Cl-induced hypertrophy and tachycardia. During MU combined therapy was less beneficial than either mono-therapy. Met, not Cl, prevented MU-induced myocardial atrophy, with increased atrophy occurring during combined therapy. MU-induced recovery of Ca2+ transient amplitude, speed of Ca2+ release and sarcoplasmic reticulum Ca2+ content was enhanced equally by Cl or Met mono-therapy, but these benefits, together with Cl's enhancement of sarcomeric contraction speed, and MU-induced recovery of Ca2+ spark frequency, disappeared during combined therapy. Conclusions Combined Cl+Met therapy shows superior functional effects to mono-therapy in rodent HF, but appears inferior to either mono-therapy in enhancing MU-induced recovery of EC coupling. These results suggest that combined β2-AR simulation +β1-AR blockade therapy is likely to be a safe and beneficial therapeutic HF strategy, but is not as effective as mono-therapy in enhancing myocardial recovery during LVAD support.
Collapse
Affiliation(s)
- Manoraj Navaratnarajah
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
- * E-mail:
| | - Urszula Siedlecka
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| | - Michael Ibrahim
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| | - Carin van Doorn
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| | - Gopal Soppa
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| | - Ajay Gandhi
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| | - Adarsh Shah
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| | - Punam Kukadia
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| | - Magdi H. Yacoub
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| | - Cesare M. Terracciano
- Harefield Heart Science Centre, Imperial College London, National Heart and Lung Institute, Laboratory of Cellular Electrophysiology, Harefield Hospital, Harefield, Middlesex, United Kingdom
| |
Collapse
|
46
|
Segura AM, Dris L, Massin EK, Clubb FJ, Buja LM, Frazier OH, Taegtmeyer H. Heart failure in remission for more than 13 years after removal of a left ventricular assist device. Tex Heart Inst J 2014; 41:389-94. [PMID: 25120391 DOI: 10.14503/thij-13-4029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mechanical cardiac unloading with use of a left ventricular assist device (LVAD) is associated with substantial improvements in left ventricular function and enables subsequent LVAD explantation in some patients. We describe the case of a 35-year-old man with dilated nonischemic cardiomyopathy who was supported with an LVAD for 9 months. After the device was removed, he led a normal life for 13 years and 4 months. However, at 49 years of age, he presented with new signs and symptoms of heart failure, necessitating implantation of a 2nd LVAD. Afterwards, he has remained asymptomatic. This case is unique in that the patient lived a normal life for longer than a decade before renewed left ventricular decompensation necessitated repeat LVAD therapy. Histologic examination revealed few changes between the first device's removal in 1999 and the 2nd device's implantation in 2012.
Collapse
Affiliation(s)
- Ana Maria Segura
- Departments of Cardiovascular Pathology (Drs. Buja, Clubb, and Segura) and Cardiopulmonary Transplantation (Drs. Frazier, Massin, and Taegtmeyer), Texas Heart Institute; and Departments of Internal Medicine (Drs. Dris and Taegtmeyer) and Pathology and Laboratory Medicine (Dr. Buja), The University of Texas Medical School at Houston; Houston, Texas 77030
| | - Lamia Dris
- Departments of Cardiovascular Pathology (Drs. Buja, Clubb, and Segura) and Cardiopulmonary Transplantation (Drs. Frazier, Massin, and Taegtmeyer), Texas Heart Institute; and Departments of Internal Medicine (Drs. Dris and Taegtmeyer) and Pathology and Laboratory Medicine (Dr. Buja), The University of Texas Medical School at Houston; Houston, Texas 77030
| | - Edward K Massin
- Departments of Cardiovascular Pathology (Drs. Buja, Clubb, and Segura) and Cardiopulmonary Transplantation (Drs. Frazier, Massin, and Taegtmeyer), Texas Heart Institute; and Departments of Internal Medicine (Drs. Dris and Taegtmeyer) and Pathology and Laboratory Medicine (Dr. Buja), The University of Texas Medical School at Houston; Houston, Texas 77030
| | - Fred J Clubb
- Departments of Cardiovascular Pathology (Drs. Buja, Clubb, and Segura) and Cardiopulmonary Transplantation (Drs. Frazier, Massin, and Taegtmeyer), Texas Heart Institute; and Departments of Internal Medicine (Drs. Dris and Taegtmeyer) and Pathology and Laboratory Medicine (Dr. Buja), The University of Texas Medical School at Houston; Houston, Texas 77030
| | - L Maximilian Buja
- Departments of Cardiovascular Pathology (Drs. Buja, Clubb, and Segura) and Cardiopulmonary Transplantation (Drs. Frazier, Massin, and Taegtmeyer), Texas Heart Institute; and Departments of Internal Medicine (Drs. Dris and Taegtmeyer) and Pathology and Laboratory Medicine (Dr. Buja), The University of Texas Medical School at Houston; Houston, Texas 77030
| | - O H Frazier
- Departments of Cardiovascular Pathology (Drs. Buja, Clubb, and Segura) and Cardiopulmonary Transplantation (Drs. Frazier, Massin, and Taegtmeyer), Texas Heart Institute; and Departments of Internal Medicine (Drs. Dris and Taegtmeyer) and Pathology and Laboratory Medicine (Dr. Buja), The University of Texas Medical School at Houston; Houston, Texas 77030
| | - Heinrich Taegtmeyer
- Departments of Cardiovascular Pathology (Drs. Buja, Clubb, and Segura) and Cardiopulmonary Transplantation (Drs. Frazier, Massin, and Taegtmeyer), Texas Heart Institute; and Departments of Internal Medicine (Drs. Dris and Taegtmeyer) and Pathology and Laboratory Medicine (Dr. Buja), The University of Texas Medical School at Houston; Houston, Texas 77030
| |
Collapse
|
47
|
Bennett MK, Sweet WE, Baicker-McKee S, Looney E, Karohl K, Mountis M, Tang WHW, Starling RC, Moravec CS. S100A1 in human heart failure: lack of recovery following left ventricular assist device support. Circ Heart Fail 2014; 7:612-8. [PMID: 24842913 PMCID: PMC4102621 DOI: 10.1161/circheartfailure.113.000849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND We hypothesized that S100A1 is regulated during human hypertrophy and heart failure and that it may be implicated in remodeling after left ventricular assist device. S100A1 is decreased in animal and human heart failure, and restoration produces functional recovery in animal models and in failing human myocytes. With the potential for gene therapy, it is important to carefully explore human cardiac S100A1 regulation and its role in remodeling. METHODS AND RESULTS We measured S100A1, the sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, phospholamban, and ryanodine receptor proteins, as well as β-adrenergic receptor density in nonfailing, hypertrophied (left ventricular hypertrophy), failing, and failing left ventricular assist device-supported hearts. We determined functional consequences of protein alterations in isolated contracting muscles from the same hearts. S100A1, sarcoplasmic endoplasmic reticulum Ca(2+)ATPase and phospholamban were normal in left ventricular hypertrophy, but decreased in failing hearts, while ryanodine receptor was unchanged in either group. Baseline muscle contraction was not altered in left ventricular hypertrophy or failing hearts. β-Adrenergic receptor and inotropic response were decreased in failing hearts. In failing left ventricular assist device-supported hearts, S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase showed no recovery, while phospholamban, β-adrenergic receptor, and the inotropic response fully recovered. CONCLUSIONS S100A1 and sarcoplasmic endoplasmic reticulum Ca(2+)ATPase, both key Ca(2+)-regulatory proteins, are decreased in human heart failure, and these changes are not reversed after left ventricular assist device. The clinical significance of these findings for cardiac recovery remains to be addressed.
Collapse
Affiliation(s)
- Mosi K Bennett
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Wendy E Sweet
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Sara Baicker-McKee
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Elizabeth Looney
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Kristen Karohl
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Maria Mountis
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - W H Wilson Tang
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Randall C Starling
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH
| | - Christine S Moravec
- From the Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland Clinic, OH.
| |
Collapse
|
48
|
Liem DA, Nsair A, Setty SP, Cadeiras M, Wang D, Maclellan R, Lotz C, Lin AJ, Tabaraki J, Li H, Ge J, Odeberg J, Ponten F, Larson E, Mulder J, Lundberg E, Weiss JN, Uhlen M, Ping P, Deng MC. Molecular- and organelle-based predictive paradigm underlying recovery by left ventricular assist device support. Circ Heart Fail 2014; 7:359-66. [PMID: 24643888 DOI: 10.1161/circheartfailure.113.000250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Pokorný M, Cervenka L, Netuka I, Pirk J, Koňařík M, Malý J. Ventricular assist devices in heart failure: how to support the heart but prevent atrophy? Physiol Res 2014; 63:147-56. [PMID: 24779607 DOI: 10.33549/physiolres.932617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ventricular assist devices (VAD) have recently established themselves as an irreplaceable therapeutic modality of terminal heart failure. Because of the worldwide shortage of donors, ventricular assist devices play a key role in modern heart failure therapy. Some clinical data have revealed the possibility of cardiac recovery during VAD application. On the other hand, both clinical and experimental studies indicate the risk of the cardiac atrophy development, especially after prolonged mechanical unloading. Little is known about the specific mechanisms governing the unloading-induced cardiac atrophy and about the exact ultrastructural changes in cardiomyocytes, and even less is known about the ways in which possible therapeutical interventions may affect heart atrophy. One aim of this review was to present important aspects of the development of VAD-related cardiac atrophy in humans and we also review the most significant observations linking clinical data and those derived from studies using experimental models. The focus of this article was to review current methods applied to alleviate cardiac atrophy which follows mechanical unloading of the heart. Out of many pharmacological agents studied, only the selective beta2 agonist clenbuterol has been proved to have a significantly beneficial effect on unloading-induced atrophy. Mechanical means of atrophy alleviation also seem to be effective and promising.
Collapse
Affiliation(s)
- M Pokorný
- Department of Cardiovascular Surgery, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
50
|
Cordero-Reyes AM, Youker K, Estep JD, Torre-Amione G, Nagueh SF. Molecular and Cellular Correlates of Cardiac Function in End-Stage DCM. JACC Cardiovasc Imaging 2014; 7:441-52. [DOI: 10.1016/j.jcmg.2013.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 11/26/2022]
|