1
|
Cardarelli S, Biglietto M, Orsini T, Fustaino V, Monaco L, de Oliveira do Rêgo AG, Liccardo F, Masciarelli S, Fazi F, Naro F, De Angelis L, Pellegrini M. Modulation of cAMP/cGMP signaling as prevention of congenital heart defects in Pde2A deficient embryos: a matter of oxidative stress. Cell Death Dis 2024; 15:169. [PMID: 38395995 PMCID: PMC10891154 DOI: 10.1038/s41419-024-06549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Phosphodiesterase 2A (Pde2A) is a dual-specific PDE that breaks down both cAMP and cGMP cyclic nucleotides. We recently highlighted a direct relationship between Pde2A impairment, a consequent increase of cAMP, and the appearance of mouse congenital heart defects (CHDs). Here we aimed to characterize the pathways involved in the development of CHDs and in their prevention by pharmacological approaches targeting cAMP and cGMP signaling. Transcriptome analysis revealed a modulation of more than 500 genes affecting biological processes involved in the immune system, cardiomyocyte development and contractility, angiogenesis, transcription, and oxidative stress in hearts from Pde2A-/- embryos. Metoprolol and H89 pharmacological administration prevented heart dilatation and hypertabeculation in Pde2A-/- embryos. Metoprolol was also able to partially impede heart septum defect and oxidative stress at tissue and molecular levels. Amelioration of cardiac defects was also observed by using the antioxidant NAC, indicating oxidative stress as one of the molecular mechanisms underpinning the CHDs. In addition, Sildenafil treatment recovered cardiac defects suggesting the requirement of cAMP/cGMP nucleotides balance for the correct heart development.
Collapse
Affiliation(s)
- Silvia Cardarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Martina Biglietto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Tiziana Orsini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Valentina Fustaino
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185, Rome, Italy
| | | | - Francesca Liccardo
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Fabio Naro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Luciana De Angelis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Manuela Pellegrini
- Institute of Biochemistry and Cell Biology, IBBC-CNR, 00015, Monterotondo Scalo, Rome, Italy.
| |
Collapse
|
2
|
Schurtz G, Mewton N, Lemesle G, Delmas C, Levy B, Puymirat E, Aissaoui N, Bauer F, Gerbaud E, Henry P, Bonello L, Bochaton T, Bonnefoy E, Roubille F, Lamblin N. Beta-blocker management in patients admitted for acute heart failure and reduced ejection fraction: a review and expert consensus opinion. Front Cardiovasc Med 2023; 10:1263482. [PMID: 38050613 PMCID: PMC10693984 DOI: 10.3389/fcvm.2023.1263482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
The role of the beta-adrenergic signaling pathway in heart failure (HF) is pivotal. Early blockade of this pathway with beta-blocker (BB) therapy is recommended as the first-line medication for patients with HF and reduced ejection fraction (HFrEF). Conversely, in patients with severe acute HF (AHF), including those with resolved cardiogenic shock (CS), BB initiation can be hazardous. There are very few data on the management of BB in these situations. The present expert consensus aims to review all published data on the use of BB in patients with severe decompensated AHF, with or without hemodynamic compromise, and proposes an expert-recommended practical algorithm for the prescription and monitoring of BB therapy in critical settings.
Collapse
Affiliation(s)
- Guillaume Schurtz
- USICet Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Nathan Mewton
- Hôpital Cardio-Vasculaire Louis Pradel. Filière Insuffisance Cardiaque, Centre D'Investigation Clinique, INSERM 1407. Unité CarMeN, INSERM 1060, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Lemesle
- USICet Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Unité INSERM UMR1011, Lille, France
- Faculté de Médecine de l’Université de Lille, Lille, France
- FACT (French Alliance for Cardiovascular Trials), Paris, France
| | - Clément Delmas
- Intensive Cardiac Care Unit, Rangueil University Hospital, Toulouse, France
| | - Bruno Levy
- Service de Réanimation Médicale Brabois, CHRU Nancy, Pôle Cardio-Médico-Chirurgical, Vandoeuvre-les-Nancy, INSERM U1116, Faculté de Médecine, Vandoeuvre-les-Nancy, Université de Lorraine, Nancy, France
| | - Etienne Puymirat
- Department of Cardiology, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Nadia Aissaoui
- Médecine Intensive Réanimation, Cochin, AfterROSC, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Cité, Paris, France
| | - Fabrice Bauer
- Heart Failure Network, Advanced Heart Failure Clinic and Pulmonary Hypertension Department, Cardiac Surgery Department, INSERM U1096, Rouen University Teaching Hospital, Rouen, France
| | - Edouard Gerbaud
- Cardiology Intensive Care Unit and Interventional Cardiology, Hôpital Cardiologique du Haut-Lévêque, Pessac, France
- Bordeaux Cardio-Thoracic Research Centre, INSERM U1045, Bordeaux University, Bordeaux, France
| | - Patrick Henry
- Department of Cardiology, Assistance Publique-Hôpitaux de Paris, INSERM U942, University of Paris, Paris, France
| | - Laurent Bonello
- Cardiology Department, APHM, Mediterranean Association for Research and Studies in Cardiology (MARS Cardio), Centre for CardioVascular and Nutrition Research (C2VN), INSERM 1263, INRA 1260, Aix-Marseille Univ, Marseille, France
| | - Thomas Bochaton
- Intensive Cardiological Care Division, Hospices Civils de Lyon-Hôpital Cardiovasculaire et Pulmonaire, Lyon, France
| | - Eric Bonnefoy
- Intensive Cardiological Care Division, Hospices Civils de Lyon-Hôpital Cardiovasculaire et Pulmonaire, Lyon, France
| | - François Roubille
- Cardiology Department, INI-CRT, CHU de Montpellier, PhyMedExp, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Nicolas Lamblin
- Cardiology Department, Heart and Lung Institute, University Hospital of Lille, Lille, France
- INSERM U1167, Institut Pasteur of Lille, Lille, France
| |
Collapse
|
3
|
Wei W, Smrcka AV. Subcellular β-Adrenergic Receptor Signaling in Cardiac Physiology and Disease. J Cardiovasc Pharmacol 2022; 80:334-341. [PMID: 35881897 PMCID: PMC9452480 DOI: 10.1097/fjc.0000000000001324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/29/2022] [Indexed: 01/31/2023]
Abstract
ABSTRACT Adrenergic receptors are critical regulators of cardiac function with profound effects on cardiac output during sympathetic stimulation. Chronic stimulation of the adrenergic system of the heart under conditions of cardiac stress leads to cardiac dysfunction, hypertrophy, and ultimately failure. Emerging data have revealed that G protein-coupled receptors in intracellular compartments are functionally active and regulate distinct cellular processes from those at the cell surface. β2 adrenergic receptors internalize onto endosomes in various cell types where they have recently been shown to continue to stimulate cAMP production to selectively regulate gene expression. Other studies have identified β1 adrenergic receptors at the nuclear envelope and the Golgi apparatus. Here, we discuss data on signaling by β1 and β2 adrenergic receptors in the heart and the possible influence of their subcellular locations on their divergent physiological functions in cardiac myocytes and in cardiac pathology. Understanding the relative roles of these receptors at these locations could have a significant impact on pharmacological targeting of these receptors for the treatment of heart failure and cardiac diseases.
Collapse
Affiliation(s)
- Wenhui Wei
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI
| | | |
Collapse
|
4
|
Petersen J, Kloth B, Iqbal S, Reichenspurner H, Geelhoed B, Schnabel R, Eschenhagen T, Christ T, Girdauskas E. Blunted beta-adrenoceptor-mediated inotropy in valvular cardiomyopathy: another piece of the puzzle in human aortic valve disease. Eur J Cardiothorac Surg 2021; 60:56-63. [PMID: 33619556 DOI: 10.1093/ejcts/ezab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Heart failure induced by valvular cardiomyopathy occurs in a substantial proportion of patients undergoing heart valve surgery. We aimed (i) to quantify beta-adrenoceptor (beta-AR) function by measuring the inotropic effect of isoprenaline in left ventricular (LV) tissue and (ii) to correlate beta-AR-mediated inotropy with clinical markers of heart failure. METHODS A total of 179 LV myocardial samples were obtained from 104 consecutive patients who underwent aortic valve (AV) surgery between 2017 and 2019. Beta-ARs were stimulated by increasing the concentrations of isoprenaline, followed by a single high concentration of forskolin and calcium. Beta-AR sensitivity was estimated as the concentration to achieve half maximum effects (EC50). Maximum effect size was calculated as the relative beta-AR-mediated inotropic response compared to the force in the presence of high calcium [FISO/Ca (%)]. In vitro data were correlated with the clinical indicators of LV disease. RESULTS FISO/Ca was independent of age and sex and amounted to 79.6 ± 20.5%. In a multivariate regression model, we found a significant inverse association between FISO/Ca and preoperative left ventricular end-diastolic diameter increase per 10 mm (OR -9.24, 95% CI -16.66 to -1.82; P = 0.015). Furthermore, patients with end-stage heart failure showed a strong tendency towards more severe reduction of max beta-AR response, as indicated by reduced FISO/Ca in a multivariate model (OR -29.60, 95% CI -61.92 to 2.72; P = 0.055). CONCLUSIONS Our study indicates that in vitro myocardial contractility testing can quantify beta-AR dysfunction in patients with AV disease. We found a significant association between reduced beta-AR sensitivity and increased LV diameter, which may indicate a role of beta-AR dysfunction in the development of heart failure in patients with AV disease.
Collapse
Affiliation(s)
- Johannes Petersen
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Benjamin Kloth
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Shahria Iqbal
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Bastian Geelhoed
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Renate Schnabel
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Department of Cardiology, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Thomas Eschenhagen
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Torsten Christ
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
5
|
Pecha S, Geelhoed B, Kempe R, Berk E, Engel A, Girdauskas E, Reichenspurner H, Ravens U, Kaumann A, Eschenhagen T, Schnabel RB, Christ T. No impact of sex and age on beta-adrenoceptor-mediated inotropy in human right atrial trabeculae. Acta Physiol (Oxf) 2021; 231:e13564. [PMID: 33002334 DOI: 10.1111/apha.13564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
AIM There is an increasing awareness of the impact of age and sex on cardiovascular diseases (CVDs). Differences in physiology are suspected. Beta-adrenoceptors (beta-ARs) are an important drug target in CVD and potential differences might have significant impact on the treatment of many patients. To investigate whether age and sex affects beta-AR function, we analysed a large data set on beta-AR-induced inotropy in human atrial trabeculae. METHODS We performed multivariable analysis of individual atrial contractility data from trabeculae obtained during heart surgery of patients in sinus rhythm (535 trabeculae from 165 patients). Noradrenaline or adrenaline were used in the presence of the beta2 -selective antagonist (ICI 118 551, 50 nmol/L) or the beta1 -selective antagonist (CGP 20712A, 300 nmol/L) to stimulate beta1 -AR or beta2 -AR respectively. Agonist concentration required to achieve half-maximum inotropic effects (EC50 ) was taken as a measure of beta-AR sensitivity. RESULTS Impact of clinical variables was modelled using multivariable mixed model regression. As previously reported, chronic treatment with beta-blockers sensitized beta-AR. However, there was no significant interaction between basal force, maximum force and beta-AR sensitivity when age and sex were modelled continuously. In addition, there was no statistically significant effect of body mass index or diabetes on atrial contractility. CONCLUSION Our large, multivariable analysis shows that neither age nor sex affects beta-AR-mediated inotropy or catecholamine sensitivity in human atrial trabeculae. These findings may have important clinical implications because beta-ARs, as a common drug target in CVD and heart failure, do not behave differently in women and men across age decades.
Collapse
Affiliation(s)
- Simon Pecha
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Cardiovascular Surgery University Heart and Vascular Center Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| | - Bastiaan Geelhoed
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
- Department of General and Interventional Cardiology University Heart and Vascular Center Hamburg Germany
| | - Romy Kempe
- Department of Pharmacology Dresden University of Technology Dresden Germany
| | - Emanuel Berk
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Pharmacology Dresden University of Technology Dresden Germany
- Department of Internal Medicine St. Joseph‐Stift Hospital Dresden Germany
| | - Andreas Engel
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Pharmacology Dresden University of Technology Dresden Germany
| | - Evaldas Girdauskas
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Cardiovascular Surgery University Heart and Vascular Center Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| | - Hermann Reichenspurner
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Cardiovascular Surgery University Heart and Vascular Center Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| | - Ursula Ravens
- Institute of Experimental Cardiovascular Medicine University Heart Center Freiburg‐Bad KrozingenUniversity of Freiburg Freiburg Germany
| | - Alberto Kaumann
- Department of Pharmacology University of Murcia Murcia Spain
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| | - Renate B. Schnabel
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
- Department of General and Interventional Cardiology University Heart and Vascular Center Hamburg Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| |
Collapse
|
6
|
Moore CL, Henry DS, McClenahan SJ, Ball KK, Rusch NJ, Rhee SW. Metoprolol Impairs β1-Adrenergic Receptor-Mediated Vasodilation in Rat Cerebral Arteries: Implications for β-Blocker Therapy. J Pharmacol Exp Ther 2020; 376:127-135. [PMID: 33100271 DOI: 10.1124/jpet.120.000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022] Open
Abstract
The practice of prescribing β-blockers to lower blood pressure and mitigate perioperative cardiovascular events has been questioned because of reports of an increased risk of stroke. The benefit of β-blocker therapy primarily relies on preventing activation of cardiac β1-adrenergic receptors (ARs). However, we reported that β1ARs also mediate vasodilator responses of rat cerebral arteries (CAs), implying that β-blockers may impair cerebral blood flow under some conditions. Here, we defined the impact of metoprolol (MET), a widely prescribed β1AR-selective antagonist, on adrenergic-elicited diameter responses of rat CAs ex vivo and in vivo. MET (1-10 µmol/l) prevented β1AR-mediated increases in diameter elicited by dobutamine in cannulated rat CAs. The β1AR-mediated dilation elicited by the endogenous adrenergic agonist norepinephrine (NE) was reversed to a sustained constriction by MET. Acute oral administration of MET (30 mg/kg) to rats in doses that attenuated resting heart rate and dobutamine-induced tachycardia also blunted β1AR-mediated dilation of CAs. In the same animals, NE-induced dilation of CAs was reversed to sustained constriction. Administration of MET for 2 weeks in drinking water (2 mg/ml) or subcutaneously (15 mg/kg per day) also resulted in NE-induced constriction of CAs in vivo. Thus, doses of MET that protect the heart from adrenergic stimulation also prevent β1AR-mediated dilation of CAs and favor anomalous adrenergic constriction. Our findings raise the possibility that the increased risk of ischemic stroke in patients on β-blockers relates in part to adrenergic dysregulation of cerebrovascular tone. SIGNIFICANCE STATEMENT: β-Blocker therapy using second-generation, cardioselective β-blockers is associated with an increased risk of stroke, but the responsible mechanisms are unclear. Here, we report that either acute or chronic systemic administration of a cardioselective β-blocker, metoprolol, mitigates adrenergic stimulation of the heart as an intended beneficial action. However, metoprolol concomitantly eliminates vasodilator responses to adrenergic stimuli of rat cerebral arteries in vivo as a potential cause of dysregulated cerebral blood flow predisposing to ischemic stroke.
Collapse
Affiliation(s)
- Christopher L Moore
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - David S Henry
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Samantha J McClenahan
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly K Ball
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
7
|
Belletti A, Landoni G, Lomivorotov VV, Oriani A, Ajello S. Adrenergic Downregulation in Critical Care: Molecular Mechanisms and Therapeutic Evidence. J Cardiothorac Vasc Anesth 2019; 34:1023-1041. [PMID: 31839459 DOI: 10.1053/j.jvca.2019.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Catecholamines remain the mainstay of therapy for acute cardiovascular dysfunction. However, adrenergic receptors quickly undergo desensitization and downregulation after prolonged stimulation. Moreover, prolonged exposure to high circulating catecholamines levels is associated with several adverse effects on different organ systems. Unfortunately, in critically ill patients, adrenergic downregulation translates into progressive reduction of cardiovascular response to exogenous catecholamine administration, leading to refractory shock. Accordingly, there has been a growing interest in recent years toward use of noncatecholaminergic inotropes and vasopressors. Several studies investigating a wide variety of catecholamine-sparing strategies (eg, levosimendan, vasopressin, β-blockers, steroids, and use of mechanical circulatory support) have been published recently. Use of these agents was associated with improvement in hemodynamics and decreased catecholamine use but without a clear beneficial effect on major clinical outcomes. Accordingly, additional research is needed to define the optimal management of catecholamine-resistant shock.
Collapse
Affiliation(s)
- Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Vladimir V Lomivorotov
- Department of Anesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Alessandro Oriani
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ajello
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Toni LS, Carroll IA, Jones KL, Schwisow JA, Minobe WA, Rodriguez EM, Altman NL, Lowes BD, Gilbert EM, Buttrick PM, Kao DP, Bristow MR. Sequential analysis of myocardial gene expression with phenotypic change: Use of cross-platform concordance to strengthen biologic relevance. PLoS One 2019; 14:e0221519. [PMID: 31469842 PMCID: PMC6716635 DOI: 10.1371/journal.pone.0221519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the biologic relevance of cross-platform concordant changes in gene expression in intact human failing/hypertrophied ventricular myocardium undergoing reverse remodeling. Background Information is lacking on genes and networks involved in remodeled human LVs, and in the associated investigative best practices. Methods We measured mRNA expression in ventricular septal endomyocardial biopsies from 47 idiopathic dilated cardiomyopathy patients, at baseline and after 3–12 months of β-blocker treatment to effect left ventricular (LV) reverse remodeling as measured by ejection fraction (LVEF). Cross-platform gene expression change concordance was investigated in reverse remodeling Responders (R) and Nonresponders (NR) using 3 platforms (RT-qPCR, microarray, and RNA-Seq) and two cohorts (All 47 subjects (A-S) and a 12 patient “Super-Responder” (S-R) subset of A-S). Results For 50 prespecified candidate genes, in A-S mRNA expression 2 platform concordance (CcpT), but not single platform change, was directly related to reverse remodeling, indicating CcpT has biologic significance. Candidate genes yielded a CcpT (PCR/microarray) of 62% for Responder vs. Nonresponder (R/NR) change from baseline analysis in A-S, and ranged from 38% to 100% in S-R for PCR/microarray/RNA-Seq 2 platform comparisons. Global gene CcpT measured by microarray/RNA-Seq was less than for candidate genes, in S-R R/NR 17.5% vs. 38% (P = 0.036). For S-R global gene expression changes, both cross-cohort concordance (CccT) and CcpT yielded markedly greater values for an R/NR vs. an R-only analysis (by 22 fold for CccT and 7 fold for CcpT). Pathway analysis of concordant global changes for R/NR in S-R revealed signals for downregulation of multiple phosphoinositide canonical pathways, plus expected evidence of a β1-adrenergic receptor gene network including enhanced Ca2+ signaling. Conclusions Two-platform concordant change in candidate gene expression is associated with LV biologic effects, and global expression concordant changes are best identified in an R/NR design that can yield novel information.
Collapse
Affiliation(s)
- Lee S Toni
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Ian A Carroll
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,ARCA biopharma, Westminster, Colorado, United States of America
| | - Kenneth L Jones
- Department of Pediatrics, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jessica A Schwisow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wayne A Minobe
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Erin M Rodriguez
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Natasha L Altman
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Brian D Lowes
- Division of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Edward M Gilbert
- Division of Cardiology, University of Utah Medical Center, Salt Lake City, Utah, United States of America
| | - Peter M Buttrick
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - David P Kao
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| | - Michael R Bristow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado, United States of America.,ARCA biopharma, Westminster, Colorado, United States of America.,University of Colorado Cardiovascular Institute Pharmacogenomics, Boulder and Aurora, Colorado, United States of America
| |
Collapse
|
9
|
Abstract
Advances in the treatment of heart failure with reduced ejection fraction due to systolic dysfunction are engaging an ever-expanding compendium of molecular signaling targets. Well established approaches modifying hemodynamics and cell biology by neurohumoral receptor blockade are evolving, exploring the role and impact of modulating intracellular signaling pathways with more direct myocardial effects. Even well-tread avenues are being reconsidered with new insights into the signaling engaged and thus opportunity to treat underlying myocardial disease. This review explores therapies that have proven successful, those that have not, those that are moving into the clinic but whose utility remains to be confirmed, and those that remain in the experimental realm. The emphasis is on signaling pathways that are tractable for therapeutic manipulation. Of the approaches yet to be tested in humans, we chose those with a well-established experimental history, where clinical translation may be around the corner. The breadth of opportunities bodes well for the next generation of heart failure therapeutics.
Collapse
Affiliation(s)
| | | | - David A. Kass
- Division of Cardiology, Department of Medicine
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University, Baltimore Maryland, 21205
| |
Collapse
|
10
|
Affiliation(s)
- Joseph C. Wu
- From the Stanford Cardiovascular Institute (J.C.W., Y.J.W., M.M., R.A.H., T.Q.), Stanford University School of Medicine, CA
- Division of Cardiology (J.C.W., R.A.H., T.Q.), Stanford University School of Medicine, CA
| | - Y. Joseph Woo
- From the Stanford Cardiovascular Institute (J.C.W., Y.J.W., M.M., R.A.H., T.Q.), Stanford University School of Medicine, CA
- Department of Cardiothoracic Surgery (Y.J.W.), Stanford University School of Medicine, CA
| | - Megan Mayerle
- From the Stanford Cardiovascular Institute (J.C.W., Y.J.W., M.M., R.A.H., T.Q.), Stanford University School of Medicine, CA
| | - Robert A. Harrington
- From the Stanford Cardiovascular Institute (J.C.W., Y.J.W., M.M., R.A.H., T.Q.), Stanford University School of Medicine, CA
- Department of Medicine (R.A.H.), Stanford University School of Medicine, CA
- Division of Cardiology (J.C.W., R.A.H., T.Q.), Stanford University School of Medicine, CA
| | - Thomas Quertermous
- From the Stanford Cardiovascular Institute (J.C.W., Y.J.W., M.M., R.A.H., T.Q.), Stanford University School of Medicine, CA
- Division of Cardiology (J.C.W., R.A.H., T.Q.), Stanford University School of Medicine, CA
| |
Collapse
|
11
|
Power AS, Norman R, Jones TLM, Hickey AJ, Ward ML. Mitochondrial function remains impaired in the hypertrophied right ventricle of pulmonary hypertensive rats following short duration metoprolol treatment. PLoS One 2019; 14:e0214740. [PMID: 30964911 PMCID: PMC6456253 DOI: 10.1371/journal.pone.0214740] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary hypertension (PH) increases the work of the right ventricle (RV) and causes right-sided heart failure. This study examined RV mitochondrial function and ADP transfer in PH animals advancing to right heart failure, and investigated a potential therapy with the specific β1-adrenergic-blocker metoprolol. Adult Wistar rats (317 ± 4 g) were injected either with monocrotaline (MCT, 60 mg kg-1) to induce PH, or with an equivalent volume of saline for controls (CON). At three weeks post-injection the MCT rats began oral metoprolol (10 mg kg-1 day-1-) or placebo treatment until heart failure was observed in the MCT group. Mitochondrial function was then measured using high-resolution respirometry from permeabilised RV fibres. Relative to controls, MCT animals had impaired mitochondrial function but maintained coupling between myofibrillar ATPases and mitochondria, despite an increase in ADP diffusion distances. Cardiomyocytes from the RV of MCT rats were enlarged, primarily due to an increase in myofibrillar protein. The ratio of mitochondria per myofilament area was decreased in both MCT groups (p ≤ 0.05) in comparison to control (CON: 1.03 ± 0.04; MCT: 0.74 ± 0.04; MCT + BB: 0.74 ± 0.03). This not only implicates impaired energy production in PH, but also increases the diffusion distance for metabolites within the MCT cardiomyocytes, adding an additional hindrance to energy supply. Together, these changes may limit energy supply in MCT rat hearts, particularly at high cardiac workloads. Metoprolol treatment did not delay the onset of heart failure symptoms, improve mitochondrial function, or regress RV hypertrophy.
Collapse
Affiliation(s)
- Amelia S. Power
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (M-L W); (ASP)
| | - Ruth Norman
- School of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Timothy L. M. Jones
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony J. Hickey
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Marie-Louise Ward
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- * E-mail: (M-L W); (ASP)
| |
Collapse
|
12
|
Tomek J, Hao G, Tomková M, Lewis A, Carr C, Paterson DJ, Rodriguez B, Bub G, Herring N. β-Adrenergic Receptor Stimulation and Alternans in the Border Zone of a Healed Infarct: An ex vivo Study and Computational Investigation of Arrhythmogenesis. Front Physiol 2019; 10:350. [PMID: 30984029 PMCID: PMC6450465 DOI: 10.3389/fphys.2019.00350] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Following myocardial infarction (MI), the myocardium is prone to calcium-driven alternans, which typically precedes ventricular tachycardia and fibrillation. MI is also associated with remodeling of the sympathetic innervation in the infarct border zone, although how this influences arrhythmogenesis is controversial. We hypothesize that the border zone is most vulnerable to alternans, that β-adrenergic receptor stimulation can suppresses this, and investigate the consequences in terms of arrhythmogenic mechanisms. Methods and Results: Anterior MI was induced in Sprague-Dawley rats (n = 8) and allowed to heal over 2 months. This resulted in scar formation, significant (p < 0.05) dilation of the left ventricle, and reduction in ejection fraction compared to sham operated rats (n = 4) on 7 T cardiac magnetic resonance imaging. Dual voltage/calcium optical mapping of post-MI Langendorff perfused hearts (using RH-237 and Rhod2) demonstrated that the border zone was significantly more prone to alternans than the surrounding myocardium at longer cycle lengths, predisposing to spatially heterogeneous alternans. β-Adrenergic receptor stimulation with norepinephrine (1 μmol/L) attenuated alternans by 60 [52–65]% [interquartile range] and this was reversed with metoprolol (10 μmol/L, p = 0.008). These results could be reproduced by computer modeling of the border zone based on our knowledge of β-adrenergic receptor signaling pathways and their influence on intracellular calcium handling and ion channels. Simulations also demonstrated that β-adrenergic receptor stimulation in this specific region reduced the formation of conduction block and the probability of premature ventricular activation propagation. Conclusion: While high levels of overall cardiac sympathetic drive are a negative prognostic indicator of mortality following MI and during heart failure, β-adrenergic receptor stimulation in the infarct border zone reduced spatially heterogeneous alternans, and prevented conduction block and propagation of extrasystoles. This may help explain recent clinical imaging studies using meta-iodobenzylguanidine (MIBG) and 11C-meta-hydroxyephedrine positron emission tomography (PET) which demonstrate that border zone denervation is strongly associated with a high risk of future arrhythmia.
Collapse
Affiliation(s)
- Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Guoliang Hao
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Markéta Tomková
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew Lewis
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Carolyn Carr
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Neil Herring
- Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Precision Medicine for Heart Failure: Back to the Future. J Am Coll Cardiol 2019; 73:1185-1188. [PMID: 30871702 DOI: 10.1016/j.jacc.2019.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/16/2018] [Accepted: 01/01/2019] [Indexed: 11/21/2022]
|
14
|
Grande D, Iacoviello M, Aspromonte N. The effects of heart rate control in chronic heart failure with reduced ejection fraction. Heart Fail Rev 2019; 23:527-535. [PMID: 29687317 DOI: 10.1007/s10741-018-9704-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Elevated heart rate has been associated with worse prognosis both in the general population and in patients with heart failure. Heart rate is finely modulated by neurohormonal signals and it reflects the balance between the sympathetic and the parasympathetic limbs of the autonomic nervous system. For this reason, elevated heart rate in heart failure has been considered an epiphenomenon of the sympathetic hyperactivation during heart failure. However, experimental and clinical evidence suggests that high heart rate could have a direct pathogenetic role. Consequently, heart rate might act as a pathophysiological mediator of heart failure as well as a marker of adverse outcome. This hypothesis has been supported by the observation that the positive effect of beta-blockade could be linked to the degree of heart rate reduction. In addition, the selective heart rate control with ivabradine has recently been demonstrated to be beneficial in patients with heart failure and left ventricular systolic dysfunction. The objective of this review is to examine the pathophysiological implications of elevated heart rate in chronic heart failure and explore the mechanisms underlying the effects of pharmacological heart rate control.
Collapse
Affiliation(s)
- Dario Grande
- School of Cardiology, University of Bari, Bari, Italy
| | - Massimo Iacoviello
- Cardiology Unit, Cardiothoracic Department, Policlinic University Hospital, Bari, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular Medicine, Foundation Policlinico Gemelli, Rome, Italy.
| |
Collapse
|
15
|
Patients Taking β-Blockers Do Not Require Increased Doses of Epinephrine for Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1553-1558.e1. [DOI: 10.1016/j.jaip.2017.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/14/2017] [Accepted: 12/13/2017] [Indexed: 11/24/2022]
|
16
|
Rodina TA, Mel’nikov ES, Dmitriev AI, Belkov SA, Sokolov AV, Arkhipov VV, Prokof’ev AB. Simultaneous Determination of Metoprolol and Bisoprolol in Human Serum by HPLC-MS/MS for Clinical Drug Monitoring. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1750-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of Heart Failure With Reduced Ejection Fraction. JACC Basic Transl Sci 2017; 2:669-683. [PMID: 30062182 PMCID: PMC6058945 DOI: 10.1016/j.jacbts.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Abstract
Inotropic support is often required to stabilize the hemodynamics of patients with acute decompensated heart failure; while efficacious, it has a history of leading to lethal arrhythmias and/or exacerbating contractile and energetic insufficiencies. Novel therapeutics that can improve contractility independent of beta-adrenergic and protein kinase A-regulated signaling, should be therapeutically beneficial. This study demonstrates that acute protein kinase C-α/β inhibition, with ruboxistaurin at 3 months' post-myocardial infarction, significantly increases contractility and reduces the end-diastolic/end-systolic volumes, documenting beneficial remodeling. These data suggest that ruboxistaurin represents a potential novel therapeutic for heart failure patients, as a moderate inotrope or therapeutic, which leads to beneficial ventricular remodeling.
Collapse
Key Words
- ADHF, acute decompensated heart failure
- DIG, digitalis
- DOB, dobutamine
- ECG, electrocardiogram
- EDPVR, end-diastolic pressure-volume relationship
- EDV, end-diastolic volume
- ESPVR, end-systolic pressure-volume relationship
- ESV, end-systolic volume
- Ees, elastance end-systole
- HF, heart failure
- HFrEF, heart failure with reduced ejection fraction
- IR, ischemia–reperfusion
- LAD, left anterior descending coronary artery
- LV, left ventricle/ventricular
- LVEDV, left ventricular end-diastolic volume
- LVEF, left ventricular ejection fraction
- LVVPed10, left ventricular end-diastolic volume at a pressure of 10 mm Hg
- LVVPes80, left ventricular end- systolic volume at a pressure of 80 mm Hg
- MI, myocardial infarction
- PKA, protein kinase A
- PKC, protein kinase C
- PKCα/β inhibitor
- PLN, phospholamban
- PRSW, pre-load recruitable stroke work
- RBX, ruboxistaurin
- acute myocardial infarction
- heart failure with reduced ejection fraction
- invasive hemodynamics
- positive inotropy
Collapse
|
18
|
Tomek J, Rodriguez B, Bub G, Heijman J. β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis. Am J Physiol Heart Circ Physiol 2017; 313:H338-H353. [PMID: 28550171 PMCID: PMC5582914 DOI: 10.1152/ajpheart.00094.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/12/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights into underlying mechanisms, adding to a recent controversy about pro-/antiarrhythmic effects of postmyocardial infarction hyperinnervation. The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine ventricular cardiomyocyte to study the determinants of alternans in the BZ and their regulation by β-adrenergic receptor (β-AR) stimulation. The BZ model developed Ca2+ transient alternans at slower pacing cycle lengths than the control model, suggesting that the BZ may promote spatially heterogeneous alternans formation in an infarcted heart. β-AR stimulation abolished alternans. By evaluating all combinations of downstream β-AR stimulation targets, we identified both direct (via ryanodine receptor channels) and indirect [via sarcoplasmic reticulum (SR) Ca2+ load] modulation of SR Ca2+ release as critical determinants of Ca2+ transient alternans. These findings were confirmed in a human ventricular cardiomyocyte model. Cell-to-cell coupling indirectly modulated the likelihood of alternans by affecting the action potential upstroke, reducing the trigger for SR Ca2+ release in one-dimensional strand simulations. However, β-AR stimulation inhibited alternans in both single and multicellular simulations. Taken together, these data highlight a potential antiarrhythmic role of sympathetic hyperinnervation in the BZ by reducing the likelihood of alternans and provide new insights into the underlying mechanisms controlling Ca2+ transient and repolarization alternans. NEW & NOTEWORTHY We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights into underlying mechanisms, adding to a recent controversy about pro-/antiarrhythmic effects of postmyocardial infarction hyperinnervation. Listen to this article’s corresponding podcast at http://ajpheart.podbean.com/e/%CE%B2-ar-stimulation-and-alternans-in-border-zone-cardiomyocytes/.
Collapse
Affiliation(s)
- Jakub Tomek
- Life Sciences Interface Doctoral Training Centre, University of Oxford, Oxford, United Kingdom; .,Department of Physiology, Anatomy and Genetics, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Gil Bub
- Department of Physiology, McGill University, Montreal, Quebec, Canada; and
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
19
|
Ciarka A, Lund LH, Van Cleemput J, Voros G, Droogne W, Vanhaecke J. Effect of Heart Rate and Use of Beta Blockers on Mortality After Heart Transplantation. Am J Cardiol 2016; 118:1916-1921. [PMID: 27743576 DOI: 10.1016/j.amjcard.2016.08.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Heart transplantation (HT) recipients may have tachycardia secondary to cardiac denervation. As higher heart rate predicts worse outcomes in cardiovascular disease, we hypothesized that tachycardia and nonuse of β blockers are associated with increased mortality after HT. All patients who underwent HT at our institution from 1987 to 2010 were included. The association of heart rate 3 months after HT and β-blocker use during follow-up to mortality was assessed using Kaplan-Meier and multivariate Cox proportional hazards regression analyses adjusting for clinically relevant baseline variables. From 1987 to 2010, there were 493 HT. After excluding 29 who died within 3 months and 3 with follow-up <3 months, 461 HT recipients (50 ± 2 years; 20% women) were included. Over a follow-up of 12 ± 7 years, selected important univariate predictors of post-HT mortality were older age, male gender, higher body mass index, ischemic cardiomyopathy, longer post-HT intensive care unit stay, and hospitalization and at 3 months, increased mean pulmonary artery pressure, right atrial pressure and pulmonary capillary occlusion pressure, higher heart rate, and nonuse of β blockers during follow-up. In multivariate analysis, older ager, longer hospitalization, higher mean pulmonary artery pressure, higher heart rate at 3 months (hazard ratio 1.02 per beat, 95% confidence interval 1.008 to 1.035, p = 0.02) and nonuse of β blockers (hazard ratio 1.43, 95% confidence interval 1.002 to 2.031, p <0.05) were associated with mortality. In conclusion, in a large single-center cohort of HT recipients, higher heart rate and nonuse of β blockers were independently associated with higher mortality.
Collapse
|
20
|
Motivala AA, Parikh V, Roe M, Dai D, Abbott JD, Prasad A, Mukherjee D. Predictors, Trends, and Outcomes (Among Older Patients ≥65 Years of Age) Associated With Beta-Blocker Use in Patients With Stable Angina Undergoing Elective Percutaneous Coronary Intervention. JACC Cardiovasc Interv 2016; 9:1639-48. [DOI: 10.1016/j.jcin.2016.05.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/29/2016] [Accepted: 05/19/2016] [Indexed: 02/01/2023]
|
21
|
Lindenfeld J, Cleveland JC, Kao DP, White M, Wichman S, Bristow JC, Peterson V, Rodegheri-Brito J, Korst A, Blain-Nelson P, Sederberg J, Hunt SA, Gilbert EM, Ambardekar AV, Minobe W, Port JD, Bristow MR. Sex-related differences in age-associated downregulation of human ventricular myocardial β1-adrenergic receptors. J Heart Lung Transplant 2016; 35:352-361. [PMID: 26970472 DOI: 10.1016/j.healun.2015.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/24/2015] [Accepted: 10/14/2015] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | - David P Kao
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michel White
- The Montreal Heart Institute, Montreal, Quebec, Canada
| | - Scott Wichman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Armin Korst
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - James Sederberg
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | | | - Wayne Minobe
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jonathan D Port
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | |
Collapse
|
22
|
Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med 2016; 42:1387-97. [PMID: 26873833 DOI: 10.1007/s00134-016-4249-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023]
Abstract
Catecholamines are endogenous neurosignalling mediators and hormones. They are integral in maintaining homeostasis by promptly responding to any stressor. Their synthetic equivalents are the current mainstay of treatment in shock states to counteract myocardial depression and/or vasoplegia. These phenomena are related in large part to decreased adrenoreceptor sensitivity and altered adrenergic signalling, with resultant vascular and cardiomyocyte hyporeactivity. Catecholamines are predominantly used in supraphysiological doses to overcome these pathological consequences. However, these adrenergic agents cause direct organ damage and have multiple 'off-target' biological effects on immune, metabolic and coagulation pathways, most of which are not monitored or recognised at the bedside. Such detrimental consequences may contribute negatively to patient outcomes. This review explores the schizophrenic 'Jekyll-and-Hyde' characteristics of catecholamines in critical illness, as they are both necessary for survival yet detrimental in excess. This article covers catecholamine physiology, the pleiotropic effects of catecholamines on various body systems and pathways, and potential alternatives for haemodynamic support and adrenergic modulation in the critically ill.
Collapse
|
23
|
Bellavite P, Signorini A, Marzotto M, Moratti E, Bonafini C, Olioso D. Cell sensitivity, non-linearity and inverse effects. HOMEOPATHY 2015; 104:139-60. [DOI: 10.1016/j.homp.2015.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 01/27/2015] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
|
24
|
Kao DP, Lowes BD, Gilbert EM, Minobe W, Epperson LE, Meyer LK, Ferguson DA, Volkman AK, Zolty R, Borg CD, Quaife RA, Bristow MR. Therapeutic Molecular Phenotype of β-Blocker-Associated Reverse-Remodeling in Nonischemic Dilated Cardiomyopathy. ACTA ACUST UNITED AC 2015; 8:270-83. [PMID: 25637602 DOI: 10.1161/circgenetics.114.000767] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/14/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND When β-blockers produce reverse-remodeling in idiopathic dilated cardiomyopathy, they partially reverse changes in fetal-adult/contractile protein, natriuretic peptide, SR-Ca(2+)-ATPase gene program constituents. The objective of the current study was to further test the hypothesis that reverse-remodeling is associated with favorable changes in myocardial gene expression by measuring additional contractile, signaling, and metabolic genes that exhibit a fetal/adult expression predominance, are thyroid hormone-responsive, and are regulated by β1-adrenergic receptor signaling. A secondary objective was to identify which of these putative regulatory networks is most closely associated with observed changes. METHODS AND RESULTS Forty-seven patients with idiopathic dilated cardiomyopathy (left ventricular ejection fraction, 0.24±0.09) were randomized to the adrenergic-receptor blockers metoprolol (β1-selective), metoprolol+doxazosin (β1/α1), or carvedilol (β1/β2/α1). Serial radionuclide ventriculography and endomyocardial biopsies were performed at baseline, 3, and 12 months. Expression of 50 mRNA gene products was measured by quantitative polymerase chain reaction. Thirty-one patients achieved left ventricular ejection fraction reverse-remodeling response defined as improvement by ≥0.08 at 12 months or by ≥0.05 at 3 months (Δ left ventricular ejection fraction, 0.21±0.10). Changes in gene expression in responders versus nonresponders were decreases in NPPA and NPPB and increases in MYH6, ATP2A2, PLN, RYR2, ADRA1A, ADRB1, MYL3, PDFKM, PDHX, and CPT1B. All except PDHX involved increase in adult or decrease in fetal cardiac genes, but 100% were concordant with changes predicted by inhibition of β1-adrenergic signaling. CONCLUSIONS In addition to known gene expression changes, additional calcium-handling, sarcomeric, adrenergic signaling, and metabolic genes were associated with reverse-remodeling. The pattern suggests a fetal-adult paradigm but may be because of reversal of gene expression controlled by a β1-adrenergic receptor gene network. CLINICAL TRIAL REGISTRATION URL: www.clinicaltrials.gov. Unique Identifier: NCT01798992.
Collapse
Affiliation(s)
- David P Kao
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Brian D Lowes
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Edward M Gilbert
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Wayne Minobe
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - L Elaine Epperson
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Leslie K Meyer
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Debra A Ferguson
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Ann Kirkpatrick Volkman
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Ronald Zolty
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - C Douglas Borg
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Robert A Quaife
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.)
| | - Michael R Bristow
- From the Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora (D.P.K., W.M., L.E.E., L.K.M., D.A.F., R.A.Q., M.R.B.); Division of Cardiology, Department of Medicine, University of Nebraska Medical Center, Omaha (B.D.L.); Division of Cardiology, Department of Medicine, University of Utah, Salt Lake City (E.M.G., A.K.V.); Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (R.Z.); and Heart Clinic of Arkansas, Little Rock (C.D.B.).
| |
Collapse
|
25
|
Chronic β1-adrenergic blockade enhances myocardial β3-adrenergic coupling with nitric oxide-cGMP signaling in a canine model of chronic volume overload: new insight into mechanisms of cardiac benefit with selective β1-blocker therapy. Basic Res Cardiol 2014; 110:456. [PMID: 25480109 DOI: 10.1007/s00395-014-0456-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 11/27/2022]
Abstract
The β1-adrenergic antagonist metoprolol improves cardiac function in animals and patients with chronic heart failure, isolated mitral regurgitation (MR), and ischemic heart disease, though the molecular mechanisms remain incompletely understood. Metoprolol has been reported to upregulate cardiac expression of β3-adrenergic receptors (β3AR) in animal models. Myocardial β3AR signaling via neuronal nitric oxide synthase (nNOS) activation has recently emerged as a cardioprotective pathway. We tested whether chronic β1-adrenergic blockade with metoprolol enhances myocardial β3AR coupling with nitric oxide-stimulated cyclic guanosine monophosphate (β3AR/NO-cGMP) signaling in the MR-induced, volume-overloaded heart. We compared the expression, distribution, and inducible activation of β3AR/NO-cGMP signaling proteins within myocardial membrane microdomains in dogs (canines) with surgically induced MR, those also treated with metoprolol succinate (MR+βB), and unoperated controls. β3AR mRNA transcripts, normalized to housekeeping gene RPLP1, increased 4.4 × 10(3)- and 3.2 × 10(2)-fold in MR and MR+βB hearts, respectively, compared to Control. Cardiac β3AR expression was increased 1.4- and nearly twofold in MR and MR+βB, respectively, compared to Control. β3AR was detected within caveolae-enriched lipid rafts (Cav3(+)LR) and heavy density, non-lipid raft membrane (NLR) across all groups. However, in vitro selective β3AR stimulation with BRL37344 (BRL) triggered cGMP production within only NLR of MR+βB. BRL induced Ser (1412) phosphorylation of nNOS within NLR of MR+βB, but not Control or MR, consistent with detection of NLR-specific β3AR/NO-cGMP coupling. Treatment with metoprolol prevented MR-associated oxidation of NO biosensor soluble guanylyl cyclase (sGC) within NLR. Metoprolol therapy also prevented MR-induced relocalization of sGCβ1 subunit away from caveolae, suggesting preserved NO-sGC-cGMP signaling, albeit without coupling to β3AR, within MR+βB caveolae. Chronic β1-blockade is associated with myocardial β3AR/NO-cGMP coupling in a microdomain-specific fashion. Our canine study suggests that microdomain-targeted enhancement of myocardial β3AR/NO-cGMP signaling may explain, in part, β1-adrenergic antagonist-mediated preservation of cardiac function in the volume-overloaded heart.
Collapse
|
26
|
Molenaar P, Christ T, Hussain RI, Engel A, Berk E, Gillette KT, Chen L, Galindo-Tovar A, Krobert KA, Ravens U, Levy FO, Kaumann AJ. PDE3, but not PDE4, reduces β₁ - and β₂-adrenoceptor-mediated inotropic and lusitropic effects in failing ventricle from metoprolol-treated patients. Br J Pharmacol 2014; 169:528-38. [PMID: 23489141 DOI: 10.1111/bph.12167] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 12/30/2012] [Accepted: 01/02/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3-1 μM) or PDE4 inhibitor rolipram (1-10 μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. EXPERIMENTAL APPROACH Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through β₁ adrenoceptors (β₂ adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β₂ adrenoceptors (β₁ adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from -logEC₅₀s. KEY RESULTS Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P = 0.037) of the positive inotropic effects of (-)-adrenaline (0.78 ± 0.12 log units) than (-)-noradrenaline (0.47 ± 0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. CONCLUSIONS AND IMPLICATIONS Metoprolol induces a control by PDE3 of ventricular effects mediated through both β₁ and β₂ adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β₂ adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.
Collapse
Affiliation(s)
- Peter Molenaar
- Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Koncz I, Szász BK, Szabó SI, Kiss JP, Mike A, Lendvai B, Sylvester Vizi E, Zelles T. The tricyclic antidepressant desipramine inhibited the neurotoxic, kainate-induced [Ca(2+)]i increases in CA1 pyramidal cells in acute hippocampal slices. Brain Res Bull 2014; 104:42-51. [PMID: 24742525 DOI: 10.1016/j.brainresbull.2014.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 12/18/2022]
Abstract
Kainate (KA), used for modelling neurodegenerative diseases, evokes excitotoxicity. However, the precise mechanism of KA-evoked [Ca(2+)]i increase is unexplored, especially in acute brain slice preparations. We used [Ca(2+)]i imaging and patch clamp electrophysiology to decipher the mechanism of KA-evoked [Ca(2+)]i rise and its inhibition by the tricyclic antidepressant desipramine (DMI) in CA1 pyramidal cells in rat hippocampal slices and in cultured hippocampal cells. The effect of KA was dose-dependent and relied totally on extracellular Ca(2+). The lack of effect of dl-2-amino-5-phosphonopentanoic acid (AP-5) and abolishment of the response by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) suggested the involvement of non-N-methyl-d-aspartate receptors (non-NMDARs). The predominant role of the Ca(2+)-impermeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) in the initiation of the Ca(2+) response was supported by the inhibitory effect of the selective AMPAR antagonist GYKI 53655 and the ineffectiveness of 1-naphthyl acetylspermine (NASPM), an inhibitor of the Ca(2+)-permeable AMPARs. The voltage-gated Ca(2+) channels (VGCC), blocked by ω-Conotoxin MVIIC+nifedipine+NiCl2, contributed to the [Ca(2+)]i rise. VGCCs were also involved, similarly to AMPAR current, in the KA-evoked depolarisation. Inhibition of voltage-gated Na(+) channels (VGSCs; tetrodotoxin, TTX) did not affect the depolarisation of pyramidal cells but blocked the depolarisation-evoked action potential bursts and reduced the Ca(2+) response. The tricyclic antidepressant DMI inhibited the KA-evoked [Ca(2+)]i rise in a dose-dependent manner. It directly attenuated the AMPA-/KAR current, but its more potent inhibition on the Ca(2+) response supports additional effect on VGCCs, VGSCs and Na(+)/Ca(2+) exchangers. The multitarget action on decisive players of excitotoxicity holds out more promise in clinical therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- István Koncz
- Department of Pharmacology & Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Bernadett K Szász
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Szilárd I Szabó
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Arpád Mike
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balázs Lendvai
- Gedeon Richter Plc., Pharmacology and Drug Safety Department, Budapest, Hungary
| | - E Sylvester Vizi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tibor Zelles
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
28
|
Inhibition of sepsis-induced inflammatory response by β1-adrenergic antagonists. J Trauma Acute Care Surg 2014; 76:320-7; discussion 327-8. [PMID: 24458040 DOI: 10.1097/ta.0000000000000113] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Although previous studies have described potential benefits of nonselective β-adrenergic antagonist therapy in sepsis, there is a paucity of data on the use of β1-selective antagonists (B1AA). The purposes of this study were to describe the effects of B1AA on survival in septic animals and to explore for molecular mechanisms of potential treatment benefit. METHODS C57BL/6 male mice received intraperitoneal injection of lipopolysaccharide. Continuous infusion of a B1AA (esmolol) or an equal volume of saline (control) was initiated at 4 hours after injection. Kaplan-Meier survival analysis at 120 hours was used to explore for mortality differences. A subgroup of animals was sacrificed for microarray expression analysis. Top candidate genes were validated in vitro and in silico. Expression of our candidate genes in a human microarray database (GSE28750) was explored. RESULTS B1AA infusion resulted in increased survival (p = 0.001) at 120 hours. Mean survival difference was 23.6 hours (p = 0.002). Hazard ratio for mortality with B1AA is 0.43 (95% confidence interval, 0.26-0.72). Immunologic disease (p = 0.0003-0.036) and cell death/survival (p = 0.0001-0.042) were significantly associated with improved survival in septic mice treated with B1AA. Further analysis of the gene structure revealed that eight genes shared common promoter activating sequence for NFKB and/or BRCA1 motifs. Analysis of a human sepsis database identified the up-regulation of CAMP (p = 0.032) and TNFSF10 (p = 0.001) genes in septic patients compared with healthy controls. CONCLUSION Continuous infusion of a B1AA initiated after septic insult improves survival at 5 days in a murine model. Benefits may be caused by modulation of gene expression in immunologic pathways leading to an increase in CAMP and TNFSF10 expression. This observed effect may be explained by the activation of NFKB and BRCA1 genes involved in immune response and cell repair pathways. Our findings support further investigation of the use of B1AA in the treatment of sepsis.
Collapse
|
29
|
Molenaar P, Christ T, Berk E, Engel A, Gillette KT, Galindo-Tovar A, Ravens U, Kaumann AJ. Carvedilol induces greater control of β2- than β 1-adrenoceptor-mediated inotropic and lusitropic effects by PDE3, while PDE4 has no effect in human failing myocardium. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:629-40. [PMID: 24668024 DOI: 10.1007/s00210-014-0974-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/09/2014] [Indexed: 12/30/2022]
Abstract
The β-blockers carvedilol and metoprolol provide important therapeutic strategies for heart failure treatment. Therapy with metoprolol facilitates the control by phosphodiesterase PDE3, but not PDE4, of inotropic effects of catecholamines in human failing ventricle. However, it is not known whether carvedilol has the same effect. We investigated whether the PDE3-selective inhibitor cilostamide (0.3 μM) or PDE4-selective inhibitor rolipram (1 μM) modified the positive inotropic and lusitropic effects of catecholamines in ventricular myocardium of heart failure patients treated with carvedilol. Right ventricular trabeculae from explanted hearts of nine carvedilol-treated patients with terminal heart failure were paced to contract at 1 Hz. The effects of (-)-noradrenaline, mediated through β1-adrenoceptors (β2-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2-adrenoceptors (β1-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of the PDE inhibitors. The inotropic potency, estimated from -logEC50s, was unchanged for (-)-noradrenaline but decreased 16-fold for (-)-adrenaline in carvedilol-treated compared to non-β-blocker-treated patients, consistent with the previously reported β2-adrenoceptor-selectivity of carvedilol. Cilostamide caused 2- to 3-fold and 10- to 35-fold potentiations of the inotropic and lusitropic effects of (-)-noradrenaline and (-)-adrenaline, respectively, in trabeculae from carvedilol-treated patients. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline. Treatment of heart failure patients with carvedilol induces PDE3 to selectively control the positive inotropic and lusitropic effects mediated through ventricular β2-adrenoceptors compared to β1-adrenoceptors. The β2-adrenoceptor-selectivity of carvedilol may provide protection against β2-adrenoceptor-mediated ventricular overstimulation in PDE3 inhibitor-treated patients. PDE4 does not control β1- and β2-adrenoceptor-mediated inotropic and lusitropic effects in carvedilol-treated patients.
Collapse
Affiliation(s)
- Peter Molenaar
- Faculty of Health, QUT, Brisbane; School of Medicine, University of Queensland and Critical Care Research Group, The Prince Charles Hospital, Chermside, QLD, 4032, Australia,
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Chronotropic incompetence, beta-blockers, and functional capacity in advanced congestive heart failure: Time to pace? Eur J Heart Fail 2014; 10:96-101. [DOI: 10.1016/j.ejheart.2007.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 09/10/2007] [Accepted: 11/14/2007] [Indexed: 11/21/2022] Open
|
31
|
Effect of Chronic β-Blockade on the Utility of an Epinephrine-Containing Test Dose to Detect Intravascular Injection in Nonsedated Patients. Reg Anesth Pain Med 2013; 38:403-8. [DOI: 10.1097/aap.0b013e31829bb9fa] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Cystic Fibrosis: Alternative Approaches to the Treatment of a Genetic Disease. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
33
|
Han SO, Xiao K, Kim J, Wu JH, Wisler JW, Nakamura N, Freedman NJ, Shenoy SK. MARCH2 promotes endocytosis and lysosomal sorting of carvedilol-bound β(2)-adrenergic receptors. ACTA ACUST UNITED AC 2012; 199:817-30. [PMID: 23166351 PMCID: PMC3514787 DOI: 10.1083/jcb.201208192] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The β2-adrenergic receptor antagonist carvedilol recruits MARCH2, a unique E3 ubiquitin ligase, to promote receptor endocytosis and lysosomal trafficking. Lysosomal degradation of ubiquitinated β2-adrenergic receptors (β2ARs) serves as a major mechanism of long-term desensitization in response to prolonged agonist stimulation. Surprisingly, the βAR antagonist carvedilol also induced ubiquitination and lysosomal trafficking of both endogenously expressed β2ARs in vascular smooth muscle cells (VSMCs) and overexpressed Flag-β2ARs in HEK-293 cells. Carvedilol prevented β2AR recycling, blocked recruitment of Nedd4 E3 ligase, and promoted the dissociation of the deubiquitinases USP20 and USP33. Using proteomics approaches (liquid chromatography–tandem mass spectrometry), we identified that the E3 ligase MARCH2 interacted with carvedilol-bound β2AR. The association of MARCH2 with internalized β2ARs was stabilized by carvedilol and did not involve β-arrestin. Small interfering RNA–mediated down-regulation of MARCH2 ablated carvedilol-induced ubiquitination, endocytosis, and degradation of endogenous β2ARs in VSMCs. These findings strongly suggest that specific ligands recruit distinct E3 ligase machineries to activated cell surface receptors and direct their intracellular itinerary. In response to β blocker therapy with carvedilol, MARCH2 E3 ligase activity regulates cell surface β2AR expression and, consequently, its signaling.
Collapse
Affiliation(s)
- Sang-oh Han
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Katarzynska-Szymanska A, Ochotny R, Oko-Sarnowska Z, Wachowiak-Baszynska H, Krauze T, Piskorski J, Gwizdala A, Mitkowski P, Guzik P. Shortening baroreflex delay in hypertrophic cardiomyopathy patients -- an unknown effect of β-blockers. Br J Clin Pharmacol 2012; 75:1516-24. [PMID: 23126403 DOI: 10.1111/bcp.12027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/31/2012] [Indexed: 12/15/2022] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy and impaired diastolic and systolic function. Abnormal sympathetic-parasympathetic balance is a potential stimulus for left ventricular hypertrophy in HCM patients. β-Blockers are routinely used in HCM for their strong negative inotropic effect; however, these drugs also influence the sympathetic-parasympathetic balance. This study aimed to determine the autonomic control of the cardiovascular system and the autonomic effects of β-blockers in HCM patients treated or untreated with β-blockers. METHODS Among 51 HCM outpatients (18-70 years old; 29 men) there were 19 individuals with no medication and 32 subjects treated with a β-blocker. Fourteen age- and gender-matched (23-70 years old; nine men) healthy volunteers were enrolled in the control group. Continuous, non-invasive finger blood pressure was recorded during supine rest for 30 min. Autonomic regulation of the cardiovascular system was measured by heart rate variability and spontaneous baroreflex function (cross-correlation sequence method). RESULTS The mean pulse interval, time domain and spectral measures of heart rate variability and baroreflex sensitivity were comparable between HCM patients, treated or not with β-blockers, and the control group. However, the delay of the baroreflex was significantly longer in HCM patients who were not treated with β-blockers [2.0 (1.6-2.3) s] in comparison with HCM patients receiving β-blockers [1.4 (1.1-1.8) s; P = 0.0072] or control subjects [1.2 (0.8-1.8) s; P = 0.0025]. This delay did not differ between HCM patients treated with β-blockers and the control group. CONCLUSIONS Hypertrophic cardiomyopathy not treated with β-blockers is accompanied by prolonged baroreflex delay. The use of β-blockers normalizes this delay.
Collapse
|
35
|
Pilot Study of Cardiovascular Effects of Nebivolol in Congestive Heart Failure. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/bf03258267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Combined use of direct renin inhibitor and carvedilol in heart failure with preserved systolic function. Med Hypotheses 2012; 79:448-51. [DOI: 10.1016/j.mehy.2012.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 10/31/2011] [Accepted: 06/22/2012] [Indexed: 12/27/2022]
|
37
|
Kirkpatrick JN, St. John Sutton M. Assessment of Ventricular Remodeling in Heart Failure Clinical Trials. Curr Heart Fail Rep 2012; 9:328-36. [DOI: 10.1007/s11897-012-0116-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Okada M, Tanaka H, Matsumoto K, Ryo K, Kawai H, Hirata KI. Subclinical myocardial dysfunction in patients with reverse-remodeled dilated cardiomyopathy. J Am Soc Echocardiogr 2012; 25:726-32. [PMID: 22537395 DOI: 10.1016/j.echo.2012.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND The aim of this study was to test the hypothesis that patients with reverse-remodeled dilated cardiomyopathy (DCM), whose ejection fractions (EFs) were normalized after optimal pharmacologic therapy, had subclinical myocardial dysfunction. METHODS Thirty-two patients with reverse-remodeled DCM, defined as having an initial EF ≤ 35%, which then recovered to ≥50% after optimal pharmacologic therapy, and 11 normal controls with preserved EFs were retrospectively studied. Averaged peak systolic and early diastolic radial, circumferential, and longitudinal speckle-tracking strain rates were assessed from an 18-segment left ventricular model. Similarly, averaged peak systolic radial, circumferential, and longitudinal speckle-tracking strain was obtained. RESULTS Peak systolic and early diastolic longitudinal strain rates, peak systolic and early diastolic circumferential strain rates, and peak circumferential and longitudinal strain in patients with reverse-remodeled DCM were significantly lower than those in normal controls, but peak systolic and early diastolic radial strain rates and peak radial strain in patients with reverse-remodeled DCM were similar to those in normal controls. Isometric handgrip stress testing showed a significant decrease in EF from 56 ± 5% to 51 ± 5% (P < .001). Of note, the increase of afterload resulting from isometric handgrip stress testing was associated with a decrease in peak systolic circumferential and longitudinal strain rates and peak circumferential strain in patients with reverse-remodeled DCM. CONCLUSIONS The circumferential and longitudinal myocardial function of patients with reverse-remodeled DCM is lower compared with that of normal controls with preserved EFs. Furthermore, the increase in afterload was associated with the decrease in circumferential and longitudinal myocardial systolic function. These findings suggest that in treated patients with DCM with reverse remodeling, left ventricular mechanics may not be normal, even when EFs are normal.
Collapse
Affiliation(s)
- Mariko Okada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Aboab J, de Montmollin E, Mansart A, Annane D. Modulation adrénergique et défaillance cardiaque au cours du sepsis: intérêt des bêtabloquants. MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Bozkurt B, Bolos M, Deswal A, Ather S, Chan W, Mann DL, Carabello B. New Insights into Mechanisms of Action of Carvedilol Treatment in Chronic Heart Failure Patients—A Matter of Time for Contractility. J Card Fail 2012; 18:183-93. [DOI: 10.1016/j.cardfail.2011.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/26/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
|
41
|
Reinkober J, Tscheschner H, Pleger ST, Most P, Katus HA, Koch WJ, Raake PWJ. Targeting GRK2 by gene therapy for heart failure: benefits above β-blockade. Gene Ther 2012; 19:686-93. [PMID: 22336718 DOI: 10.1038/gt.2012.9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a common pathological end point for several cardiac diseases. Despite reasonable achievements in pharmacological, electrophysiological and surgical treatments, prognosis for chronic HF remains poor. Modern therapies are generally symptom oriented and do not currently address specific intracellular molecular signaling abnormalities. Therefore, new and innovative therapeutic approaches are warranted and, ideally, these could at least complement established therapeutic options if not replace them. Gene therapy has potential to serve in this regard in HF as vectors can be directed toward diseased myocytes and directly target intracellular signaling abnormalities. Within this review, we will dissect the adrenergic system contributing to HF development and progression with special emphasis on G-protein-coupled receptor kinase 2 (GRK2). The levels and activity of GRK2 are increased in HF and we and others have demonstrated that this kinase is a major molecular culprit in HF. We will cover the evidence supporting gene therapy directed against myocardial as well as adrenal GRK2 to improve the function and structure of the failing heart and how these strategies may offer complementary and synergistic effects with the existing HF mainstay therapy of β-adrenergic receptor antagonism.
Collapse
Affiliation(s)
- J Reinkober
- Department of Internal Medicine III, Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Bristow MR. Treatment of chronic heart failure with β-adrenergic receptor antagonists: a convergence of receptor pharmacology and clinical cardiology. Circ Res 2011; 109:1176-94. [PMID: 22034480 DOI: 10.1161/circresaha.111.245092] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the absence of a systematic development plan, β-blockers have reached the top tier of medical therapies for chronic heart failure. The successful outcome was due to the many dedicated investigators who produced, over a 30-year period, increasing evidence that β-blocking agents should or actually did improve the natural history of dilated cardiomyopathies and heart failure. It took 20 years for supportive evidence to become undeniable, at which time in 1993 the formidable drug development resources of large pharmaceutical companies were deployed into Phase 3 trials. Success then came relatively quickly, and within 8 years multiple agents were on the market in the United States and Europe. Importantly, there is ample room to improve antiadrenergic therapy, through novel approaches exploiting the nuances of receptor biology and/or intracellular signaling, as well as through pharmacogenetic targeting.
Collapse
Affiliation(s)
- Michael R Bristow
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
43
|
Petersen M, Andersen JT, Hjelvang BR, Broedbaek K, Afzal S, Nyegaard M, Børglum AD, Stender S, Køber L, Torp-Pedersen C, Poulsen HE. Association of beta-adrenergic receptor polymorphisms and mortality in carvedilol-treated chronic heart-failure patients. Br J Clin Pharmacol 2011; 71:556-65. [PMID: 21395649 DOI: 10.1111/j.1365-2125.2010.03868.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM Pharmacogenetics can be used as a tool for stratified pharmacological therapy in cardiovascular medicine. We investigated whether a predefined combination of the Arg389Gly polymorphism in the adrenergic β(1) -receptor gene (ADRB1) and the Gln27Glu polymorphism in the adrenergic β(2) -receptor gene (ADRB2) could predict survival in carvedilol- and metoprolol-treated chronic heart failure (HF) patients. METHODS Five hundred and eighty-six HF patients (carvedilol n= 82, metoprolol n= 195) were genotyped for ADRB1 Arg389Gly (rs1801253) and ADRB2 Gln27Glu (rs1042714). The end-point was all-cause mortality, and median follow-up time was 6.7 years. Patients were classified into two functional genotype groups: group 1 combination of Arg389-homozygous and Gln27-carrier (46%) and group 2 any other genotype combination (54%). Results were fitted in two multivariate Cox models. RESULTS There was a significant interaction between functional genotype group and carvedilol treatment (adjusted(1) P= 0.033, adjusted(2) P= 0.040). Patients treated with carvedilol had shorter survival in functional genotype group 1 (P= 0.004; adjusted(1) hazard ratio (HR) 2.67, 95% CI 1.27, 5.59, P= 0.010; adjusted(2) HR 2.05, 95% CI 1.06, 3.95, P= 0.033). There was no interaction between genotype group and metoprolol treatment (P= 0.61), and there was no difference in overall survival between genotype groups (P= 0.69). CONCLUSIONS A combination of ADRB1 Arg389-homozygous and ADRB2 Gln27-carrier in HF patients treated with carvedilol was associated with a two-fold increase in mortality relative to all other genotype combinations. There was no difference in survival in metoprolol-treated HF patients between genotype groups. Patients in genotype group 1 may benefit more from metoprolol than carvedilol treatment.
Collapse
Affiliation(s)
- Morten Petersen
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ho D, Yan L, Iwatsubo K, Vatner DE, Vatner SF. Modulation of beta-adrenergic receptor signaling in heart failure and longevity: targeting adenylyl cyclase type 5. Heart Fail Rev 2011; 15:495-512. [PMID: 20658186 DOI: 10.1007/s10741-010-9183-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite remarkable advances in therapy, heart failure remains a leading cause of morbidity and mortality. Although enhanced beta-adrenergic receptor stimulation is part of normal physiologic adaptation to either the increase in physiologic demand or decrease in cardiac function, chronic beta-adrenergic stimulation has been associated with increased mortality and morbidity in both animal models and humans. For example, overexpression of cardiac Gsalpha or beta-adrenergic receptors in transgenic mice results in enhanced cardiac function in young animals, but with prolonged overstimulation of this pathway, cardiomyopathy develops in these mice as they age. Similarly, chronic sympathomimetic amine therapy increases morbidity and mortality in patients with heart failure. Conversely, the use of beta-blockade has proven to be of benefit and is currently part of the standard of care for heart failure. It is conceivable that interrupting distal mechanisms in the beta-adrenergic receptor-G protein-adenylyl cyclase pathway may also provide targets for future therapeutic modalities for heart failure. Interestingly, there are two major isoforms of adenylyl cyclase (AC) in the heart (type 5 and type 6), which may exert opposite effects on the heart, i.e., cardiac overexpression of AC6 appears to be protective, whereas disruption of type 5 AC prolongs longevity and protects against cardiac stress. The goal of this review is to summarize the paradigm shift in the treatment of heart failure over the past 50 years from administering sympathomimetic amine agonists to administering beta-adrenergic receptor antagonists, and to explore the basis for a novel therapy of inhibiting type 5 AC.
Collapse
Affiliation(s)
- David Ho
- Department of Cell Biology and Molecular Medicine and The Cardiovascular Research Institute, University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G609, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
45
|
George I, Sabbah HN, Xu K, Wang N, Wang J. β-Adrenergic receptor blockade reduces endoplasmic reticulum stress and normalizes calcium handling in a coronary embolization model of heart failure in canines. Cardiovasc Res 2011; 91:447-55. [DOI: 10.1093/cvr/cvr106] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Mäki T, Kontula K, Härkönen M. The beta-adrenergic system in man: Physiological and pathophysiological response: Regulation of receptor density and functioning. Scand J Clin Lab Invest 2011. [DOI: 10.1080/00365519009085799] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
ß-adrenoceptor blockers increase cardiac sympathetic innervation by inhibiting autoreceptor suppression of axon growth. J Neurosci 2010; 30:12446-54. [PMID: 20844139 DOI: 10.1523/jneurosci.1667-10.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
β-Adrenoceptor antagonists are used widely to reduce cardiovascular sympathetic tone, but withdrawal is accompanied by sympathetic hyperactivity. Receptor supersensitivity accounts for some but not all aspects of this withdrawal syndrome. Therefore, we investigated effects of β-blockers on sympathetic innervation. Rats received infusions of adrenergic receptor blockers or saline for 1 week. The nonselective β-blocker propranolol and the β(1)-antagonist metoprolol both increased myocardial sympathetic axon density. At 2 d after propranolol discontinuation, β-receptor sensitivity and responsiveness to isoproterenol were similar to controls. However, tyramine-induced mobilization of norepinephrine stores produced elevated ventricular contractility consistent with enhanced sympathetic neuroeffector properties. In addition, rats undergoing discontinuation showed exaggerated increases in mean arterial pressure in response to air puff or noise startle. In sympathetic neuronal cell cultures, both propranolol and metoprolol increased axon outgrowth but the β(2)-blocker ICI 118551 did not. Norepinephrine synthesis suppression by α-methyl-p-tyrosine also increased sprouting and concurrent dobutamine administration reduced it, confirming that locally synthesized norepinephrine inhibits outgrowth via β(1)-adrenoceptors. Immunohistochemistry revealed β(1)-adrenoceptor protein on sympathetic axon terminations. In rats with coronary artery ligation, propranolol reversed heart failure-induced ventricular myocardial sympathetic axon depletion, but did not affect infarct-associated sympathetic hyperinnervation. We conclude that sympathetic neurons possess β(1)-autoreceptors that negatively regulate axon outgrowth. Chronic β-adrenoceptor blockade disrupts this feedback system, leading to ventricular sympathetic axon proliferation and increased neuroeffector gain, which are likely to contribute to β-blocker withdrawal syndrome.
Collapse
|
48
|
Théorie hormonale de l’insuffisance cardiaque à fonction systolique altérée. Rev Med Interne 2010; 31:721-5. [DOI: 10.1016/j.revmed.2010.03.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/22/2010] [Accepted: 03/27/2010] [Indexed: 11/19/2022]
|
49
|
Iodine-123-metaiodobenzylguanidine imaging can predict future cardiac events in heart failure patients with preserved ejection fraction. Ann Nucl Med 2010; 24:679-86. [DOI: 10.1007/s12149-010-0409-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
|
50
|
Dorn GW. Adrenergic signaling polymorphisms and their impact on cardiovascular disease. Physiol Rev 2010; 90:1013-62. [PMID: 20664078 DOI: 10.1152/physrev.00001.2010] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This review examines the impact of recent discoveries defining personal genetics of adrenergic signaling polymorphisms on scientific discovery and medical practice related to cardiovascular diseases. The adrenergic system is the major regulator of minute-by-minute cardiovascular function. Inhibition of adrenergic signaling with pharmacological beta-adrenergic receptor antagonists (beta-blockers) is first-line therapy for heart failure and hypertension. Advances in pharmacology, molecular biology, and genetics of adrenergic signaling pathways have brought us to the point where personal genetic differences in adrenergic signaling factors are being assessed as determinants of risk or progression of cardiovascular disease. For a few polymorphisms, functional data generated in cell-based systems, genetic mouse models, and pharmacological provocation of human subjects are concordant with population studies that suggest altered risk of cardiovascular disease or therapeutic response to beta-blockers. For the majority of adrenergic pathway polymorphisms however, published data conflict, and the clinical relevance of individual genotyping remains uncertain. Here, the current state of laboratory and clinical evidence that adrenergic pathway polymorphisms can affect cardiovascular pathophysiology is comprehensively reviewed and compared, with a goal of placing these data in the broad context of potential clinical applicability.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|