1
|
Kawamata H, Yanishi K, Yoshimura J, Ozawa T, Goto D, Hori Y, Fujioka A, Shoji K, Yukawa A, Matoba S. Prognostic Factors After Bone Marrow-Derived Mononuclear Cell Implantation in No-Option Chronic Limb-Threatening Ischemia Patients with Atherosclerotic Lower Extremity Artery Disease. Int Heart J 2025; 66:96-105. [PMID: 39894555 DOI: 10.1536/ihj.24-440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Previous studies have reported the efficacy and safety of therapeutic angiogenesis through bone marrow-derived mononuclear cell (BM-MNC) implantation in patients with no-option chronic limb-threatening ischemia (CLTI) from atherosclerotic lower extremity artery disease (LEAD). However, uncertain clinical prognostic factors impact treatment outcomes. This study aimed to elucidate the long-term outcomes of patients with atherosclerotic LEAD-derived no-option CLTI after BM-MNC implantation and to identify prognostic factors.In this retrospective, single-center, observational study, the primary endpoints included the long-term prognosis of BM-MNC implantation and factors influencing 1-year outcomes. A total of 92 limbs in 84 patients were analyzed in the final cohort (mean age: 67 years; male, 65%). The 5- and 10-year overall survival rates were 50.0% and 31.0%, respectively, while the 5- and 10-year amputation-free survival rates were 37.6% and 23.3%, respectively. Multivariate logistic analysis linked all-cause mortality to age ≥ 70 years, hemodialysis, smoking, and a controlling nutrition status score ≥ 5. Major amputation or mortality was associated with male sex, hemodialysis, and C-reactive protein levels ≥ 3.0 mg/dL. No adverse events were associated with therapeutic angiogenesis.These findings endorse the feasibility and safety of BM-MNC implantation for patients with no-option CLTI due to atherosclerotic LEAD. Moreover, the study highlights the significance of several prognostic factors, including advanced age, hemodialysis, smoking, and inflammatory markers, in influencing the long-term outcomes of this treatment.
Collapse
Affiliation(s)
- Hirofumi Kawamata
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Kenji Yanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Jun Yoshimura
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Takaaki Ozawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Daiki Goto
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Yusuke Hori
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Ayumu Fujioka
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Keisuke Shoji
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Arito Yukawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| |
Collapse
|
2
|
Song H, Hao D, Zhou J, Farmer D, Wang A. Development of pro-angiogenic skin substitutes for wound healing. Wound Repair Regen 2024; 32:208-216. [PMID: 38308588 DOI: 10.1111/wrr.13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/12/2023] [Indexed: 02/05/2024]
Abstract
Wounds pose significant challenges to public health, primarily due to the loss of the mechanical integrity and barrier function of the skin and impaired angiogenesis, causing physical morbidities and psychological trauma to affect patients. Reconstructing the vasculature of the wound bed is crucial for promoting wound healing, reducing scar formation and enhancing the quality of life for patients. The development of pro-angiogenic skin substitutes has emerged as a promising strategy to facilitate vascularization and expedite the healing process of burn wounds. This review provides an overview of the various types of skin substitutes employed in wound healing, explicitly emphasising those designed to enhance angiogenesis. Synthetic scaffolds, biological matrices and tissue-engineered constructs incorporating stem cells and primary cells, cell-derived extracellular vesicles (EVs), pro-angiogenic growth factors and peptides, as well as gene therapy-based skin substitutes are thoroughly examined. The review summarises the existing challenges, future directions and potential innovations in pro-angiogenic dressing for skin substitutes. It highlights the need for continued research to develop new technologies and combine multiple strategies and factors, and to overcome obstacles and advance the field, ultimately leading to improved outcomes for wound patients.
Collapse
Affiliation(s)
- Hengyue Song
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Dake Hao
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Diana Farmer
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
| | - Aijun Wang
- Center for Surgical Bioengineering, Department of Surgery, UC Davis Health, Sacramento, California, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Biomedical Engineering, UC Davis, Davis, California, USA
| |
Collapse
|
3
|
Moazzami B, Mohammadpour Z, Zabala ZE, Farokhi E, Roohi A, Dolmatova E, Moazzami K. Local intramuscular transplantation of autologous bone marrow mononuclear cells for critical lower limb ischaemia. Cochrane Database Syst Rev 2022; 7:CD008347. [PMID: 35802393 PMCID: PMC9266992 DOI: 10.1002/14651858.cd008347.pub4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Peripheral arterial disease is a major health problem, and in about 1% to 2% of patients, the disease progresses to critical limb ischaemia (CLI), also known as critical limb-threatening ischaemia. In a substantial number of individuals with CLI, no effective treatment options other than amputation are available, with around a quarter of these patients requiring a major amputation during the following year. This is the second update of a review first published in 2011. OBJECTIVES To evaluate the benefits and harms of local intramuscular transplantation of autologous adult bone marrow mononuclear cells (BMMNCs) as a treatment for CLI. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 8 November 2021. SELECTION CRITERIA We included all randomised controlled trials (RCTs) of CLI in which participants were randomly allocated to intramuscular administration of autologous adult BMMNCs or control (either no intervention, conventional conservative therapy, or placebo). DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes of interest were all-cause mortality, pain, and amputation. Our secondary outcomes were angiographic analysis, ankle-brachial index (ABI), pain-free walking distance, side effects and complications. We assessed the certainty of the evidence using the GRADE approach. MAIN RESULTS We included four RCTs involving a total of 176 participants with a clinical diagnosis of CLI. Participants were randomised to receive either intramuscular cell implantation of BMMNCs or control. The control arms varied between studies, and included conventional therapy, diluted autologous peripheral blood, and saline. There was no clear evidence of an effect on mortality related to the administration of BMMNCs compared to control (risk ratio (RR) 1.00, 95% confidence interval (CI) 0.15 to 6.63; 3 studies, 123 participants; very low-certainty evidence). All trials assessed changes in pain severity, but the trials used different forms of pain assessment tools, so we were unable to pool data. Three studies individually reported that no differences in pain reduction were observed between the BMMNC and control groups. One study reported that reduction in rest pain was greater in the BMMNC group compared to the control group (very low-certainty evidence). All four trials reported the rate of amputation at the end of the study period. We are uncertain if amputations were reduced in the BMMNC group compared to the control group, as a possible small effect (RR 0.52, 95% CI 0.27 to 0.99; 4 studies, 176 participants; very low-certainty evidence) was lost after undertaking sensitivity analysis (RR 0.52, 95% CI 0.19 to 1.39; 2 studies, 89 participants). None of the included studies reported any angiographic analysis. Ankle-brachial index was reported differently by each study, so we were not able to pool the data. Three studies reported no changes between groups, and one study reported greater improvement in ABI (as haemodynamic improvement) in the BMMNC group compared to the control group (very low-certainty evidence). One study reported pain-free walking distance, finding no clear difference between BMMNC and control groups (low-certainty evidence). We pooled the data for side effects reported during the follow-up, and this did not show any clear difference between BMMNC and control groups (RR 2.13, 95% CI 0.50 to 8.97; 4 studies, 176 participants; very low-certainty evidence). We downgraded the certainty of the evidence due to the concerns about risk of bias, imprecision, and inconsistency. AUTHORS' CONCLUSIONS We identified a small number of studies that met our inclusion criteria, and these differed in the controls they used and how they measured important outcomes. Limited data from these trials provide very low- to low-certainty evidence, and we are unable to draw conclusions to support the use of local intramuscular transplantation of BMMNC for improving clinical outcomes in people with CLI. Evidence from larger RCTs is needed in order to provide adequate statistical power to assess the role of this procedure.
Collapse
Affiliation(s)
- Bobak Moazzami
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zinat Mohammadpour
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Zohyra E Zabala
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ermia Farokhi
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aria Roohi
- Division of Angiology and Hemostasis, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Elena Dolmatova
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kasra Moazzami
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Implantation of Hypoxia-Induced Mesenchymal Stem Cell Advances Therapeutic Angiogenesis. Stem Cells Int 2022; 2022:6795274. [PMID: 35355589 PMCID: PMC8958070 DOI: 10.1155/2022/6795274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Hypoxia preconditioning enhances the paracrine abilities of mesenchymal stem cells (MSCs) for vascular regeneration and tissue healing. Implantation of hypoxia-induced mesenchymal stem cells (hi-MSCs) may further improve limb perfusion in a murine model of hindlimb ischemia. This study is aimed at determining whether implantation of hi-MSCs is an effective modality for improving outcomes of treatment of ischemic artery diseases. We evaluated the effects of human bone marrow-derived MSC implantation on limb blood flow in an ischemic hindlimb model. hi-MSCs were prepared by cell culture under 1% oxygen for 24 hours prior to implantation. A total of 1 × 105 MSCs and hi-MSCs and phosphate-buffered saline (PBS) were intramuscularly implanted into ischemic muscles at 36 hours after surgery. Restoration of blood flow and muscle perfusion was evaluated by laser Doppler perfusion imaging. Blood perfusion recovery, enhanced vessel densities, and improvement of function of the ischemia limb were significantly greater in the hi-MSC group than in the MSC or PBS group. Immunochemistry revealed that hi-MSCs had higher expression levels of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor A than those in MSCs. In addition, an endothelial cell-inducing medium showed high expression levels of vascular endothelial growth factor, platelet endothelial cell adhesion molecule-1, and von Willebrand factor in hi-MSCs compared to those in MSCs. These findings suggest that pretreatment of MSCs with a hypoxia condition and implantation of hi-MSCs advances neovascularization capability with enhanced therapeutic angiogenic effects in a murine hindlimb ischemia model.
Collapse
|
5
|
Yoshimi R, Nakajima H. Current State and Issues of Regenerative Medicine for Rheumatic Diseases. Front Med (Lausanne) 2022; 9:813952. [PMID: 35155499 PMCID: PMC8831787 DOI: 10.3389/fmed.2022.813952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The prognosis of rheumatic diseases is generally better than that of malignant diseases. However, some cases with poor prognoses resist conventional therapies and cause irreversible functional and organ damage. In recent years, there has been much research on regenerative medicine, which uses stem cells to restore the function of missing or dysfunctional tissues and organs. The development of regenerative medicine is also being attempted in rheumatic diseases. In diseases such as systemic sclerosis (SSc), systemic lupus erythematosus (SLE), and rheumatoid arthritis, hematopoietic stem cell transplantation has been attempted to correct and reconstruct abnormalities in the immune system. Mesenchymal stem cells (MSCs) have also been tried for the treatment of refractory skin ulcers in SSc using the ability of MSCs to differentiate into vascular endothelial cells and for the treatment of systemic lupus erythematosus SLE using the immunosuppressive effect of MSCs. CD34-positive endothelial progenitor cells (EPCs), which are found in the mononuclear cell fraction of bone marrow and peripheral blood, can differentiate into vascular endothelial cells at the site of ischemia. Therefore, EPCs have been used in research on vascular regeneration therapy for patients with severe lower limb ischemia caused by rheumatic diseases such as SSc. Since the first report of induced pluripotent stem cells (iPSCs) in 2007, research on regenerative medicine using iPSCs has been actively conducted, and their application to rheumatic diseases is expected. However, there are many safety issues and bioethical issues involved in regenerative medicine research, and it is essential to resolve these issues for practical application and spread of regenerative medicine in the future. The environment surrounding regenerative medicine research is changing drastically, and the required expertise is becoming higher. This paper outlines the current status and challenges of regenerative medicine in rheumatic diseases.
Collapse
|
6
|
Higashi Y, Yusoff FM, Kishimoto S, Maruhashi T. Regenerative medicine for radiation emergencies. JOURNAL OF RADIATION RESEARCH 2021; 62:i21-i29. [PMID: 33978185 PMCID: PMC8114226 DOI: 10.1093/jrr/rraa091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 05/12/2023]
Abstract
Hiroshima University is a 'medical institution for tertiary radiation emergencies' and a 'medical support organization as a part of the International Atomic Emergency Agency Emergency Preparedness Response-Response and Assistance Network (IAEA EPR-RANET)'. To establish a system of regenerative medicine for radiation emergencies with treatment by implantation of various types of cells derived from induced pluripotent stem (iPS) cells, it is necessary to establish methods of defense against and treatment for radiation-induced damage from nuclear power plant accidents and nuclear terrorism. It is also necessary to develop cell therapy, cellular repair technology and regenerative biotechnology as regenerative medicine for radiation emergencies. Such applications have not been established yet. To develop a regenerative medical system, by using the existing one, for radiation emergencies, we will attempt to manage the cell-processing center to establish a safe and secured iPS cell bank for radiation medicine. By using this iPS cell bank as the central leverage, we will develop an education program for radiation emergency medicine and construct a network of regenerative medicine for radiation emergency medicine.
Collapse
Affiliation(s)
- Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Japan
- Corresponding author. Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan. Tel: +81-82-257-5831; Fax: +81-82-257-5831;
| | - Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan
| |
Collapse
|
7
|
Current Status of Angiogenic Cell Therapy and Related Strategies Applied in Critical Limb Ischemia. Int J Mol Sci 2021; 22:ijms22052335. [PMID: 33652743 PMCID: PMC7956816 DOI: 10.3390/ijms22052335] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Critical limb ischemia (CLI) constitutes the most severe form of peripheral arterial disease (PAD), it is characterized by progressive blockade of arterial vessels, commonly correlated to atherosclerosis. Currently, revascularization strategies (bypass grafting, angioplasty) remain the first option for CLI patients, although less than 45% of them are eligible for surgical intervention mainly due to associated comorbidities. Moreover, patients usually require amputation in the short-term. Angiogenic cell therapy has arisen as a promising alternative for these "no-option" patients, with many studies demonstrating the potential of stem cells to enhance revascularization by promoting vessel formation and blood flow recovery in ischemic tissues. Herein, we provide an overview of studies focused on the use of angiogenic cell therapies in CLI in the last years, from approaches testing different cell types in animal/pre-clinical models of CLI, to the clinical trials currently under evaluation. Furthermore, recent alternatives related to stem cell therapies such as the use of secretomes, exosomes, or even microRNA, will be also described.
Collapse
|
8
|
Du F, Wang Q, Ouyang L, Wu H, Yang Z, Fu X, Liu X, Yan L, Cao Y, Xiao R. Comparison of concentrated fresh mononuclear cells and cultured mesenchymal stem cells from bone marrow for bone regeneration. Stem Cells Transl Med 2020; 10:598-609. [PMID: 33341102 PMCID: PMC7980203 DOI: 10.1002/sctm.20-0234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/20/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Autologous bone marrow mononuclear cell (BMMNC) transplantation has been widely studied in recent years. The fresh cell cocktail in BMMNCs, without going through the in vitro culture process, helps to establish a stable microenvironment for osteogenesis, and each cell type may play a unique role in bone regeneration. Our study compared the efficacy of concentrated fresh BMMNCs and cultured bone marrow‐derived mesenchymal stem cells (BMSCs) in Beagle dogs for the first time. Fifteen‐millimeter segmental bone defects were created in the animals' tibia bones. In BMMNCs group, the defects were repaired with concentrated fresh BMMNCs combined with β‐TCP (n = 5); in cultured BMSC group, with in vitro cultured and osteo‐induced BMSCs combined with β‐TCP (n = 5); in scaffold‐only group, with a β‐TCP graft alone (n = 5); and in blank group, nothing was grafted (n = 3). The healing process was monitored by X‐rays and single photon emission computed tomography. The animals were sacrificed 12 months after surgery and their tibias were harvested and analyzed by microcomputed tomography and hard tissue histology. Moreover, the microstructure, chemical components, and microbiomechanical properties of the regenerated bone tissue were explored by multiphoton microscopy, Raman spectroscopy and nanoindentation. The results showed that BMMNCs group promoted much more bone regeneration than cultured BMSC group. The grafts in BMMNCs group were better mineralized, and they had collagen arrangement and microbiomechanical properties similar to the contralateral native tibia bone. These results indicate that concentrated fresh bone marrow mononuclear cells may be superior to in vitro expanded stem cells in segmental bone defect repair.
Collapse
Affiliation(s)
- Fengzhou Du
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China.,Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Long Ouyang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Huanhuan Wu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yilin Cao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
9
|
Rojas-Torres M, Jiménez-Palomares M, Martín-Ramírez J, Beltrán-Camacho L, Sánchez-Gomar I, Eslava-Alcon S, Rosal-Vela A, Gavaldá S, Durán-Ruiz MC. REX-001, a BM-MNC Enriched Solution, Induces Revascularization of Ischemic Tissues in a Murine Model of Chronic Limb-Threatening Ischemia. Front Cell Dev Biol 2020; 8:602837. [PMID: 33363160 PMCID: PMC7755609 DOI: 10.3389/fcell.2020.602837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Bone Marrow Mononuclear Cells (BM-MNC) constitute a promising alternative for the treatment of Chronic Limb-Threatening ischemia (CLTI), a disease characterized by extensive blockade of peripheral arteries, clinically presenting as excruciating pain at rest and ischemic ulcers which may lead to gangrene and amputation. BM-MNC implantation has shown to be efficient in promoting angiogenesis and ameliorating ischemic symptoms in CLTI patients. However, the variability seen between clinical trials makes necessary a further understanding of the mechanisms of action of BM-MNC, and moreover, to improve trial characteristics such as endpoints, inclusion/exclusion criteria or drug product compositions, in order to implement their use as stem-cell therapy. Materials: Herein, the effect of REX-001, a human-BM derived cell suspension enriched for mononuclear cells, granulocytes and CD34+ cells, has been assessed in a murine model of CLTI. In addition, a REX-001 placebo solution containing BM-derived red blood cells (BM-RBCs) was also tested. Thus, 24 h after double ligation of the femoral artery, REX-001 and placebo were administrated intramuscularly to Balb-c nude mice (n:51) and follow-up of ischemic symptoms (blood flow perfusion, motility, ulceration and necrosis) was carried out for 21 days. The number of vessels and vascular diameter sizes were measured within the ischemic tissues to evaluate neovascularization and arteriogenesis. Finally, several cell-tracking assays were performed to evaluate potential biodistribution of these cells. Results: REX-001 induced a significant recovery of blood flow by increasing vascular density within the ischemic limbs, with no cell translocation to other organs. Moreover, cell tracking assays confirmed a decrease in the number of infused cells after 2 weeks post-injection despite on-going revascularization, suggesting a paracrine mechanism of action. Conclusion: Overall, our data supported the role of REX-001 product to improve revascularization and ischemic reperfusion in CLTI.
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Margarita Jiménez-Palomares
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | | | - Lucía Beltrán-Camacho
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sara Eslava-Alcon
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| | - Sandra Gavaldá
- R&D Department at Rexgenero Biosciences Sociedad Limitada (SL), Seville, Spain
| | - Mª Carmen Durán-Ruiz
- Biomedicine, Biotechnology and Public Health Department, Cádiz University, Cádiz, Spain.,Institute of Research and Innovation in Biomedical Sciences of Cadiz (INIBICA), Cádiz, Spain
| |
Collapse
|
10
|
Secreted Factors from Stem Cells of Human Exfoliated Deciduous Teeth Directly Activate Endothelial Cells to Promote All Processes of Angiogenesis. Cells 2020; 9:cells9112385. [PMID: 33142678 PMCID: PMC7693657 DOI: 10.3390/cells9112385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 01/08/2023] Open
Abstract
Diabetes is a major risk factor for atherosclerosis and ischemic vascular diseases. Recently, regenerative medicine is expected to be a novel therapy for ischemic diseases. Our previous studies have reported that transplantation of stem cells promoted therapeutic angiogenesis for diabetic neuropathy and ischemic vascular disease in a paracrine manner, but the precise mechanism is unclear. Therefore, we examined whether secreted factors from stem cells had direct beneficial effects on endothelial cells to promote angiogenesis. The soluble factors were collected as conditioned medium (CM) 48 h after culturing stem cells from human exfoliated deciduous teeth (SHED) in serum-free DMEM. SHED-CM significantly increased cell viability of human umbilical vein endothelial cells (HUVECs) in MTT assays and accelerated HUVECs migration in wound healing and Boyden chamber assays. In a Matrigel plug assay of mice, the migrated number of primary endothelial cells was markedly increased in the plug containing SHED-CM or SHED suspension. SHED-CM induced complex tubular structures of HUVECs in a tube formation assay. Furthermore, SHED-CM significantly increased neovascularization from the primary rat aorta, indicating that SHED-CM stimulated primary endothelial cells to promote comprehensive angiogenesis processes. The angiogenic effects of SHED-CM were the same or greater than the effective concentration of VEGF. In conclusion, SHED-CM directly stimulates vascular endothelial cells to promote angiogenesis and is promising for future clinical application.
Collapse
|
11
|
Injectable and Cryopreservable MSC-Loaded PLGA Microspheres for Recovery from Chemically Induced Liver Damage. Macromol Res 2020. [DOI: 10.1007/s13233-020-8139-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Mohamad Yusoff F, Kajikawa M, Takaeko Y, Kishimoto S, Hashimoto H, Maruhashi T, Kihara Y, Nakashima A, Higashi Y. Long-Term Clinical Outcomes of Autologous Bone Marrow Mononuclear Cell Implantation in Patients With Severe Thromboangiitis Obliterans. Circ J 2020; 84:650-655. [PMID: 32132348 DOI: 10.1253/circj.cj-19-1041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Patients with severe Buerger disease, also known as thromboangiitis obliterans (TAO), are at risk of major limb amputation. It has been shown that autologous bone marrow mononuclear cell (BM-MNC) implantation improves the condition of critical limb ischemia in TAO patients. This study was conducted to further clarify the long-term (>10 years) results of autologous BM-MNC implantation in patients with TAO. METHODS AND RESULTS An observational study was conducted of the long-term results of BM-MNC implantation in 47 lower limbs of 27 patients with TAO. The mean (±SD) follow-up period was 12.0±8.6 years. There was no major amputation event up to 10 years of follow-up in patients treated with BM-MNC implantation. The overall amputation-free survival rates were significantly higher in patients who underwent BM-MNC implantation than in internal controls and historical controls. There was no significant difference in amputation-free survival rates between the historical and internal controls. There was also no significant difference in overall survival between patients who underwent BM-MNC implantation and the historical controls. CONCLUSIONS BM-MNC transplantation successfully prevented major limb amputation over a period of >10 years in patients with severe TAO who had no other therapeutic options.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Masato Kajikawa
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital
| | - Yuji Takaeko
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Shinji Kishimoto
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Ayumu Nakashima
- Department of Stem Cell Biology and Medicine, Hiroshima University Graduate School of Biomedical Sciences
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences
| |
Collapse
|
13
|
Shibata R, Yamaguchi S, Murohara T. Therapeutic Angiogenesis Using Bone Marrow Mononuclear Cell Transplantation - A New Standard Treatment for Thromboangiitis Obliterans? Circ J 2020; 84:549-550. [PMID: 32173685 DOI: 10.1253/circj.cj-20-0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rei Shibata
- Department of Advanced Cardiovascular Therapeutics, Nagoya University Graduate School of Medicine
| | - Shukuro Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| |
Collapse
|
14
|
Murohara T. Therapeutic Angiogenesis with Somatic Stem Cell Transplantation. Korean Circ J 2020; 50:12-21. [PMID: 31854154 PMCID: PMC6923231 DOI: 10.4070/kcj.2019.0288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022] Open
Abstract
Therapeutic angiogenesis is an important strategy to rescue ischemic tissues in patients with critical limb ischemia having no other treatment option such as endovascular angioplasty or bypass surgery. Studies indicated so far possibilities of therapeutic angiogenesis using autologous bone marrow mononuclear cells, CD34⁺ cells, peripheral blood mononuclear cells, adipose-derived stem/progenitor cells, and etc. Recent studies indicated that subcutaneous adipose tissue contains stem/progenitor cells that can give rise to several mesenchymal lineage cells. Moreover, these mesenchymal progenitor cells release a variety of angiogenic growth factors including vascular endothelial growth factor, fibroblast growth factor, hepatocyte growth factor and chemokine stromal cell-derived factor-1. Subcutaneous adipose tissues can be harvested by less invasive technique. These biological properties of adipose-derived regenerative cells (ADRCs) implicate that autologous subcutaneous adipose tissue would be a useful cell source for therapeutic angiogenesis in humans. In this review, I would like to discuss biological properties and future perspective of ADRCs-mediated therapeutic angiogenesis.
Collapse
Affiliation(s)
- Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
15
|
Daimon A, Morihara H, Tomoda K, Morita N, Koishi Y, Kanki K, Ohmichi M, Asahi M. Intravenously Injected Pluripotent Stem Cell-derived Cells Form Fetomaternal Vasculature and Prevent Miscarriage in Mouse. Cell Transplant 2020; 29:963689720970456. [PMID: 33349053 PMCID: PMC7873769 DOI: 10.1177/0963689720970456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 01/22/2023] Open
Abstract
Miscarriage is the most common complication of pregnancy, and about 1% of pregnant women suffer a recurrence. Using a widely used mouse miscarriage model, we previously showed that intravenous injection of bone marrow (BM)-derived endothelial progenitor cells (EPCs) may prevent miscarriage. However, preparing enough BM-derived EPCs to treat a patient might be problematic. Here, we demonstrated the generation of mouse pluripotent stem cells (PSCs), propagation of sufficient PSC-derived cells with endothelial potential (PSC-EPs), and intravenous injection of the PSC-EPs into the mouse miscarriage model. We found that the injection prevented miscarriage. Three-dimensional reconstruction images of the decidua after tissue cleaning revealed robust fetomaternal neovascularization induced by the PSC-EP injection. Additionally, the injected PSC-EPs directly formed spiral arteries. These findings suggest that intravenous injection of PSC-EPs could become a promising remedy for recurrent miscarriage.
Collapse
Affiliation(s)
- Atsushi Daimon
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- These authors contributed equally to
this article
| | - Hirofumi Morihara
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- These authors contributed equally to
this article
| | - Kiichiro Tomoda
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
- Department of Life Science Frontiers, Center for iPS Cell Research
and Application, Kyoto University, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA,
USA
- These authors contributed equally to
this article
| | - Natsuko Morita
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
| | - Yoshinori Koishi
- Division of Research Animal Laboratory and Translational Medicine,
Research and Development Center, Takatsuki, Osaka, Japan
| | - Kazuyoshi Kanki
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Osaka Medical College,
Takatsuki, Japan
| | - Michio Asahi
- Department of Pharmacology, Osaka Medical College, Takatsuki,
Japan
| |
Collapse
|
16
|
Miceli M, Baldi D, Cavaliere C, Soricelli A, Salvatore M, Napoli C. Peripheral artery disease: the new frontiers of imaging techniques to evaluate the evolution of regenerative medicine. Expert Rev Cardiovasc Ther 2019; 17:511-532. [PMID: 31220944 DOI: 10.1080/14779072.2019.1635012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Stem cells (ESC, iPSC, MSC) are known to have intrinsic regenerative properties. In the last decades numerous findings have favored the development of innovative therapeutic protocols based on the use of stem cells (Regenerative Medicine/Cell Therapy) for the treatment of numerous diseases including PAD, with promising results in preclinical studies. So far, several clinical studies have shown a general improvement of the patient's clinical outcome, however they possess many critical issues caused by the non-randomized design of the limited number of patients examined, the type cells to be used, their dosage, the short duration of treatment and also their delivery strategy. Areas covered: In this context, the use of the most advanced molecular imaging techniques will allow the visualization of very important physio-pathological processes otherwise invisible with conventional techniques, such as angiogenesis, also providing important structural and functional data. Expert opinion: The new frontier of cell therapy applied to PAD, potentially able to stop or even the process that causes the disease, with particular emphasis on the clinical aspects that different types of cells involve and on the use of more innovative molecular imaging techniques now available.
Collapse
Affiliation(s)
| | | | | | - Andrea Soricelli
- a IRCCS SDN , Naples , Italy.,b Department of Exercise and Wellness Sciences , University of Naples Parthenope , Naples , Italy
| | | | - Claudio Napoli
- a IRCCS SDN , Naples , Italy.,c University Department of Advanced Medical and Surgical Sciences, Clinical Department of Internal Medicine and Specialty Medicine , Università degli Studi della Campania 'Luigi Vanvitelli' , Napes , Italy
| |
Collapse
|
17
|
Applications of Ultrasound to Stimulate Therapeutic Revascularization. Int J Mol Sci 2019; 20:ijms20123081. [PMID: 31238531 PMCID: PMC6627741 DOI: 10.3390/ijms20123081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Many pathological conditions are characterized or caused by the presence of an insufficient or aberrant local vasculature. Thus, therapeutic approaches aimed at modulating the caliber and/or density of the vasculature by controlling angiogenesis and arteriogenesis have been under development for many years. As our understanding of the underlying cellular and molecular mechanisms of these vascular growth processes continues to grow, so too do the available targets for therapeutic intervention. Nonetheless, the tools needed to implement such therapies have often had inherent weaknesses (i.e., invasiveness, expense, poor targeting, and control) that preclude successful outcomes. Approximately 20 years ago, the potential for using ultrasound as a new tool for therapeutically manipulating angiogenesis and arteriogenesis began to emerge. Indeed, the ability of ultrasound, especially when used in combination with contrast agent microbubbles, to mechanically manipulate the microvasculature has opened several doors for exploration. In turn, multiple studies on the influence of ultrasound-mediated bioeffects on vascular growth and the use of ultrasound for the targeted stimulation of blood vessel growth via drug and gene delivery have been performed and published over the years. In this review article, we first discuss the basic principles of therapeutic ultrasound for stimulating angiogenesis and arteriogenesis. We then follow this with a comprehensive cataloging of studies that have used ultrasound for stimulating revascularization to date. Finally, we offer a brief perspective on the future of such approaches, in the context of both further research development and possible clinical translation.
Collapse
|
18
|
Abstract
The ability to generate new microvessels in desired numbers and at desired locations has been a long-sought goal in vascular medicine, engineering, and biology. Historically, the need to revascularize ischemic tissues nonsurgically (so-called therapeutic vascularization) served as the main driving force for the development of new methods of vascular growth. More recently, vascularization of engineered tissues and the generation of vascularized microphysiological systems have provided additional targets for these methods, and have required adaptation of therapeutic vascularization to biomaterial scaffolds and to microscale devices. Three complementary strategies have been investigated to engineer microvasculature: angiogenesis (the sprouting of existing vessels), vasculogenesis (the coalescence of adult or progenitor cells into vessels), and microfluidics (the vascularization of scaffolds that possess the open geometry of microvascular networks). Over the past several decades, vascularization techniques have grown tremendously in sophistication, from the crude implantation of arteries into myocardial tunnels by Vineberg in the 1940s, to the current use of micropatterning techniques to control the exact shape and placement of vessels within a scaffold. This review provides a broad historical view of methods to engineer the microvasculature, and offers a common framework for organizing and analyzing the numerous studies in this area of tissue engineering and regenerative medicine. © 2019 American Physiological Society. Compr Physiol 9:1155-1212, 2019.
Collapse
Affiliation(s)
- Joe Tien
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Division of Materials Science and Engineering, Boston University, Brookline, Massachusetts, USA
| |
Collapse
|
19
|
Gaspar D, Peixoto R, De Pieri A, Striegl B, Zeugolis DI, Raghunath M. Local pharmacological induction of angiogenesis: Drugs for cells and cells as drugs. Adv Drug Deliv Rev 2019; 146:126-154. [PMID: 31226398 DOI: 10.1016/j.addr.2019.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/12/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
The past decades have seen significant advances in pro-angiogenic strategies based on delivery of molecules and cells for conditions such as coronary artery disease, critical limb ischemia and stroke. Currently, three major strategies are evolving. Firstly, various pharmacological agents (growth factors, interleukins, small molecules, DNA/RNA) are locally applied at the ischemic region. Secondly, preparations of living cells with considerable bandwidth of tissue origin, differentiation state and preconditioning are delivered locally, rarely systemically. Thirdly, based on the notion, that cellular effects can be attributed mostly to factors secreted in situ, the cellular secretome (conditioned media, exosomes) has come into the spotlight. We review these three strategies to achieve (neo)angiogenesis in ischemic tissue with focus on the angiogenic mechanisms they tackle, such as transcription cascades, specific signalling steps and cellular gases. We also include cancer-therapy relevant lymphangiogenesis, and shall seek to explain why there are often conflicting data between in vitro and in vivo. The lion's share of data encompassing all three approaches comes from experimental animal work and we shall highlight common technical obstacles in the delivery of therapeutic molecules, cells, and secretome. This plethora of preclinical data contrasts with a dearth of clinical studies. A lack of adequate delivery vehicles and standardised assessment of clinical outcomes might play a role here, as well as regulatory, IP, and manufacturing constraints of candidate compounds; in addition, completed clinical trials have yet to reveal a successful and efficacious strategy. As the biology of angiogenesis is understood well enough for clinical purposes, it will be a matter of time to achieve success for well-stratified patients, and most probably with a combination of compounds.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rita Peixoto
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Andrea De Pieri
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Proxy Biomedical Ltd., Coilleach, Spiddal, Galway, Ireland
| | - Britta Striegl
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Competence Centre Tissue Engineering for Drug Development (TEDD), Centre for Cell Biology & Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Zurich, Switzerland.
| |
Collapse
|
20
|
Yusoff FM, Kajikawa M, Matsui S, Hashimoto H, Kishimoto S, Maruhashi T, Chowdhury M, Noma K, Nakashima A, Kihara Y, Sueda T, Higashi Y. Review of the Long-term Effects of Autologous Bone-Marrow Mononuclear Cell Implantation on Clinical Outcomes in Patients with Critical Limb Ischemia. Sci Rep 2019; 9:7711. [PMID: 31118440 PMCID: PMC6531470 DOI: 10.1038/s41598-019-44176-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
Critical limb ischemia (CLI) is associated with a high risk of limb amputation. It has been shown that cell therapy is safe and has beneficial effects on ischemic clinical symptoms in patients with CLI. The aim of this study was to further investigate the outcomes of intramuscular injection of autologous bone-marrow mononuclear cells (BM-MNCs) in a long-term follow-up period in atherosclerotic peripheral arterial disease (PAD) patients who have no optional therapy. This study was a retrospective and observational study that was carried out to evaluate long-term clinical outcomes in 42 lower limbs of 30 patients with atherosclerotic PAD who underwent BM-MNC implantation. The median follow-up period was 9.25 (range, 6–16) years. The overall amputation-free rates were 73.0% at 5 years after BM-MNC implantation and 70.4% at 10 years in patients with atherosclerotic PAD. The overall amputation-free rates at 5 years and at 10 years after implantation of BM-MNCs were significantly higher in atherosclerotic PAD patients than in internal controls and historical controls. There were no significant differences in amputation rates between the internal control group and historical control group. The rate of overall survival was not significantly different between the BM-MNC implantation group and the historical control group. Implantation of autologous BM-MNCs is feasible for a long-term follow-up period in patients with CLI who have no optional therapy.
Collapse
Affiliation(s)
- Farina Mohamad Yusoff
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masato Kajikawa
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shogo Matsui
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Haruki Hashimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Shinji Kishimoto
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Tatsuya Maruhashi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Moniruddin Chowdhury
- Department of Medicine & Centre for Research on Non-Communicable Diseases, Faculty of Medicine & Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - Kensuke Noma
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Taijiro Sueda
- Department of Surgery, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yukihito Higashi
- Department of Cardiovascular Regeneration and Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan. .,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan.
| |
Collapse
|
21
|
Amani S, Shahrooz R, Mortaz E, Hobbenaghi R, Mohammadi R, Baradar Khoshfetrat A. Histomorphometric and immunohistochemical evaluation of angiogenesis in ischemia by tissue engineering in rats: Role of mast cells. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2019; 10:23-30. [PMID: 31183012 PMCID: PMC6522198 DOI: 10.30466/vrf.2019.34311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/17/2018] [Indexed: 11/01/2022]
Abstract
The aim of this study was to find a proper method for improvement of ischemic condition in the rat hind limb and also to observe the efficacy of cell engraftment with alginate/gelatin three-dimensional scaffolds. Eighteen male Wistar rats weighing 200 to 250 g were randomly divided into three groups (n = 6) including a) ischemia group; in which femoral artery was removed after ligation at the distance of 5 mm, b) scaffold group; in which hydrogel scaffold was added to the site of transected femoral artery and c) test group; in which in addition to hydrogel scaffold, mast cells (MCs) were also added (1 × 106 cells). Analysis of capillary density, artery diameter, histomorphometric parameters and immunohistochemistry in transected location were done on day 14 after femoral artery transection. The average number of blood capillary was significantly higher in the test group than other groups. Also, the average number of medium and large blood vessels was significantly higher in the test group compared to ischemia and scaffold groups. Application of MCs through the use of hydrogel scaffolds (alginate/gelatin) can be considered as a new approach in the application of stem cells for therapeutic angiogenesis under ischemic conditions which can improve the angiogenesis process in patients with peripheral artery diseases.
Collapse
Affiliation(s)
- Saeede Amani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University,Urmia, Iran;
| | - Rasoul Shahrooz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University,Urmia, Iran;
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
| | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran;
| | | |
Collapse
|
22
|
Bone marrow derived endothelial progenitor cells retain their phenotype and functions after a limited number of culture passages and cryopreservation. Cytotechnology 2018; 71:1-14. [PMID: 30478806 DOI: 10.1007/s10616-018-0234-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/23/2018] [Indexed: 12/11/2022] Open
Abstract
A critical limitation for tissue engineering and autologous therapeutic applications of bone marrow derived EPCs is their low frequency, which is even lower in number and activity level in patients with cardiovascular risk factors and other diseases. New strategies for obtaining and reserving sufficient ready-to-use EPCs for clinical use have hit major obstacles, because effects of serial passage and cryopreservation on EPC phenotype and functions are still needed to be explored. The present study aims at investigating effects of a limited number of culture passages as well as cryopreservation on EPC phenotype and functions. We isolated EPCs from rat bone marrow and cultured them up to passage 12 (totaling achievements of 40 population doublings). The phenotype and functions of fresh cultured and post-cryopreserved EPCs at passages 7 and 12, respectively, were evaluated. EPCs at passage 12 maintained the morphological characteristics, marker phenotype, Dil-ac-LDL uptake and FITC-UEA-1 binding functions, enhanced EPCs proliferation, tube formation and migration, but decreased CD133 expression compared with EPCs at passage 7. Cryopreservation caused limited impairment in EPC phenotype and functions. In brief, our results demonstrated that a limited number of culture passages and cryopreservation did not change EPC phenotype and functions, and can be used for the development of robust strategies and quality control criterion for obtaining sufficient and high-quality ready-to-use EPCs for tissue engineering and therapeutic applications.
Collapse
|
23
|
Hou Y, Li C. Stem/Progenitor Cells and Their Therapeutic Application in Cardiovascular Disease. Front Cell Dev Biol 2018; 6:139. [PMID: 30406100 PMCID: PMC6200850 DOI: 10.3389/fcell.2018.00139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/28/2018] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in the world. The stem/progenitor cell-based therapy has emerged as a promising approach for the treatment of a variety of cardiovascular diseases including myocardial infarction, stroke, peripheral arterial disease, and diabetes. An increasing number of evidence has shown that stem/progenitor cell transplantation could replenish damaged cells, improve cardiac and vascular functions, and repair injured tissues in many pre-clinical studies and clinical trials. In this review, we have outlined the major types of stem/progenitor cells, and summarized the studies in applying these cells, especially endothelial stem/progenitor cells and their derivatives, in the treatment of cardiovascular disease. Here the strategies used to improve the stem/progenitor cell-based therapies in cardiovascular disease and the challenges with these therapies in clinical applications are also reviewed.
Collapse
Affiliation(s)
- Yuning Hou
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
24
|
Kondo K, Yanishi K, Hayashida R, Shintani S, Shibata R, Murotani K, Ando M, Mizuno M, Fujiwara T, Murohara T, Matoba S. Long-Term Clinical Outcomes Survey of Bone Marrow-Derived Cell Therapy in Critical Limb Ischemia in Japan. Circ J 2018; 82:1168-1178. [PMID: 29386474 DOI: 10.1253/circj.cj-17-0510] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
BACKGROUND The Therapeutic Angiogenesis by Cell Transplantation (TACT) trial demonstrated the efficacy and safety of autologous bone marrow-derived mononuclear cells (BM-MNCs) in patients with critical limb ischemia (CLI). The present study aimed to assess the long-term clinical outcomes of therapeutic angiogenesis using autologous BM-MNC implantation under advanced medical treatment in Japan. METHODS AND RESULTS The study was retrospective, observational, and non-controlled. We assessed no-option CLI patients who had BM-MNC implantation performed in 10 institutes. Overall survival (OS), major amputation-free (MAF), and amputation-free survival (AFS) rates were primary endpoints of this study. The median follow-up duration was 31.7 months. The 10-year OS rate was 46.6% in patients with arteriosclerosis obliterans (ASO) (n=168), 90.5% in patients with thromboangiitis obliterans (TAO) (n=108), and 67.6% in patients with collagen disease-associated vasculitis (CDV) (n=69). The 10-year MAF rate was 70.1%, 87.9%, and 90.9%, respectively. The 10-year AFS rate was 37.8%, 80.9%, and 61.2%, respectively. Major adverse cardiovascular events occurred in 6.0% of patients with ASO, 1.9% of patients with TAO, and no patients with CDV. CONCLUSIONS Therapeutic angiogenesis using autologous BM-MNC implantation may be feasible and safe in patients with no-option CLI, particularly those with CLI caused by TAO or CDV.
Collapse
Affiliation(s)
- Kazuhisa Kondo
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Kenji Yanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| | - Ryo Hayashida
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Satoshi Shintani
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Rei Shibata
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Kenta Murotani
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital
| | - Masaaki Mizuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital
| | - Tadami Fujiwara
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine
| |
Collapse
|
25
|
Wang SK, Green LA, Gutwein AR, Drucker NA, Babbey CM, Gupta AK, Fajardo A, Motaganahalli RL, Wilson MG, Murphy MP. Ethnic minorities with critical limb ischemia derive equal amputation risk reduction from autologous cell therapy compared with whites. J Vasc Surg 2018; 68:560-566. [PMID: 29503004 DOI: 10.1016/j.jvs.2017.11.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/28/2017] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Ethnic minorities (nonwhites) with critical limb ischemia (CLI) have historically performed worse compared with whites with regard to major amputation risk reduction and amputation-free survival (AFS) after peripheral vascular intervention. This post hoc analysis was completed to determine whether this precedent also extended to treatment of CLI without a suitable revascularization option with intramuscular injections of concentrated bone marrow aspirate (cBMA). METHODS The treatment arm of the randomized, double-blind, multicenter MarrowStim PAD Kit for the Treatment of Critical Limb Ischemia in Subjects with Severe Peripheral Arterial Disease (MOBILE) trial was stratified by ethnicity and evaluated for demographics, comorbidities, and outcomes. The primary and therapeutic end point was 1-year AFS and major amputation, respectively. Noninferiority analysis was performed with the margin set at historically reported hazard ratios. RESULTS Thirty-seven minority (African American, Hispanic, other) CLI patients (9 placebo, 28 cBMA) with no suitable revascularization option were randomized to cBMA or placebo at a 3:1 ratio during the MOBILE trial. At 1-year follow-up for the treatment group, overall AFS was 80%. Of the 28 minority patients randomized to cBMA intervention, an 89% AFS rate was observed compared with 77% in whites. Specifically, 22 of 24 (92%) African Americans survived amputation free at 1-year follow-up. Noninferiority testing confirmed no difference between whites and the ethnic minority treated with cBMA with respect to major amputation reduction; however, noninferiority could not be confirmed with regard to AFS. No significant differences favoring whites treated with cBMA were noted in the secondary end points of vascular quality of life, limb pain, ankle-brachial index, toe-brachial index, transcutaneous oximetry, and 6-minute walk testing. CONCLUSIONS This post hoc analysis of the MOBILE trial demonstrates noninferiority of cBMA intervention in minorities with no-option CLI for the therapeutic end point of major amputation prevention. cBMA represents a novel treatment paradigm and should be explored for minorities with poor revascularization options who face impending amputation secondary to progressive CLI.
Collapse
Affiliation(s)
- S Keisin Wang
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Linden A Green
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Ashley R Gutwein
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Natalie A Drucker
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Clifford M Babbey
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Alok K Gupta
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Andres Fajardo
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Raghu L Motaganahalli
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Michael G Wilson
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Ind
| | - Michael P Murphy
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
26
|
Wang C, Li Y, Yang M, Zou Y, Liu H, Liang Z, Yin Y, Niu G, Yan Z, Zhang B. Efficient Differentiation of Bone Marrow Mesenchymal Stem Cells into Endothelial Cells in Vitro. Eur J Vasc Endovasc Surg 2017; 55:257-265. [PMID: 29208350 DOI: 10.1016/j.ejvs.2017.10.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/18/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Endothelial cells (ECs) play an important role in neovascularisation, but are too limited in number for adequate therapeutic applications. Mesenchymal stem cells (MSCs) have the potential to differentiate into endothelial lineage cells, which makes them attractive candidates for therapeutic angiogenesis. The aim of this study was to investigate efficient differentiation of MSCs into ECs by inducing medium in vitro. METHODS MSCs were isolated from bone marrow by density gradient centrifugation. The characterisation of the MSCs was determined by their cluster of differentiation (CD) marker profile. Inducing medium containing vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), insulin like growth factor (IGF), epidermal growth factor (EGF), ascorbic acid, and heparin was applied to differentiate the MSCs into ECs. Endothelial differentiation was quantitatively evaluated using flow cytometry. Real time quantitative PCR (qRT-PCR) was used to analyse mRNA expression of endothelial markers. Tube formation assay was further performed to examine the functional status of the differentiated MSCs. RESULTS Flow cytometry analysis demonstrated that CD31+ and CD34+ cells increased steadily from 12% at 3 days, to 40% at 7 days, and to 60% at 14 days. Immunofluorescence staining further confirmed the expression of CD31 and CD34. qRT-PCR showed that expression of von Willebrand factor (vWF), vascular endothelial cadherin (VE-cadherin) and vascular endothelial growth factor receptor-2 (VEGFR-2) were significantly higher in the induced MSCs group compared with the uninduced MSCs group. The functional behavior of the differentiated cells was tested by tube formation assay in vitro on matrigel. Induced MSCs were capable of developing capillary networks, and progressive formation of vessel like structures was associated with increased EC population. CONCLUSIONS These results provide a method to efficiently promote differentiation of MSCs into ECs in vitro for potential application in the treatment of peripheral arterial disease.
Collapse
Affiliation(s)
- Chengen Wang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Yuan Li
- Department of Haematology, Peking University First Hospital, Beijing, China.
| | - Min Yang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Yinghua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China.
| | - Huihui Liu
- Department of Haematology, Peking University First Hospital, Beijing, China
| | - Zeyin Liang
- Department of Haematology, Peking University First Hospital, Beijing, China
| | - Yue Yin
- Department of Haematology, Peking University First Hospital, Beijing, China
| | - Guochen Niu
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Ziguang Yan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| | - Bihui Zhang
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, China
| |
Collapse
|
27
|
Transplantation of Rat Mesenchymal Stem Cells Overexpressing Hypoxia-Inducible Factor 2 α Improves Blood Perfusion and Arteriogenesis in a Rat Hindlimb Ischemia Model. Stem Cells Int 2017; 2017:3794817. [PMID: 29238372 PMCID: PMC5697133 DOI: 10.1155/2017/3794817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been increasingly tested in cell-based therapy to treat numerous diseases. Genetic modification to improve MSC behavior may enhance posttransplantation outcome. This study aims to test the potential therapeutic benefits of rat bone marrow MSCs overexpressing hypoxia-inducible factor 2α (rMSCsHIF-2α) in a rat hindlimb ischemia model. PBS, rMSCs, or rMSCsHIF-2α were injected into rat ischemic hindlimb. Compared with the injection of PBS or rMSCs, transplantation of rMSCsHIF-2α significantly improved blood perfusion, increased the number of vessel branches in the muscle of the ischemic hindlimb, and improved the foot mobility of the ischemic hindlimb (all P < 0.05). rMSCHIF-2α transplantation also markedly increased the expression of proangiogenic factors VEGF, bFGF, and SDF1 and Notch signaling proteins including DII4, NICD, Hey1, and Hes1, whereas it reduced the expression of proapoptotic factor Bax in the muscle of the ischemic hindlimb. Overexpression of HIF-2α did not affect rMSC stemness and proliferation under normoxia but significantly increased rMSC migration and tube formation in matrigel under hypoxia (all P < 0.05). RMSCsHIF-2α stimulated endothelial cell invasion under hypoxia significantly (P < 0.05). Genetic modification of rMSCs via overexpression of HIF-2α improves posttransplantation outcomes in a rat hindlimb ischemia model possibly by stimulating proangiogenic growth factors and cytokines.
Collapse
|
28
|
Karimi A, Shahrooz R, Hobbenaghi R, Mohammadi R, Mortaz E. Mouse Bone Marrow-Derived Mast Cells Induce Angiogenesis by Tissue Engineering in Rats: Histological Evidence. CELL JOURNAL 2017; 19:578-584. [PMID: 29105392 PMCID: PMC5672096 DOI: 10.22074/cellj.2018.4277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/14/2016] [Indexed: 12/12/2022]
Abstract
Objective Therapeutic angiogenesis is employed to induce vascular network formation and improve functional
recovery in ischemia. The aim of this study is to find an appropriate method to recover local ischemic conditions.
Materials and Methods In this experimental survey, 20 male Wistar rats weighing approximately 200-250 g were
randomly divided into four experimental groups respectively: ischemia group in which the femoral artery was transected;
phosphate buffer solution group (PBS) in which the femoral artery transected location was immersed with PBS; chitosan
(CHIT) group in which the transected location was immersed in a 50 µL CHIT solution; and mast cell transplanted group in
which the transected location was immersed with a mixture of 50 µL CHIT and 50 µL PBS that contained 1×106 mast cells.
Results On day 14 after surgery, mean numbers of blood vessels of different sizes in the CHIT/mast cell group
significantly increased compared to the other experimental groups (P<0.05).
Conclusion Our data suggest that mast cell reconstitution could offer a new approach for therapeutic angiogenesis in
cases of peripheral arterial diseases.
Collapse
Affiliation(s)
- Ali Karimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rasoul Shahrooz
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Rahim Hobbenaghi
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Rahim Mohammadi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Esmaeil Mortaz
- Massih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
29
|
Zhang H, Tao Y, Ren S, Liu H, Zhou H, Hu J, Tang Y, Zhang B, Chen H. Isolation and characterization of human umbilical cord-derived endothelial colony-forming cells. Exp Ther Med 2017; 14:4160-4166. [PMID: 29067104 PMCID: PMC5647737 DOI: 10.3892/etm.2017.5035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 03/31/2017] [Indexed: 12/30/2022] Open
Abstract
Endothelial colony-forming cells (ECFCs) are a population of endothelial progenitor cells (EPCs) that display robust proliferative potential and vessel-forming capability. Previous studies have demonstrated that a limited number of ECFCs may be obtained from adult bone marrow, peripheral blood and umbilical cord (UC) blood. The present study describes an effective method for isolating ECFCs from human UC. The ECFCs derived from human UC displayed the full properties of EPCs. Analysis of the growth kinetics, cell cycle and colony-forming ability of the isolated human UC-ECFCs indicated that the cells demonstrated properties of stem cells, including relative stability and rapid proliferation in vitro. Gene expression of Fms related tyrosine kinase 1, kinase insert domain receptor, vascular endothelial cadherin, cluster of differentiation (CD)31, CD34, epidermal growth factor homology domains-2, von Willebrand factor and endothelial nitric oxide synthase was assessed by reverse transcription-polymerase chain reaction. The cells were positive for CD34, CD31, CD73, CD105 and vascular endothelial growth factor receptor-2, and negative for CD45, CD90 and human leukocyte antigen-antigen D related protein according to flow cytometry. 1,1'-dioctadecyl-3,3,3',3'-tetra-methyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein and fluorescein isothiocyanate-Ulex europaeus-l were used to verify the identity of the UC-ECFCs. Matrigel was used to investigate tube formation capability. The results demonstrated that the reported technique is a valuable method for isolating human UC-ECFCs, which have potential for use in vascular regeneration.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yanling Tao
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Saisai Ren
- Department of Graduate School, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Haihui Liu
- Department of Graduate School, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hui Zhou
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Jiangwei Hu
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Yongyong Tang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Bin Zhang
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Hu Chen
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, P.R. China.,Cell and Gene Therapy Center, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| |
Collapse
|
30
|
Zhang Y, Zhang H, Ding L, Zhang H, Zhang P, Jiang H, Tan B, Deng Z. MRI reveals slow clearance of dead cell transplants in mouse forelimb muscles. Mol Med Rep 2017; 16:4068-4074. [PMID: 28765924 PMCID: PMC5646989 DOI: 10.3892/mmr.2017.7100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/07/2017] [Indexed: 12/23/2022] Open
Abstract
A small molecule tetraazacyclododecane-1,4,7,10-tetraacetic acid (Gd-DOTA)4-TPP agent is used to label human mesenchymal stem cells (hMSCs) via electroporation (EP). The present study assessed the cytotoxicity of cell labeling, in addition to its effect on cell differentiation potential. There were no significant adverse effects on cell viability or differentiation induced by either EP or cellular uptake of (Gd-DOTA)4-TPP. Labeled live and dead hMSCs were transplanted into mouse forelimb muscles. T2-weighted magnetic resonance imaging (MRI) was used to track the in vivo fate of the cell transplants. The labeling and imaging strategy allowed long term tracking of the cell transplants and unambiguous distinguishing of the cell transplants from their surrounding tissues. Cell migration was observed for live hMSCs injected into subcutaneous tissues, however not for either live or dead hMSCS injected into limb muscles. A slow clearance process occurred of the dead cell transplants in the limb muscular tissue. The MRI results therefore reveal that the fate and physiological activities of cell transplants depend on the nature of their host tissue.
Collapse
Affiliation(s)
- Yanhui Zhang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Hongyan Zhang
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Lijun Ding
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hailu Zhang
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Pengli Zhang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Haizhen Jiang
- College of Sciences, Shanghai University, Shanghai 200444, P.R. China
| | - Bo Tan
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| | - Zongwu Deng
- CAS Key Laboratory of Nano‑Bio Interface and Division of Nanobionics Research, Suzhou Institute of Nano‑Tech and Nano‑Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
31
|
Carstens MH, Mendieta M, Pérez C, Villareal E, Garcia R. Assisted Salvage of Ischemic Fasciocutaneous Flap Using Adipose-Derived Mesenchymal Stem Cells: In-Situ Revascularization. Aesthet Surg J 2017; 37:S38-S45. [PMID: 29025216 PMCID: PMC5846702 DOI: 10.1093/asj/sjx052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have been shown to produce vascular endothelial growth factor (VEGF) and can increase perfusion in patients with critical limb ischemia. We will show that this concept can be applied to augment blood flow in zones of flap ischemia. We presented a case study of a 26-year-old man with a complex hand injury covered by a reverse radial perforator fasciocutaneous flap, which developed ischemic necrosis and was treated by debridement, transplantation of ASCs to enhance vascular support, and saline dressings. ASCs are found in the stromal vascular fraction (SVF), a heterogeneous collection of cells, including pericytes and endothelial cells, that is prepared from lipoaspirate using collagenase digestion followed by centrifugation. These were injected into the flap, the palmar tissues both subjacent and peripheral to the flap, and the skin-grafted donor site. The case was documented with photography, measurements at hand therapy, and follow-up angiography MRI. At 72 hours, new vessels appeared diffusely; at 1 week, the remaining tissues of flap were bleeding. The wound, 11 cm × 4 cm, contracted spontaneously and was healed at 21 days. The skin graft over the donor site demonstrated unusual suppleness and elasticity. 3D CT angiography disclosed a new layer of vascularity in the superficial tissues of the palm when compared with the normal side. The patient regained full composite flexion, pinch, opposition, and wrist extension. Application of ASCs into the supporting tissues surrounding the ischemic flap, and into the flap itself, constituted a form of in-situ revascularization (ISR) that was subjectively and objectively effective for this patient. LEVEL OF EVIDENCE 5.
Collapse
Affiliation(s)
- Michael H Carstens
- Dr Carstens is a Clinical Associate Professor of Plastic Surgery, Saint Louis University, St. Louis, MO; and a Professor of Plastic Surgery, National University of Nicaragua in Leon, Nicaragua. Dr Mendieta is a plastic surgeon in private practice in Managua, Nicaragua. Dr Pérez is a radiologist in private practice in Managua, Nicaragua. Dr Villareal is a physiatrist in private practice in Managua, Nicaragua. Mr Garcia is a physical therapist in private practice in Managua, Nicaragua
| | - Mauricio Mendieta
- Dr Carstens is a Clinical Associate Professor of Plastic Surgery, Saint Louis University, St. Louis, MO; and a Professor of Plastic Surgery, National University of Nicaragua in Leon, Nicaragua. Dr Mendieta is a plastic surgeon in private practice in Managua, Nicaragua. Dr Pérez is a radiologist in private practice in Managua, Nicaragua. Dr Villareal is a physiatrist in private practice in Managua, Nicaragua. Mr Garcia is a physical therapist in private practice in Managua, Nicaragua
| | - Cecilia Pérez
- Dr Carstens is a Clinical Associate Professor of Plastic Surgery, Saint Louis University, St. Louis, MO; and a Professor of Plastic Surgery, National University of Nicaragua in Leon, Nicaragua. Dr Mendieta is a plastic surgeon in private practice in Managua, Nicaragua. Dr Pérez is a radiologist in private practice in Managua, Nicaragua. Dr Villareal is a physiatrist in private practice in Managua, Nicaragua. Mr Garcia is a physical therapist in private practice in Managua, Nicaragua
| | - Esperanza Villareal
- Dr Carstens is a Clinical Associate Professor of Plastic Surgery, Saint Louis University, St. Louis, MO; and a Professor of Plastic Surgery, National University of Nicaragua in Leon, Nicaragua. Dr Mendieta is a plastic surgeon in private practice in Managua, Nicaragua. Dr Pérez is a radiologist in private practice in Managua, Nicaragua. Dr Villareal is a physiatrist in private practice in Managua, Nicaragua. Mr Garcia is a physical therapist in private practice in Managua, Nicaragua
| | - Rodolfo Garcia
- Dr Carstens is a Clinical Associate Professor of Plastic Surgery, Saint Louis University, St. Louis, MO; and a Professor of Plastic Surgery, National University of Nicaragua in Leon, Nicaragua. Dr Mendieta is a plastic surgeon in private practice in Managua, Nicaragua. Dr Pérez is a radiologist in private practice in Managua, Nicaragua. Dr Villareal is a physiatrist in private practice in Managua, Nicaragua. Mr Garcia is a physical therapist in private practice in Managua, Nicaragua
| |
Collapse
|
32
|
Green L, Ofstein RH, Rapp B, Saadatzadeh MR, Bhavsar JR, Fajardo A, Dalsing MC, Ingram DA, Murphy MP. Adult venous endothelium is a niche for highly proliferative and vasculogenic endothelial colony-forming cells. J Vasc Surg 2017; 66:1854-1863. [PMID: 28655551 DOI: 10.1016/j.jvs.2016.11.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/30/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Postnatal resident endothelium of blood vessels has been proposed to represent terminally differentiated tissue that does not replicate. We previously isolated endothelial colony-forming cells (ECFCs) from human umbilical cord blood (CB) and term placenta by using colony-forming assays and immunocytochemistry. We showed that ECFCs are highly proliferative and form functioning vessels in vivo, the defining characteristics of a true endothelial progenitor cell. This exploratory investigation was conducted to determine whether the endothelium of healthy adult blood vessels contained resident ECFCs. METHODS The endothelium of great saphenous vein (GSV) obtained from vein stripping procedures was collected with mechanical scraping, and ECFCs were isolated according to established protocols. RESULTS GSV ECFCs incorporated acetylated low-density lipoprotein, formed tubules in Matrigel (BD Biosciences, San Jose, Calif) at 24 hours, and expressed endothelial antigens cluster of differentiation (CD) 144, CD31, CD105, and kinase insert domain receptor but not hematopoietic antigen CD45. Using cumulative population doublings and single-cell assays, we demonstrated that GSV ECFCs exhibited comparable proliferative capacities compared with CB ECFCs, including similar numbers of highly proliferative cells. When injected in collagen/fibronectin gels implanted in nonobese diabetic/severe combined immune deficiency mice, GSV ECFCs formed blood vessels with circulating murine red blood cells, demonstrating their vasculogenic potential. CONCLUSIONS The ECFCs of the GSV contain a hierarchy of progenitor cells with a comparable number of highly proliferative clones as ECFCs of CB. The results of this investigation demonstrate that the adult endothelium contains resident progenitor cells that may have a critical role in vascular homeostasis and repair and could potentially be used as a source of autologous cells for cell therapies focusing on vasculogenesis.
Collapse
Affiliation(s)
- Linden Green
- Health Center for Aortic Disease, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Cellular and Integrative Physiology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind.
| | - Richard H Ofstein
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Brian Rapp
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - M Reza Saadatzadeh
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Janak R Bhavsar
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Andres Fajardo
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Michael C Dalsing
- Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - David A Ingram
- Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Biochemistry and Molecular Biology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| | - Michael P Murphy
- Health Center for Aortic Disease, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Cellular and Integrative Physiology, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Department of Surgery, Indiana University Health Center for Aortic Disease, Indianapolis, Ind; Indiana Center for Vascular Biology and Medicine, Indiana University Health Center for Aortic Disease, Indianapolis, Ind
| |
Collapse
|
33
|
Galiñanes M, Loubani M, Davies J, Chin D, Pasi J, Bell PR. Autotransplantation of Unmanipulated Bone Marrow into Scarred Myocardium is Safe and Enhances Cardiac Function in Humans. Cell Transplant 2017; 13:7-13. [PMID: 15040600 DOI: 10.3727/000000004772664842] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stem cell transplants into damaged myocardium may have the potential to improve cardiac function. We investigated the safety of transplanting unmanipulated autologous bone marrow into infarcted myocardium of patients undergoing coronary bypass surgery and assessed its efficacy to improve cardiac function. Fourteen patients with one or more areas of transmural myocardial infarction were studied. Autologous bone marrow was obtained by sternal bone aspirate at the time of surgery, diluted in autologous serum at a ratio of 1:2, and then injected 1 cm apart into the mid-depth of the left ventricular scar. There were no deaths, no perioperative myocardial infarctions, and no significant ventricular arrhythmias. Dobutamine stress echocardiography demonstrated overall improvement in the global and regional left ventricular function 6 weeks and 10 months after surgery. Of 34 infarcted left ventricular segments, 11 were injected with bone marrow alone, 13 were revascularized with a bypass graft alone, and 10 received bone marrow transplantation and a bypass graft in combination. Only the left ventricle segmental wall motion score of the areas injected with bone marrow and receiving a bypass graft in combination improved at low dose and at peak dobutamine stress. These findings suggest that transplantation of unmanipulated autologous bone marrow into scar tissue of the human heart is safe and enhances cardiac function only when used in combination with myocardial revascularization. This benefit can be seen after 6 weeks of the bone marrow transplant and is maintained after 10 months of follow-up.
Collapse
Affiliation(s)
- Manuel Galiñanes
- Department of Integrative Human Cardiovascular Physiology and Cardiac Surgery, University of Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Kubota Y, Kishi K, Satoh H, Tanaka T, Nakajima H, Nakajima T. Transplanted Endothelial Progenitor Cells Augment the Survival Areas of Rat Dorsal Flaps. Cell Transplant 2017; 12:647-57. [PMID: 14579933 DOI: 10.3727/000000003108747127] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been identified in peripheral blood, and have been reported to be incorporated into ischemic regions such as the ischemic hindlimb. In this study, we examined whether or not transplantation of EPCs is useful for salvaging surgical flaps in vivo. At the same time, we quantitatively compared the neovascularization ability of transplanted EPCs and that of mature endothelial cells (ECs). ECs obtained from the aorta of rats by explantation and passaged several times were used in the present study. EPCs were obtained from the blood of rat hearts. The blood samples were separated by density gradient centrifugation. Light-density mononuclear cells (MNCs) were collected and cultured on plastic plates coated with rat plasma vitronectin. Cells attached at day 7 of culture were deemed to be EPCs. Then PBS (control), ECs, or EPCs (3.0 × 105 suspended in 1.0 ml PBS) were injected at the middle of a flap. Seven days after surgery, the survival lengths of the flaps were evaluated. EPC-transplanted groups revealed statistically significant augmentation of survival length compared with the other two groups (p < 0.003). EPC-transplanted groups had significantly more angiographically detectable blood vessels (p < 0.003) and significantly higher capillary density (p < 0.03) than the other two groups. Confocal microscopy revealed that EPCs were incorporated into enhanced neovascularization. These results suggest that transplantation of EPCs may be useful for salvaging surgical flaps, and EPCs are superior to ECs in neovascularization ability.
Collapse
Affiliation(s)
- Yoshiaki Kubota
- Department of Plastic and Reconstructive Surgery, School of Medicine, Keio University, 35, Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Lakshmanan R, Ukani G, Rishi MT, Maulik N. Trimodal rescue of hind limb ischemia with growth factors, cells, and nanocarriers: fundamentals to clinical trials. Can J Physiol Pharmacol 2017; 95:1125-1140. [PMID: 28407473 DOI: 10.1139/cjpp-2016-0713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Peripheral artery disease is a severe medical condition commonly characterized by critical or acute limb ischemia. Gradual accumulation of thrombotic plaques in peripheral arteries of the lower limb may lead to intermittent claudication or ischemia in muscle tissue. Ischemic muscle tissue with lesions may become infected, resulting in a non-healing wound. Stable progression of the non-healing wound associated with severe ischemia might lead to functional deterioration of the limb, which, depending on the severity, can result in amputation. Immediate rescue of ischemic muscles through revascularization strategies is considered the gold standard to treat critical limb ischemia. Growth factors offer multiple levels of protection in revascularization of ischemic tissue. In this review, the basic mechanism through which growth factors exert their beneficial properties to rescue the ischemic limb is extensively discussed. Moreover, clinical trials based on growth factor and stem cell therapy to treat critical limb ischemia are considered. The clinical utility of stem cell therapy for the treatment of limb ischemia is explained and recent advances in nanocarrier technology for selective growth factor and stem cell supplementation are summarized.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Gopi Ukani
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Muhammad Tipu Rishi
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA.,Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| |
Collapse
|
36
|
Wang SK, Green LA, Motaganahalli RL, Wilson MG, Fajardo A, Murphy MP. Rationale and design of the MarrowStim PAD Kit for the Treatment of Critical Limb Ischemia in Subjects with Severe Peripheral Arterial Disease (MOBILE) trial investigating autologous bone marrow cell therapy for critical limb ischemia. J Vasc Surg 2017; 65:1850-1857.e2. [PMID: 28390770 DOI: 10.1016/j.jvs.2017.01.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/28/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Critical limb ischemia (CLI) continues to place a significant encumbrance on patients and the health care system as it progresses to limb loss and long-term disability. Traditional methods of revascularization offer a significant benefit; however, for one-third of CLI patients, these surgical options are not technically possible or patency is severely limited by disease burden (deemed "poor-option" for revascularization). In a previous phase I trial, we demonstrated intramuscular injection of concentrated bone marrow aspirate (cBMA) via MarrowStim (Zimmer Biomet, Warsaw, Ind) harvest is safe and may decrease major amputation in patients with CLI unfit for surgical revascularization. Therefore, we describe and rationalize the MarrowStim PAD Kit for the Treatment of Critical Limb Ischemia in Subjects with Severe Peripheral Arterial Disease (MOBILE) trial, a study geared to provide the pivotal proof of efficacy of cBMA in CLI. METHODS MOBILE is a multicenter, randomized, double-blind, placebo-controlled trial designed to assess the efficacy of intramuscular injections of cBMA in promoting amputation-free survival in patients with poor-option CLI. Patients (aged >21 years) with rest pain or tissue loss resulting from advanced peripheral arterial disease, as characterized by ankle-brachial index (<0.6), toe-brachial index (<0.4), or transcutaneous pressure of oxygen (<50 mm Hg), were eligible for inclusion if surgical revascularization was not possible secondary to advanced disease. RESULTS Treatment and 1-year follow-up of 152 patients enrolled in MOBILE are completed. Long-term follow-up is ongoing. Currently, we are in the process of unblinding the initial results for preliminary data analysis. CONCLUSIONS If successful, MOBILE could add definitive, high-quality evidence in support of cBMA for the treatment of poor-option CLI patients and provide an additional modality for patients who face amputation secondary to advanced limb ischemia.
Collapse
Affiliation(s)
- S Keisin Wang
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Linden A Green
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Raghu L Motaganahalli
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Michael G Wilson
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Ind
| | - Andres Fajardo
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Michael P Murphy
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
37
|
Zhou P, Tan YZ, Wang HJ, Wang GD. Hypoxic preconditioning-induced autophagy enhances survival of engrafted endothelial progenitor cells in ischaemic limb. J Cell Mol Med 2017; 21:2452-2464. [PMID: 28374977 PMCID: PMC5618704 DOI: 10.1111/jcmm.13167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/17/2017] [Indexed: 01/08/2023] Open
Abstract
Recent clinical studies have suggested that endothelial progenitor cells (EPCs) transplantation provides a modest benefit for treatment of the ischaemic diseases such as limb ischaemia. However, cell‐based therapies have been limited by poor survival of the engrafted cells. This investigation was designed to establish optimal hypoxia preconditioning and evaluate effects of hypoxic preconditioning‐induced autophagy on survival of the engrafted EPCs. Autophagy of CD34+VEGFR‐2+EPCs isolated from rat bone marrow increased after treatment with 1% O2. The number of the apoptotic cells in the hypoxic cells increased significantly after autophagy was inhibited with 3‐methyladenine. According to balance of autophagy and apoptosis, treatment with 1% O2 for 2 hrs was determined as optimal preconditioning for EPC transplantation. To examine survival of the hypoxic cells, the cells were implanted into the ischaemic pouch of the abdominal wall in rats. The number of the survived cells was greater in the hypoxic group. After the cells loaded with fibrin were transplanted with intramuscular injection, blood perfusion, arteriogenesis and angiogenesis in the ischaemic hindlimb were analysed with laser Doppler‐based perfusion measurement, angiogram and the density of the microvessels in histological sections, respectively. Repair of the ischaemic tissue was improved significantly in the hypoxic preconditioning group. Loading the cells with fibrin has cytoprotective effect on survival of the engrafted cells. These results suggest that activation of autophagy with hypoxic preconditioning is an optimizing strategy for EPC therapy of limb ischaemia.
Collapse
Affiliation(s)
- Pei Zhou
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| | - Yu-Zhen Tan
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| | - Hai-Jie Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| | - Guo-Dong Wang
- Department of Anatomy, Histology and Embryology, Shanghai Medical School of Fudan University, Shanghai, China
| |
Collapse
|
38
|
Kasahara Y, Yamahara K, Soma T, Stern DM, Nakagomi T, Matsuyama T, Taguchi A. Transplantation of hematopoietic stem cells: intra-arterial versus intravenous administration impacts stroke outcomes in a murine model. Transl Res 2016; 176:69-80. [PMID: 27164406 DOI: 10.1016/j.trsl.2016.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/09/2016] [Indexed: 11/27/2022]
Abstract
Based on results of hematopoietic stem cell transplantation in animal models of stroke, clinical trials with hematopoietic stem cells administered intra-arterially or intravenously have been initiated in patients. Although intra-arterial injection is expected to deliver transplanted cells more directly to the ischemic tissue, the optimal route for enhancing clinical outcomes has not been identified in the setting of stroke. In this study, we compared the therapeutic potential of intra-arterial versus intravenous injection of bone marrow derived-mononuclear cells (BM-MNCs) and CD133-positive (CD133(+)) cells in a murine stroke model. We have found that intra-arterial injection of BM-MNCs exaggerates inflammation with accompanying loss of microvascular structures in poststroke brain and no improvement in cortical function. In contrast, intravenous injection of BM-MNCs did not similarly enhance inflammation and improved cortical function. Our results indicate that the optimal route of cell transplantation can vary with different cell populations and highlight possible issues that might arise with intra-arterial cell administration for acute ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Yukiko Kasahara
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan
| | - Kenichi Yamahara
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Toshihiro Soma
- Department of Hematology, Hyogo College of Medicine, Nishinomiya, Japan
| | - David M Stern
- Executive Dean's office, University of Tennessee, Tennessee, USA
| | - Takayuki Nakagomi
- Department of Neurogenesis and CNS repair, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomohiro Matsuyama
- Department of Neurogenesis and CNS repair, Hyogo College of Medicine, Nishinomiya, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan.
| |
Collapse
|
39
|
Du Y, Zhang S, Yu T, Du G, Zhang H, Yin Z. Wnt3a is critical for endothelial progenitor cell-mediated neural stem cell proliferation and differentiation. Mol Med Rep 2016; 14:2473-82. [PMID: 27484039 PMCID: PMC4991675 DOI: 10.3892/mmr.2016.5582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 07/20/2016] [Indexed: 01/10/2023] Open
Abstract
The present study aimed to determine whether co-culture with bone marrow‑derived endothelial progenitor cells (EPCs) affects the proliferation and differentiation of spinal cord-derived neural stem cells (NSCs), and to investigate the underlying mechanism. The proliferation and differentiation of the NSCs were evaluated by an MTT cell proliferation and cytotoxicity assay, and immunofluorescence, respectively. The number of neurospheres and the number of β‑tubulin III‑positive cells were detected by microscopy. The wingless‑type MMTV integration site family, member 3a (Wnt3a)/β-catenin signaling pathway was analyzed by western blot analysis and reverse transcription‑quantitative polymerase chain reaction to elucidate the possible mechanisms of EPC‑mediated NSC proliferation and differentiation. The results revealed that co‑culture with EPCs significantly induced NSC proliferation and differentiation. In addition, co‑culture with EPCs markedly induced the expression levels of Wnt3a and β‑catenin and inhibited the phosphorylation of glycogen synthase kinase 3β (GSK‑3β). By contrast, Wnt3a knockdown using a short hairpin RNA plasmid in the EPCs reduced EPC‑mediated NSC proliferation and differentiation, accompanied by inhibition of the EPC‑mediated expression of β‑catenin, and its phosphorylation and activation of GSK‑3β. Taken together, the findings of the present study demonstrated that Wnt3a was critical for EPC‑mediated NSC proliferation and differentiation.
Collapse
Affiliation(s)
- Yibin Du
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Shuo Zhang
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Tao Yu
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Gongwen Du
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Hui Zhang
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zongsheng Yin
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
40
|
Florea V, Balkan W, Schulman IH, Hare JM. Cell Therapy Augments Myocardial Perfusion and Improves Quality of Life in Patients With Refractory Angina. Circ Res 2016; 118:911-5. [PMID: 26987911 DOI: 10.1161/circresaha.116.308409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Victoria Florea
- From The Interdisciplinary Stem Cell Institute (V.F., W.B., I.H.S., J.M.H.) and Department of Medicine (W.B., I.H.S., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Wayne Balkan
- From The Interdisciplinary Stem Cell Institute (V.F., W.B., I.H.S., J.M.H.) and Department of Medicine (W.B., I.H.S., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Ivonne Hernandez Schulman
- From The Interdisciplinary Stem Cell Institute (V.F., W.B., I.H.S., J.M.H.) and Department of Medicine (W.B., I.H.S., J.M.H.), University of Miami, Miller School of Medicine, FL
| | - Joshua M Hare
- From The Interdisciplinary Stem Cell Institute (V.F., W.B., I.H.S., J.M.H.) and Department of Medicine (W.B., I.H.S., J.M.H.), University of Miami, Miller School of Medicine, FL.
| |
Collapse
|
41
|
Bogoslovsky T, Maric D, Gong Y, Qu B, Yang K, Spatz M, Hallenbeck J, Diaz-Arrastia R. Preservation and enumeration of endothelial progenitor and endothelial cells from peripheral blood for clinical trials. Biomark Med 2016; 9:625-37. [PMID: 26174838 DOI: 10.2217/bmm.15.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIMS Endothelial progenitor cells (EPCs) are markers of vascular repair. Increased numbers of circulating endothelial cells (ECs) are associated with endothelial damage. MATERIALS & METHODS We enumerated EPC-EC by using Enrichment kit with addition of anti-human CD146-PE/Cy7 from peripheral blood mononuclear cell (PBMC) isolated either by red blood cell (RBC) lysing solution or by Ficoll centrifugation, and from fresh and preserved samples. PBMCs were quantified by flow cytometry. RESULTS RBC lysis yielded higher percentage of PBMC (p = 0.0242) and higher numbers of PBMC/ml (p = 0.0039) than Ficoll. Absolute numbers of CD34(+)CD133(+)VEGFR2(+) and CD146(+)CD34(+)VEGFR2(+) were higher (p = 0.0117 for both), when isolated by RBC lysis than by Ficoll, when no difference in other subsets was found. Cryopreservation at -160°C and -80°C and short-term preservation at room temperature decreased EPC-EC. CONCLUSIONS Our data support use of fresh samples and isolation of PBMC from human blood by RBC lysis for enumeration of EPC and EC.
Collapse
Affiliation(s)
- Tanya Bogoslovsky
- Center for Neuroscience & Regenerative Medicine, Uniformed Services University of Health Sciences, 12725 Twinbrook Pkwy, Rockville, MD 20852, USA.,National Institute of Neurological Disorders and Stroke, Stroke Branch, 10 Center Drive, Bethesda, MD 20814, USA
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow Cytometry Core Facility, 49 Convent Drive, Bethesda, MD 20814, USA
| | - Yunhua Gong
- Center for Neuroscience & Regenerative Medicine, Uniformed Services University of Health Sciences, 12725 Twinbrook Pkwy, Rockville, MD 20852, USA
| | - Baoxi Qu
- Center for Neuroscience & Regenerative Medicine, Uniformed Services University of Health Sciences, 12725 Twinbrook Pkwy, Rockville, MD 20852, USA
| | - Kelly Yang
- National Institute of Neurological Disorders and Stroke, 10 Center Drive, Bethesda, MD 20814, USA
| | - Maria Spatz
- National Institute of Neurological Disorders and Stroke, Stroke Branch, 10 Center Drive, Bethesda, MD 20814, USA
| | - John Hallenbeck
- National Institute of Neurological Disorders and Stroke, Stroke Branch, 10 Center Drive, Bethesda, MD 20814, USA
| | - Ramon Diaz-Arrastia
- Center for Neuroscience & Regenerative Medicine, Uniformed Services University of Health Sciences, 12725 Twinbrook Pkwy, Rockville, MD 20852, USA
| |
Collapse
|
42
|
Ito-Fujishiro Y, Koie H, Shibata H, Okabayashi S, Katakai Y, Ohno C, Kanayama K, Yasutomi Y, Ageyama N. Tracking cells implanted into cynomolgus monkeys (Macaca fascicularis) using MRI. Exp Anim 2016; 65:311-8. [PMID: 27062993 PMCID: PMC4976245 DOI: 10.1538/expanim.15-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regenerative therapy with stem cell transplantation is used to treat various diseases
such as coronary syndrome and Buerger’s disease. For instance, stem-cell transplantation
into the infarcted myocardium is an innovative and promising strategy for treating heart
failure due to ischemic heart disease. Basic studies using small animals have shown that
transplanted cells improve blood flow in the infarcted region. Magnetic resonance imaging
(MRI) can noninvasively identify and track transplanted cells labeled with
superparamagnetic iron oxide (SPIO). Although clinical regenerative therapies have been
clinically applied to patients, the fate of implanted cells remains unknown. In addition,
follow-up studies have shown that some adverse events can occur after recovery. Therefore,
the present study evaluated the ability of MRI using a 3T scanner to track implanted
peripheral blood mononuclear cells labeled with SPIO on days 0 and 7 after intramuscular
(i.m.) and intravenous (i.v.) injection into a cynomolgus monkey. Labeled cells were
visualized at the liver and triceps surae muscle on MR images using T1- and T2-weighted
sequences and histologically localized by Prussian blue staining. The transplanted cells
were tracked without abnormal clinical manifestations throughout this study. Hence, MRI of
cynomolgus monkey transplanted SPIO-labeled cells is a safe and efficient method of
tracking labeled cells that could help to determine the mechanisms involved in
regenerative therapy.
Collapse
Affiliation(s)
- Yasuyo Ito-Fujishiro
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Hachimandai 1-1, Tsukuba, Ibaraki 305-0843, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Liang TW, Jester A, Motaganahalli RL, Wilson MG, G'Sell P, Akingba GA, Fajardo A, Murphy MP. Autologous bone marrow mononuclear cell therapy for critical limb ischemia is effective and durable. J Vasc Surg 2016; 63:1541-5. [PMID: 27021379 DOI: 10.1016/j.jvs.2016.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE We have previously shown that autologous bone marrow mononuclear cell (ABMNC) therapy improves measures of limb perfusion, rest pain, wound healing, and amputation-free survival (AFS) at 1 year in patients with critical limb ischemia (CLI). Long-term durability of ABMNC therapy for CLI remains unknown. The objective of the current study was to evaluate long-term clinical outcomes 5 years after treatment. METHODS Data were retrospectively gathered from a database and via a patient survey and review of medical records of patients previously enrolled in this phase I/II trial. AFS, freedom from major amputation, and freedom from major adverse limb events (MALE) were calculated using the product-limit estimate. The incidence of cardiac, malignant, and other medical events relevant to the safety of cell therapy were tabulated during the time from treatment to follow-up. RESULTS Twenty-one of the 24 patients (88%) who completed the initial 1-year phase I/II trial were available for the 5-year analysis; AFS was 74% (95% confidence interval [CI], 0.53-0.87), freedom from major amputation was 78% (95% CI, 0.58-0.90), and freedom from MALE was 65% (95% CI, 0.45-0.80). Three patients (14%) had major cardiac events. There were no incidences of malignancies or diagnoses of clinically significant proliferative retinopathy. Fifteen patients (71%) report continued improvement in pain-free walking. Nineteen (90%) patients believed that the study was of significant medical value and would participate again. CONCLUSIONS ABMNC therapy provides long-term freedom from AFS, major amputation, and MALE that are comparable with other reports of patients who underwent surgical and endovascular interventions for CLI. Furthermore, no patients developed tumorigenesis or clinically significant retinopathy. Because of the limited number of patients studied, our findings will need to be followed up in a larger phase III trial.
Collapse
Affiliation(s)
- Tiffany W Liang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Andrea Jester
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Raghu L Motaganahalli
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Michael G Wilson
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Ind
| | - Patricia G'Sell
- Indiana Center for Vascular Biology and Medicine, Indiana University School of Medicine, Indianapolis, Ind
| | - George A Akingba
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Andres Fajardo
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind
| | - Michael P Murphy
- Division of Vascular Surgery, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
44
|
Chen Q, Varga M, Wang X, Haddad DJ, An S, Medzikovic L, Derakhshandeh R, Kostyushev DS, Zhang Y, Clifford BT, Luu E, Danforth OM, Rafikov R, Gong W, Black SM, Suchkov SV, Fineman JR, Heiss C, Aschbacher K, Yeghiazarians Y, Springer ML. Overexpression of Nitric Oxide Synthase Restores Circulating Angiogenic Cell Function in Patients With Coronary Artery Disease: Implications for Autologous Cell Therapy for Myocardial Infarction. J Am Heart Assoc 2016; 5:e002257. [PMID: 26738788 PMCID: PMC4859354 DOI: 10.1161/jaha.115.002257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/25/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Circulating angiogenic cells (CACs) are peripheral blood cells whose functional capacity inversely correlates with cardiovascular risk and that have therapeutic benefits in animal models of cardiovascular disease. However, donor age and disease state influence the efficacy of autologous cell therapy. We sought to determine whether age or coronary artery disease (CAD) impairs the therapeutic potential of CACs for myocardial infarction (MI) and whether the use of ex vivo gene therapy to overexpress endothelial nitric oxide (NO) synthase (eNOS) overcomes these defects. METHODS AND RESULTS We recruited 40 volunteers varying by sex, age (< or ≥45 years), and CAD and subjected their CACs to well-established functional tests. Age and CAD were associated with reduced CAC intrinsic migration (but not specific response to vascular endothelial growth factor, adherence of CACs to endothelial tubes, eNOS mRNA and protein levels, and NO production. To determine how CAC function influences therapeutic potential, we injected the 2 most functional and the 2 least functional CAC isolates into mouse hearts post MI. The high-function isolates substantially improved cardiac function, whereas the low-function isolates led to cardiac function only slightly better than vehicle control. Transduction of the worst isolate with eNOS cDNA adenovirus increased NO production, migration, and cardiac function of post-MI mice implanted with the CACs. Transduction of the best isolate with eNOS small interfering RNA adenovirus reduced all of these capabilities. CONCLUSIONS Age and CAD impair multiple functions of CACs and limit therapeutic potential for the treatment of MI. eNOS gene therapy in CACs from older donors or those with CAD has the potential to improve autologous cell therapy outcomes.
Collapse
Affiliation(s)
- Qiumei Chen
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Monika Varga
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Xiaoyin Wang
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Daniel J. Haddad
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Songtao An
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Lejla Medzikovic
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Ronak Derakhshandeh
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | | | - Yan Zhang
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Brian T. Clifford
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | - Emmy Luu
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Olivia M. Danforth
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
| | | | - Wenhui Gong
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCA
| | | | | | - Jeffrey R. Fineman
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Department of PediatricsUniversity of California, San FranciscoSan FranciscoCA
| | - Christian Heiss
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
| | - Kirstin Aschbacher
- Department of PsychiatryUniversity of California, San FranciscoSan FranciscoCA
| | - Yerem Yeghiazarians
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
- Eli & Edythe Broad Institute of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoCA
| | - Matthew L. Springer
- Cardiovascular Research InstituteUniversity of California, San FranciscoSan FranciscoCA
- Division of CardiologyUniversity of California, San FranciscoSan FranciscoCA
- Eli & Edythe Broad Institute of Regeneration Medicine and Stem Cell ResearchUniversity of California, San FranciscoSan FranciscoCA
| |
Collapse
|
45
|
Hou L, Kim JJ, Woo YJ, Huang NF. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ Physiol 2015; 310:H455-65. [PMID: 26683902 DOI: 10.1152/ajpheart.00726.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
Abstract
Stem cell therapy is a promising approach for the treatment of tissue ischemia associated with myocardial infarction and peripheral arterial disease. Stem and progenitor cells derived from bone marrow or from pluripotent stem cells have shown therapeutic benefit in boosting angiogenesis as well as restoring tissue function. Notably, adult stem and progenitor cells including mononuclear cells, endothelial progenitor cells, and mesenchymal stem cells have progressed into clinical trials and have shown positive benefits. In this review, we overview the major classes of stem and progenitor cells, including pluripotent stem cells, and summarize the state of the art in applying these cell types for treating myocardial infarction and peripheral arterial disease.
Collapse
Affiliation(s)
- Luqia Hou
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Stanford Cardiovascular Institute, Stanford University, Stanford, California; and
| | - Joseph J Kim
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Stanford Cardiovascular Institute, Stanford University, Stanford, California; and
| | - Y Joseph Woo
- Stanford Cardiovascular Institute, Stanford University, Stanford, California; and Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Ngan F Huang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Stanford Cardiovascular Institute, Stanford University, Stanford, California; and Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| |
Collapse
|
46
|
Evaluation of the clinical relevance and limitations of current pre-clinical models of peripheral artery disease. Clin Sci (Lond) 2015; 130:127-50. [DOI: 10.1042/cs20150435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Peripheral artery disease (PAD) has recognized treatment deficiencies requiring the discovery of novel interventions. This article describes current animal models of PAD and discusses their advantages and disadvantages. There is a need for models which more directly simulate the characteristics of human PAD, such as acute-on-chronic presentation, presence of established risk factors and impairment of physical activity.
Collapse
|
47
|
Ishii M, Nakahara T, Ikeuchi S, Nishimura M. β-Amyrin induces angiogenesis in vascular endothelial cells through the Akt/endothelial nitric oxide synthase signaling pathway. Biochem Biophys Res Commun 2015; 467:676-82. [DOI: 10.1016/j.bbrc.2015.10.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/17/2015] [Indexed: 11/16/2022]
|
48
|
Xu Y, Li Z, Li X, Fan Z, Liu Z, Xie X, Guan J. Regulating myogenic differentiation of mesenchymal stem cells using thermosensitive hydrogels. Acta Biomater 2015; 26:23-33. [PMID: 26277379 DOI: 10.1016/j.actbio.2015.08.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/30/2015] [Accepted: 08/11/2015] [Indexed: 01/02/2023]
Abstract
Stem cell therapy has potential to regenerate skeletal muscle tissue in ischemic limb. However, the delivered stem cells experience low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as their modulus may be tailored to induce the differentiation. Yet current approaches used to manipulate hydrogel modulus often simultaneously vary other properties that also affect stem cell differentiation, such as chemical structure, composition and water content. Thus it is challenging to demonstrate the decoupled effect of hydrogel modulus on stem cell differentiation. In this report, we decoupled the hydrogel modulus from chemical structure, composition, and water content using injectable and thermosensitive hydrogels. The hydrogels were synthesized from N-isopropylacrylamide (NIPAAm), acrylic acid (AAc), and degradable macromer 2-hydroxyethyl methacrylate-oligomer [oligolatide, oligohydroxybutyrate, or oligo(trimethylene carbonate)]. We found that using the same monomer composition and oligomer chemical structure but different oligomer length can independently vary hydrogel modulus. Rat bone marrow mesenchymal stem cells (MSCs) were encapsulated in the hydrogels with elastic expansion moduli of 11, 20, and 40 kPa, respectively. After 14 days of culture, significant myogenic differentiation was achieved for the hydrogel with elastic expansion modulus of 20 kPa, as judged from both the gene and protein expression. In addition, MSCs exhibited an elastic expansion modulus-dependent proliferation rate. The most significant proliferation was observed in the hydrogel with elastic expansion modulus of 40 kPa. These results demonstrate that the developed injectable and thermosensitive hydrogels with suitable modulus has the potential to deliver stem cells into ischemic limb for enhanced myogenic differentiation and muscle regeneration. STATEMENT OF SIGNIFICANCE Stem cell therapy for skeletal muscle regeneration in ischemic limb experiences low rate of myogenic differentiation. Employing injectable hydrogels as stem cell carriers may enhance the myogenic differentiation as hydrogel modulus may be modulated to induce the differentiation. Yet current approaches used to modulate hydrogel modulus may simultaneously vary other properties that also affect stem cell myogenic differentiation, such as chemistry, composition and water content. In this report, we decoupled the hydrogel modulus from chemistry, composition, and water content using injectable and thermosensitive hydrogels. We found that mesenchymal stem cells best differentiated into myogenic lineage in the hydrogel with elastic modulus of 20 kPa.
Collapse
Affiliation(s)
- Yanyi Xu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhenqing Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaofei Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States; Tongji Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
49
|
Nemoto M, Koyama H, Nishiyama A, Shigematsu K, Miyata T, Watanabe T. Adequate Selection of a Therapeutic Site Enables Efficient Development of Collateral Vessels in Angiogenic Treatment With Bone Marrow Mononuclear Cells. J Am Heart Assoc 2015; 4:e002287. [PMID: 26370447 PMCID: PMC4599510 DOI: 10.1161/jaha.115.002287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Induction of angiogenic mechanisms to promote development of collateral vessels is considered promising for the treatment of peripheral arterial diseases. Collateral vessels generally develop from preexisting arteriolar connections, bypassing the diseased artery. We speculated that induction of angiogenic mechanisms should be directed to such arteriolar connections to achieve efficient collateral development. The aim of this study was to verify this hypothesis using autologous transplantation of bone marrow mononuclear cells in the rabbit model of chronic limb ischemia. Methods and Results The left femoral artery was excised to induce limb ischemia in male rabbits. In this model, arteriolar connections in the left coccygeofemoral muscle tend to develop into collateral vessels, although this transformation is insufficient to alleviate the limb ischemia. In contrast, arteriolar connections in the closely located adductor muscle do not readily develop into collateral vessels. At 21 days after ischemia initiation, a sufficient number of automononuclear cells were selectively injected in the left coccygeofemoral muscle (coccygeo group) or left adductor muscle (adductor group). Evaluation of calf blood pressure ratios, blood flow in the left internal iliac artery, and angiographic scores at day 28 after injection revealed that collateral development and improvement of limb ischemia were significantly more efficient in the coccygeo group than in the adductor group. Morphometric analysis of the coccygeofemoral muscle at day 14 showed similar results. Conclusions Specific delivery of mononuclear cells to the coccygeofemoral but not the adductor muscle effectively improves collateral circulation in the rabbit model of limb ischemia and suggests that adequate site selection can facilitate therapeutic angiogenesis.
Collapse
Affiliation(s)
- Masaru Nemoto
- Department of Vascular Surgery, Graduate School of Medicine, University of Tokyo, Japan (M.N., H.K., A.N., K.S., T.W.)
| | - Hiroyuki Koyama
- Department of Vascular Surgery, Graduate School of Medicine, University of Tokyo, Japan (M.N., H.K., A.N., K.S., T.W.) Translational Research Center, The University of Tokyo Hospital, Tokyo, Japan (H.K.) Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University, Saitama, Japan (H.K.)
| | - Ayako Nishiyama
- Department of Vascular Surgery, Graduate School of Medicine, University of Tokyo, Japan (M.N., H.K., A.N., K.S., T.W.)
| | - Kunihiro Shigematsu
- Department of Vascular Surgery, Graduate School of Medicine, University of Tokyo, Japan (M.N., H.K., A.N., K.S., T.W.)
| | - Tetsuro Miyata
- Vascular Center, Sanno Hospital and Sanno Medical Center, Tokyo, Japan (T.M.)
| | - Toshiaki Watanabe
- Department of Vascular Surgery, Graduate School of Medicine, University of Tokyo, Japan (M.N., H.K., A.N., K.S., T.W.)
| |
Collapse
|
50
|
Wang YQ, Cao Q, Wang F, Huang LY, Sang TT, Liu F, Chen SY. SIRT1 Protects Against Oxidative Stress-Induced Endothelial Progenitor Cells Apoptosis by Inhibiting FOXO3a via FOXO3a Ubiquitination and Degradation. J Cell Physiol 2015; 230:2098-107. [PMID: 25640014 DOI: 10.1002/jcp.24938] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/16/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Yu-Qiang Wang
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Qing Cao
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Fei Wang
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Li-Ya Huang
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Tian-Tian Sang
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Fang Liu
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Shu-Yan Chen
- Department of Geriatrics; Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|