1
|
Movahed MR, Bahrami A, Bates S. Reported Physical Symptoms During Screening Echocardiography Are Not Associated With Presence of Suspected Hypertrophic Cardiomyopathy. Crit Pathw Cardiol 2024; 23:137-140. [PMID: 38598543 DOI: 10.1097/hpc.0000000000000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
BACKGROUND The prevalence of hypertrophic cardiomyopathy (HCM) can be silent and can present with sudden death as the first manifestation of this disease. The goal of this study was to evaluate any association between reported physical symptoms with the presence of suspected HCM. METHOD The Anthony Bates Foundation has been performing screening echocardiography across the United States for prevention of sudden death since 2001. A total of 4120 subjects between the ages of 4 and 79 underwent echocardiographic screening. We evaluated any association between various symptoms and suspected HCM defined as any left ventricular wall thickness³ ≥15 mm. RESULTS The total prevalence of suspected HCM in the entire study population was 1.1%. The presence of physical symptoms was not associated with HCM (chest pain in 4.3% of participants with HCM vs. 9.9% of the control, P = 0.19, palpitation in 4.3% of participants with HCM vs. 7.3% of the control, P = 0.41, shortness of breath in 6.4% of participant with HCM vs. 11.7% of the control, P = 0.26, lightheadedness in 4.3% of participant with HCM vs. 13.1% of the control, P = 0.07, ankle swelling in 2.1% of participant with HCM vs. 4.0% of the control, P = 0.52, dizziness in 8.5% of participant with HCM vs. 12.2% of the control, P = 0.44). CONCLUSIONS Echocardiographic presence of suspected HCM is not associated with a higher prevalence of physical symptoms in the participants undergoing screening echocardiography.
Collapse
Affiliation(s)
- Mohammad Reza Movahed
- From the Department of Medicine, University of Arizona Sarver Heart Center, Tucson, AZ
| | - Ashkan Bahrami
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ
| | | |
Collapse
|
2
|
Liang LW, Lumish HS, Sewanan LR, Shimada YJ, Maurer MS, Weiner SD, Clerkin KJ. Evolving Strategies for the Management of Obstructive Hypertrophic Cardiomyopathy. J Card Fail 2024; 30:1136-1153. [PMID: 38777216 PMCID: PMC11415289 DOI: 10.1016/j.cardfail.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
For many years, treatment of hypertrophic cardiomyopathy (HCM) has focused on non-disease-specific therapies. Cardiac myosin modulators (ie, mavacamten and aficamten) reduce the pathologic actin-myosin interactions that are characteristic of HCM, leading to improved cardiac energetics and reduction in hypercontractility. Several recently published randomized clinical trials have demonstrated that mavacamten improves exercise capacity, left ventricular outflow tract obstruction and symptoms in patients with obstructive HCM and may delay the need for septal-reduction therapy. Long-term data in real-world populations will be needed to fully assess the safety and efficacy of mavacamten. Importantly, HCM is a complex and heterogeneous disease, and not all patients will respond to mavacamten; therefore, careful patient selection and shared decision making will be necessary in guiding the use of mavacamten in obstructive HCM.
Collapse
Affiliation(s)
- Lusha W Liang
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Heidi S Lumish
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Lorenzo R Sewanan
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Yuichi J Shimada
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Shepard D Weiner
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Kevin J Clerkin
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY.
| |
Collapse
|
3
|
Ommen SR, Ho CY, Asif IM, Balaji S, Burke MA, Day SM, Dearani JA, Epps KC, Evanovich L, Ferrari VA, Joglar JA, Khan SS, Kim JJ, Kittleson MM, Krittanawong C, Martinez MW, Mital S, Naidu SS, Saberi S, Semsarian C, Times S, Waldman CB. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2024; 83:2324-2405. [PMID: 38727647 DOI: 10.1016/j.jacc.2024.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
AIM The "2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy" provides recommendations to guide clinicians in the management of patients with hypertrophic cardiomyopathy. METHODS A comprehensive literature search was conducted from September 14, 2022, to November 22, 2022, encompassing studies, reviews, and other evidence on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through May 23, 2023, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Hypertrophic cardiomyopathy remains a common genetic heart disease reported in populations globally. Recommendations from the "2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy" have been updated with new evidence to guide clinicians.
Collapse
|
4
|
Ommen SR, Ho CY, Asif IM, Balaji S, Burke MA, Day SM, Dearani JA, Epps KC, Evanovich L, Ferrari VA, Joglar JA, Khan SS, Kim JJ, Kittleson MM, Krittanawong C, Martinez MW, Mital S, Naidu SS, Saberi S, Semsarian C, Times S, Waldman CB. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2024; 149:e1239-e1311. [PMID: 38718139 DOI: 10.1161/cir.0000000000001250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
AIM The "2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy" provides recommendations to guide clinicians in the management of patients with hypertrophic cardiomyopathy. METHODS A comprehensive literature search was conducted from September 14, 2022, to November 22, 2022, encompassing studies, reviews, and other evidence on human subjects that were published in English from PubMed, EMBASE, the Cochrane Library, the Agency for Healthcare Research and Quality, and other selected databases relevant to this guideline. Additional relevant studies, published through May 23, 2023, during the guideline writing process, were also considered by the writing committee and added to the evidence tables, where appropriate. STRUCTURE Hypertrophic cardiomyopathy remains a common genetic heart disease reported in populations globally. Recommendations from the "2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy" have been updated with new evidence to guide clinicians.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Victor A Ferrari
- AHA/ACC Joint Committee on Clinical Practice Guidelines liaison
- SCMR representative
| | | | - Sadiya S Khan
- ACC/AHA Joint Committee on Performance Measures representative
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Goldie FC, Lee MMY, Coats CJ, Nordin S. Advances in Multi-Modality Imaging in Hypertrophic Cardiomyopathy. J Clin Med 2024; 13:842. [PMID: 38337535 PMCID: PMC10856479 DOI: 10.3390/jcm13030842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/27/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal growth of the myocardium with myofilament disarray and myocardial hyper-contractility, leading to left ventricular hypertrophy and fibrosis. Where culprit genes are identified, they typically relate to cardiomyocyte sarcomere structure and function. Multi-modality imaging plays a crucial role in the diagnosis, monitoring, and risk stratification of HCM, as well as in screening those at risk. Following the recent publication of the first European Society of Cardiology (ESC) cardiomyopathy guidelines, we build on previous reviews and explore the roles of electrocardiography, echocardiography, cardiac magnetic resonance (CMR), cardiac computed tomography (CT), and nuclear imaging. We examine each modality's strengths along with their limitations in turn, and discuss how they can be used in isolation, or in combination, to facilitate a personalized approach to patient care, as well as providing key information and robust safety and efficacy evidence within new areas of research.
Collapse
Affiliation(s)
- Fraser C. Goldie
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
| | - Matthew M. Y. Lee
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
| | - Caroline J. Coats
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Sabrina Nordin
- School of Cardiovascular & Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK; (F.C.G.); (M.M.Y.L.); (C.J.C.)
- Department of Cardiology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| |
Collapse
|
6
|
Hnátová H, Fulínová K, Řiháková B, Bonaventura J, Veselka J. Effect of metoprolol in hypertrophic obstructive cardiomyopathy patients after alcohol septal ablation. IJC HEART & VASCULATURE 2023; 49:101317. [PMID: 38126007 PMCID: PMC10731216 DOI: 10.1016/j.ijcha.2023.101317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Background The use of beta-blockers in hypertrophic obstructive cardiomyopathy (HOCM) patients after alcohol septal ablation (ASA) lacks data support. We aimed to evaluate the effect of metoprolol on exercise capacity, hemodynamic and laboratory parameters, and quality of life in HOCM patients after ASA. Methods This was a prospective randomized single-center open-label crossover trial in 21 HOCM patients after ASA. Patients received metoprolol and no beta-blocker for two periods of three months. The endpoints were: peak oxygen uptake (pVO2), maximal left ventricular outflow tract (LVOT) pressure gradient at peak exercise, a ratio of mitral peak velocity of the early filling (E) to early diastolic mitral annular velocity (e') (E/e') at rest, Kansas City Cardiomyopathy Questionnaire (KCCQ) overall summary score, and N-terminal prohormone of brain natriuretic peptide (NT-proBNP) plasmatic concentration. Results No significant association was found between the treatment and any of the endpoints in the assessed patients: 1) pVO2 (19.5 ± 5.3 ml/kg/min vs. 19.4 ± 4.1 ml/kg/min, p = 0.90), 2) exercise-induced pressure gradient in LVOT 32 ± 37 mmHg vs. 32 ± 30 mmHg, p = 0.84, 3) E/e' ratio at rest (11 ± 4 vs. 10 ± 4, p = 0.23), 4) KCCQ overall summary score (78 ± 11 vs. 77 te ± 15, p = 0.56), 5) NT-proBNP (215 pg/ml [121-333] vs. 153 pg/ml [102-228], p = 0.19). Conclusions In HOCM patients after successful ASA, metoprolol treatment did not improve exercise capacity, hemodynamic and laboratory parameters, or quality of life.
Collapse
Affiliation(s)
- Hana Hnátová
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Klára Fulínová
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Barbora Řiháková
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jiří Bonaventura
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Josef Veselka
- Department of Cardiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
7
|
Coleman JA, Ashkir Z, Raman B, Bueno-Orovio A. Mechanisms and prognostic impact of myocardial ischaemia in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 2023; 39:1979-1996. [PMID: 37358707 PMCID: PMC10589194 DOI: 10.1007/s10554-023-02894-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/03/2023] [Indexed: 06/27/2023]
Abstract
Despite the progress made in risk stratification, sudden cardiac death and heart failure remain dreaded complications for hypertrophic cardiomyopathy (HCM) patients. Myocardial ischaemia is widely acknowledged as a contributor to cardiovascular events, but the assessment of ischaemia is not yet included in HCM clinical guidelines. This review aims to evaluate the HCM-specific pro-ischaemic mechanisms and the potential prognostic value of imaging for myocardial ischaemia in HCM. A literature review was performed using PubMed to identify studies with non-invasive imaging of ischaemia (cardiovascular magnetic resonance, echocardiography, and nuclear imaging) in HCM, prioritising studies published after the last major review in 2009. Other studies, including invasive ischaemia assessment and post-mortem histology, were also considered for mechanistic or prognostic relevance. Pro-ischaemic mechanisms in HCM reviewed included the effects of sarcomeric mutations, microvascular remodelling, hypertrophy, extravascular compressive forces and left ventricular outflow tract obstruction. The relationship between ischaemia and fibrosis was re-appraised by considering segment-wise analyses in multimodal imaging studies. The prognostic significance of myocardial ischaemia in HCM was evaluated using longitudinal studies with composite endpoints, and reports of ischaemia-arrhythmia associations were further considered. The high prevalence of ischaemia in HCM is explained by several micro- and macrostructural pathological features, alongside mutation-associated energetic impairment. Ischaemia on imaging identifies a subgroup of HCM patients at higher risk of adverse cardiovascular outcomes. Ischaemic HCM phenotypes are a high-risk subgroup associated with more advanced left ventricular remodelling, but further studies are required to evaluate the independent prognostic value of non-invasive imaging for ischaemia.
Collapse
Affiliation(s)
- James A Coleman
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Zakariye Ashkir
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Betty Raman
- Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
8
|
Arbelo E, Protonotarios A, Gimeno JR, Arbustini E, Barriales-Villa R, Basso C, Bezzina CR, Biagini E, Blom NA, de Boer RA, De Winter T, Elliott PM, Flather M, Garcia-Pavia P, Haugaa KH, Ingles J, Jurcut RO, Klaassen S, Limongelli G, Loeys B, Mogensen J, Olivotto I, Pantazis A, Sharma S, Van Tintelen JP, Ware JS, Kaski JP. 2023 ESC Guidelines for the management of cardiomyopathies. Eur Heart J 2023; 44:3503-3626. [PMID: 37622657 DOI: 10.1093/eurheartj/ehad194] [Citation(s) in RCA: 612] [Impact Index Per Article: 306.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
|
9
|
Weissler-Snir A, Rakowski H, Meyer M. Beta-blockers in non-obstructive hypertrophic cardiomyopathy: time to ease the heart rate restriction? Eur Heart J 2023; 44:3655-3657. [PMID: 37650505 DOI: 10.1093/eurheartj/ehad518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Affiliation(s)
- Adaya Weissler-Snir
- Hartford HealthCare, Heart and Vascular Institute, 80 Seymour St, Hartford, CT 06106, USA
- Department of Medicine, University of Connecticut Farmington, CT, USA
| | - Harry Rakowski
- The Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto General Hospital, 585 University Ave, Toronto, ON M5G 2N2, Canada
| | - Markus Meyer
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Pelliccia F, Cecchi F, Olivotto I, Camici PG. Microvascular Dysfunction in Hypertrophic Cardiomyopathy. J Clin Med 2022; 11:jcm11216560. [PMID: 36362787 PMCID: PMC9658510 DOI: 10.3390/jcm11216560] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Myocardial ischemia is an established pathophysiological feature of hypertrophic cardiomyopathy (HCM) that impacts various clinical features, including heart failure (HF) and sudden cardiac death (SCD). The major determinant of myocardial ischemia in HCM is coronary microvascular dysfunction (CMD) in the absence of epicardial coronary artery abnormalities. Despite the impossibility to directly visualize microcirculation in vivo, a multimodality approach can allow a detailed assessment of microvascular dysfunction and ischemia. Accordingly, the non-invasive assessment of CMD using transthoracic Doppler echocardiography, positron emission tomography, and cardiac magnetic resonance should now be considered mandatory in any HCM patient. Noteworthy, a complete diagnostic work-up for myocardial ischemia plays a major role in the approach of the patients with HCM and their risk stratification. Chronic and recurrent episodes of ischemia can contribute to fibrosis, culminating in LV remodeling and HF. Ischemia can potentially constitute an arrhythmic substrate and might prove to have an added value in risk stratification for SCD. Accordingly, strategies for the early diagnosis of CMD should now be considered an important challenge for the scientific community.
Collapse
Affiliation(s)
- Francesco Pelliccia
- Department of Cardiovascular Sciences, Sapienza University, 00166 Rome, Italy
- Correspondence:
| | - Franco Cecchi
- IRCCS Istituto Auxologico Italiano, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, 20100 Milan, Italy
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital and Careggi University Hospital, 50123 Florence, Italy
| | - Paolo G. Camici
- San Raffaele Hospital, Vita-Salute University, 20121 Milan, Italy
| |
Collapse
|
11
|
Aguiar Rosa S, Mota Carmo M, Rocha Lopes L, Oliveira E, Thomas B, Baquero L, Cruz Ferreira R, Fiarresga A. Index of microcirculatory resistance in the assessment of coronary microvascular dysfunction in hypertrophic cardiomyopathy. Rev Port Cardiol 2022; 41:761-767. [DOI: 10.1016/j.repc.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/22/2021] [Accepted: 07/27/2021] [Indexed: 10/17/2022] Open
|
12
|
Uncovering hypertrophic cardiomyopathy pathophysiology – the unsolved role of microvascular dysfunction. Rev Port Cardiol 2022; 41:569-571. [DOI: 10.1016/j.repc.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Nagueh SF, Phelan D, Abraham T, Armour A, Desai MY, Dragulescu A, Gilliland Y, Lester SJ, Maldonado Y, Mohiddin S, Nieman K, Sperry BW, Woo A. Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy: An Update from the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 2022; 35:533-569. [PMID: 35659037 DOI: 10.1016/j.echo.2022.03.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by the presence of left ventricular hypertrophy in the absence of other potentially causative cardiac, systemic, syndromic, or metabolic diseases. Symptoms can be related to a range of pathophysiologic mechanisms including left ventricular outflow tract obstruction with or without significant mitral regurgitation, diastolic dysfunction with heart failure with preserved and heart failure with reduced ejection fraction, autonomic dysfunction, ischemia, and arrhythmias. Appropriate understanding and utilization of multimodality imaging is fundamental to accurate diagnosis as well as longitudinal care of patients with HCM. Resting and stress imaging provide comprehensive and complementary information to help clarify mechanism(s) responsible for symptoms such that appropriate and timely treatment strategies may be implemented. Advanced imaging is relied upon to guide certain treatment options including septal reduction therapy and mitral valve repair. Using both clinical and imaging parameters, enhanced algorithms for sudden cardiac death risk stratification facilitate selection of HCM patients most likely to benefit from implantable cardioverter-defibrillators.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Saidi Mohiddin
- Inherited/Acquired Myocardial Diseases, Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Koen Nieman
- Cardiovascular Medicine and Radiology (CV Imaging), Stanford University Medical Center, CA
| | - Brett W Sperry
- Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Anna Woo
- Toronto General Hospital, Toronto, Canada
| |
Collapse
|
14
|
Crocini C, Gotthardt M. Cardiac sarcomere mechanics in health and disease. Biophys Rev 2021; 13:637-652. [PMID: 34745372 PMCID: PMC8553709 DOI: 10.1007/s12551-021-00840-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The sarcomere is the fundamental structural and functional unit of striated muscle and is directly responsible for most of its mechanical properties. The sarcomere generates active or contractile forces and determines the passive or elastic properties of striated muscle. In the heart, mutations in sarcomeric proteins are responsible for the majority of genetically inherited cardiomyopathies. Here, we review the major determinants of cardiac sarcomere mechanics including the key structural components that contribute to active and passive tension. We dissect the molecular and structural basis of active force generation, including sarcomere composition, structure, activation, and relaxation. We then explore the giant sarcomere-resident protein titin, the major contributor to cardiac passive tension. We discuss sarcomere dynamics exemplified by the regulation of titin-based stiffness and the titin life cycle. Finally, we provide an overview of therapeutic strategies that target the sarcomere to improve cardiac contraction and filling.
Collapse
Affiliation(s)
- Claudia Crocini
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- BioFrontiers Institute & Department of Molecular and Cellular Development, University of Colorado Boulder, Boulder, USA
| | - Michael Gotthardt
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Neuromuscular and Cardiovascular Cell Biology, Berlin, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
15
|
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P, O'Gara PT, Beckman JA, Levine GN, Al-Khatib SM, Armbruster A, Birtcher KK, Ciggaroa J, Dixon DL, de las Fuentes L, Deswal A, Fleisher LA, Gentile F, Goldberger ZD, Gorenek B, Haynes N, Hernandez AF, Hlatky MA, Joglar JA, Jones WS, Marine JE, Mark D, Palaniappan L, Piano MR, Tamis-Holland J, Wijeysundera DN, Woo YJ. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Thorac Cardiovasc Surg 2021; 162:e23-e106. [PMID: 33926766 DOI: 10.1016/j.jtcvs.2021.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2020; 76:3022-3055. [PMID: 33229115 DOI: 10.1016/j.jacc.2020.08.044] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIM This executive summary of the hypertrophic cardiomyopathy clinical practice guideline provides recommendations and algorithms for clinicians to diagnose and manage hypertrophic cardiomyopathy in adult and pediatric patients as well as supporting documentation to encourage their use. METHODS A comprehensive literature search was conducted from January 1, 2010, to April 30, 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Collaboration, Agency for Healthcare Research and Quality reports, and other relevant databases. STRUCTURE Many recommendations from the earlier hypertrophic cardiomyopathy guidelines have been updated with new evidence or a better understanding of earlier evidence. This summary operationalizes the recommendations from the full guideline and presents a combination of diagnostic work-up, genetic and family screening, risk stratification approaches, lifestyle modifications, surgical and catheter interventions, and medications that constitute components of guideline directed medical therapy. For both guideline-directed medical therapy and other recommended drug treatment regimens, the reader is advised to follow dosing, contraindications and drug-drug interactions based on product insert materials.
Collapse
|
17
|
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2020; 142:e533-e557. [PMID: 33215938 DOI: 10.1161/cir.0000000000000938] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aim This executive summary of the hypertrophic cardiomyopathy clinical practice guideline provides recommendations and algorithms for clinicians to diagnose and manage hypertrophic cardiomyopathy in adult and pediatric patients as well as supporting documentation to encourage their use. Methods A comprehensive literature search was conducted from January 1, 2010, to April 30, 2020, encompassing studies, reviews, and other evidence conducted on human subjects that were published in English from PubMed, EMBASE, the Cochrane Collaboration, Agency for Healthcare Research and Quality reports, and other relevant databases. Structure Many recommendations from the earlier hypertrophic cardiomyopathy guidelines have been updated with new evidence or a better understanding of earlier evidence. This summary operationalizes the recommendations from the full guideline and presents a combination of diagnostic work-up, genetic and family screening, risk stratification approaches, lifestyle modifications, surgical and catheter interventions, and medications that constitute components of guideline directed medical therapy. For both guideline-directed medical therapy and other recommended drug treatment regimens, the reader is advised to follow dosing, contraindications and drug-drug interactions based on product insert materials.
Collapse
Affiliation(s)
| | | | | | | | - Anita Deswal
- ACC/AHA Joint Committee on Clinical Practice Guidelines Liaison
- HFSA Representative
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2020; 76:e159-e240. [PMID: 33229116 DOI: 10.1016/j.jacc.2020.08.045] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy. Circulation 2020; 142:e558-e631. [DOI: 10.1161/cir.0000000000000937] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | - Anita Deswal
- ACC/AHA Joint Committee on Clinical Practice Guidelines Liaison
- HFSA Representative
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Aguiar Rosa S, Rocha Lopes L, Fiarresga A, Ferreira RC, Mota Carmo M. Coronary microvascular dysfunction in hypertrophic cardiomyopathy: Pathophysiology, assessment, and clinical impact. Microcirculation 2020; 28:e12656. [PMID: 32896949 DOI: 10.1111/micc.12656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/21/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia constitutes one of the most important pathophysiological features in hypertrophic cardiomyopathy. Chronic and recurrent myocardial ischemia leads to fibrosis, which may culminate in myocardial dysfunction. Since the direct visualization of coronary microcirculation in vivo is not possible, its function must be studied indirectly. Invasive and noninvasive techniques allow microcirculatory dysfunction to be evaluated, including echocardiography, magnetic resonance, positron emission tomography, and cardiac catheterization. Blunted myocardial blood flow and coronary flow reserve have been suggested to associate with unfavorable prognosis. Microcirculatory dysfunction may be one additional important parameter to take into account for risk stratification beyond the conventional risk factors.
Collapse
Affiliation(s)
- Sílvia Aguiar Rosa
- Department of Cardiology, Santa Marta Hospital, Lisbon, Portugal.,Nova Medical School, Lisbon, Portugal
| | - Luís Rocha Lopes
- Inherited Cardiac Disease Unit, Bart's Heart Centre, St Bartholomew's Hospital, London, UK.,Centre for Heart Muscle Disease, Institute of Cardiovascular Science, University College London, UK.,Centro Cardiovascular, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | |
Collapse
|
21
|
Camaioni C, Knott KD, Augusto JB, Seraphim A, Rosmini S, Ricci F, Boubertakh R, Xue H, Hughes R, Captur G, Lopes LR, Brown LAE, Manisty C, Petersen SE, Plein S, Kellman P, Mohiddin SA, Moon JC. Inline perfusion mapping provides insights into the disease mechanism in hypertrophic cardiomyopathy. Heart 2019; 106:824-829. [PMID: 31822572 PMCID: PMC7282549 DOI: 10.1136/heartjnl-2019-315848] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Objective In patients with hypertrophic cardiomyopathy (HCM), the role of small vessel disease and myocardial perfusion remains incompletely understood and data on absolute myocardial blood flow (MBF, mL/g/min) are scarce. We measured MBF using cardiovascular magnetic resonance fully quantitative perfusion mapping to determine the relationship between perfusion, hypertrophy and late gadolinium enhancement (LGE) in HCM. Methods 101 patients with HCM with unobstructed epicardial coronary arteries and 30 controls (with matched cardiovascular risk factors) underwent pixel-wise perfusion mapping during adenosine stress and rest. Stress, rest MBF and the myocardial perfusion reserve (MPR, ratio of stress to rest) were calculated globally and segmentally and then associated with segmental wall thickness and LGE. Results In HCM, 79% had a perfusion defect on clinical read. Stress MBF and MPR were reduced compared with controls (mean±SD 1.63±0.60 vs 2.30±0.64 mL/g/min, p<0.0001 and 2.21±0.87 vs 2.90±0.90, p=0.0003, respectively). Globally, stress MBF fell with increasing indexed left ventricle mass (R2 for the model 0.186, p=0.036) and segmentally with increasing wall thickness and LGE (both p<0.0001). In 21% of patients with HCM, MBF was lower during stress than rest (MPR <1) in at least one myocardial segment, a phenomenon which was predominantly subendocardial. Apparently normal HCM segments (normal wall thickness, no LGE) had reduced stress MBF and MPR compared with controls (mean±SD 1.88±0.81 mL/g/min vs 2.32±0.78 mL/g/min, p<0.0001). Conclusions Microvascular dysfunction is common in HCM and associated with hypertrophy and LGE. Perfusion can fall during vasodilator stress and is abnormal even in apparently normal myocardium suggesting it may be an early disease marker.
Collapse
Affiliation(s)
| | - Kristopher D Knott
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Joao B Augusto
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Andreas Seraphim
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | | | | | - Redha Boubertakh
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Hui Xue
- National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca Hughes
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Gaby Captur
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Luis Rocha Lopes
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | | | - Charlotte Manisty
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Science, University College London, London, UK
| | - Steffen Erhard Petersen
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK.,The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, University of Leeds, Leeds, UK
| | - Peter Kellman
- National Institutes of Health, Bethesda, Maryland, USA
| | | | - James C Moon
- Advanced Cardiac Imaging, Barts Health NHS Trust, London, UK .,Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
22
|
Bravo PE. Is there a role for cardiac positron emission tomography in hypertrophic cardiomyopathy? J Nucl Cardiol 2019; 26:1125-1134. [PMID: 29761309 DOI: 10.1007/s12350-018-1298-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Coronary microvascular dysfunction and, its functional consequence, myocardial ischemia are common pathologic features in patients with hypertrophic cardiomyopathy (HCM). Both have been commonly invoked as potential triggers of and/or contributors to the underlying pathophysiological processes leading to heart failure, and malignant ventricular arrhythmias. Positron emission tomography (PET) with myocardial blood flow quantification provides a unique opportunity to evaluate the integrity and function of the coronary microcirculation in HCM. The purpose of the present review is to summarize all the pertinent literature and future perspectives of the role of PET in the evaluation and risk stratification of patients with HCM.
Collapse
Affiliation(s)
- Paco E Bravo
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- Division of Cardiology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
- , 3400 Civic Center Boulevard, 11-154 South Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
23
|
Proietti R, Russo V, AlTurki A. Anti-arrhythmic therapy in patients with non-ischemic cardiomyopathy. Pharmacol Res 2019; 143:27-32. [PMID: 30844534 DOI: 10.1016/j.phrs.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/02/2019] [Accepted: 03/03/2019] [Indexed: 01/29/2023]
Abstract
Implantable cardiac defibrillators (ICD) are the foundation of therapy for the prevention of sudden cardiac death. While ICDs prevent SCD, they do not prevent the occurrence of ventricular arrhythmias which are usually symptomatic. Though catheter ablation has been successful in substrate modification of ventricular tachycardia in patients with ischemic cardiomyopathy, there is much less evidence to support its use in non-ischemic cardiomyopathy. Therefore, anti-arrhythmic drugs (AADs) are an essential adjunctive therapy for secondary prevention of ventricular arrhythmias in patients with non-ischemic cardiomyopathy. In patients with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM), the prevalence of ventricular arrhythmias correlates with the volume of scar as characterized by late gadolinium enhancement. Beta-blockers forms the cornerstone of treatment to prevent ventricular arrhythmias in both HCM and DCM. Disopyramide is an important therapeutic option in HCM as it provides both negative inotropy which reduces obstruction as well as lass I anti-arrhythmic action. In DCM sotalol, through is combined beta-blocking and class III AD effects, significantly reduces the burden of ventricular arrhythmias. Though amiodarone is efficacious in the prevention of ventricular arrhythmias in both HCM and DCM, its use is limited by its side-effects profile. Evidence for AAD therapy for arrhythmogenic right ventricular dysplasia (ARVD) is limited by its low prevalence and lack of studies. ICDs have been shown to reduce SCD regardless of whether patients are receiving AAD therapy.
Collapse
Affiliation(s)
- Riccardo Proietti
- Department of Cardiac, Thoracic, and Vascular Sciences, University of Padua, Padua, Italy
| | - Vincenzo Russo
- Chair of Cardiology, University of Campania, Ospedale Monaldi, Naples, Italy
| | - Ahmed AlTurki
- Division of Cardiology, McGill University Health Center, Montreal, Canada.
| |
Collapse
|
24
|
Microvascular Dysfunction in Hypertrophic Cardiomyopathy. CURRENT CARDIOVASCULAR IMAGING REPORTS 2019. [DOI: 10.1007/s12410-019-9478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Electrocardiographic changes as a marker of improved subendocardial ischemia in a patient with hypertrophic cardiomyopathy. J Electrocardiol 2018; 51:895-897. [DOI: 10.1016/j.jelectrocard.2018.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022]
|
26
|
Role of Exercise Testing in Hypertrophic Cardiomyopathy. JACC Cardiovasc Imaging 2017; 10:1374-1386. [DOI: 10.1016/j.jcmg.2017.07.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/28/2017] [Accepted: 07/27/2017] [Indexed: 01/06/2023]
|
27
|
Tower-Rader A, Betancor J, Lever HM, Desai MY. A Comprehensive Review of Stress Testing in Hypertrophic Cardiomyopathy: Assessment of Functional Capacity, Identification of Prognostic Indicators, and Detection of Coronary Artery Disease. J Am Soc Echocardiogr 2017; 30:829-844. [DOI: 10.1016/j.echo.2017.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Indexed: 01/17/2023]
|
28
|
Sherrid MV. Drug Therapy for Hypertrophic Cardiomypathy: Physiology and Practice. Curr Cardiol Rev 2016; 12:52-65. [PMID: 26818487 PMCID: PMC4807719 DOI: 10.2174/1573403x1201160126125403] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/19/2022] Open
Abstract
HCM is the most common inherited heart condition occurring in 1:500 individuals in the general population. Left ventricular outflow obstruction at rest or after provocation occurs in 2/3 of HCM patients and is a frequent cause of limiting symptoms. Pharmacologic therapy is the first-line treatment for obstruction, and should be aggressively pursued before application of invasive therapy. Beta-blockade is given first, and up-titrated to decrease resting heart rate to between 50 and 60 beats per minute. However, beta-blockade is not expected to decrease resting gradients; its effect rests on decreasing the rise in gradient that accompanies exercise. For patients who fail beta-blockade the addition of oral disopyramide in adequate dose often will decrease resting gradients and offer meaningful relief of symptoms. Disopyramide vagolytic side effects, if they occur, can be greatly mitigated by simultaneous administration of oral pyridostigmine. This combination allows adequate dosing of disopyramide to achieve therapeutic goals. Verapamil utility in obstructive HCM with high resting gradients is limited by its vasodilating effects that can, infrequently, worsen gradient and symptoms. As such, we tend to avoid it in patients with high gradients and limiting heart failure symptoms. In a head-to-head comparison of intravenous drug administration in individual obstructive HCM patients the relative efficacy for lowering gradient was disopyramide > beta-blockade > verapamil. Severe symptoms in non-obstructive HCM are caused by fibrosis or severe myocyte disarray, and often by very small LV chamber size. Severe symptoms caused by these anatomic and histologic abnormalities, in the absence of obstruction, are less amenable to current pharmacotherapy. New pharmacotherapeutic approaches to HCM are on the horizon, that are to be evaluated in formal therapeutic trials.
Collapse
Affiliation(s)
- Mark V Sherrid
- New York University Langone Medical Center, 530 First Avenue, NYC, NY 10016, USA.
| |
Collapse
|
29
|
Nuclear Imaging for Assessment of Myocardial Perfusion, Metabolism, and Innervation in Hypertrophic Cardiomyopathy. CURRENT CARDIOVASCULAR IMAGING REPORTS 2016. [DOI: 10.1007/s12410-016-9379-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
|
31
|
Hensley N, Dietrich J, Nyhan D, Mitter N, Yee MS, Brady M. Hypertrophic Cardiomyopathy. Anesth Analg 2015; 120:554-569. [DOI: 10.1213/ane.0000000000000538] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
32
|
Tardiff JC, Carrier L, Bers DM, Poggesi C, Ferrantini C, Coppini R, Maier LS, Ashrafian H, Huke S, van der Velden J. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc Res 2015; 105:457-70. [PMID: 25634554 DOI: 10.1093/cvr/cvv023] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To date, no compounds or interventions exist that treat or prevent sarcomeric cardiomyopathies. Established therapies currently improve the outcome, but novel therapies may be able to more fundamentally affect the disease process and course. Investigations of the pathomechanisms are generating molecular insights that can be useful for the design of novel specific drugs suitable for clinical use. As perturbations in the heart are stage-specific, proper timing of drug treatment is essential to prevent initiation and progression of cardiac disease in mutation carrier individuals. In this review, we emphasize potential novel therapies which may prevent, delay, or even reverse hypertrophic cardiomyopathy caused by sarcomeric gene mutations. These include corrections of genetic defects, altered sarcomere function, perturbations in intracellular ion homeostasis, and impaired myocardial energetics.
Collapse
Affiliation(s)
- Jil C Tardiff
- Department of Medicine and Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, MRB 312, Tucson, AZ 85724-5217, USA
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Corrado Poggesi
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Raffaele Coppini
- Center of Molecular Medicine and Applied Biophysics (CIMMBA), University of Florence, Florence, Italy
| | - Lars S Maier
- Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum, Regensburg, Germany
| | - Houman Ashrafian
- Experimental Therapeutics and Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
33
|
Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 2014; 35:2733-79. [PMID: 25173338 DOI: 10.1093/eurheartj/ehu284] [Citation(s) in RCA: 2969] [Impact Index Per Article: 269.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
MESH Headings
- Ablation Techniques/methods
- Adult
- Angina Pectoris/etiology
- Arrhythmias, Cardiac/etiology
- Cardiac Imaging Techniques/methods
- Cardiac Pacing, Artificial/methods
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/etiology
- Cardiomyopathy, Hypertrophic/therapy
- Child
- Clinical Laboratory Techniques/methods
- Death, Sudden, Cardiac/prevention & control
- Delivery of Health Care
- Diagnosis, Differential
- Electrocardiography/methods
- Female
- Genetic Counseling/methods
- Genetic Testing/methods
- Heart Failure/etiology
- Heart Valve Diseases/diagnosis
- Heart Valve Diseases/therapy
- Humans
- Medical History Taking/methods
- Pedigree
- Physical Examination/methods
- Preconception Care/methods
- Pregnancy
- Pregnancy Complications, Cardiovascular/diagnosis
- Pregnancy Complications, Cardiovascular/therapy
- Prenatal Care/methods
- Risk Factors
- Sports Medicine
- Syncope/etiology
- Thoracic Surgical Procedures/methods
- Ventricular Outflow Obstruction/etiology
Collapse
|
34
|
|
35
|
Kawasaki T, Sugihara H. Subendocardial ischemia in hypertrophic cardiomyopathy. J Cardiol 2014; 63:89-94. [DOI: 10.1016/j.jjcc.2013.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/05/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
36
|
Kawasaki T, Yamano M, Sakai C, Harimoto K, Miki S, Kamitani T, Sugihara H. Diagnostic performance of ultrasonic tissue characterization for subendocardial ischaemia in patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 2012; 14:790-6. [DOI: 10.1093/ehjci/jes285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
37
|
Timmer SAJ, Knaapen P. Coronary microvascular function, myocardial metabolism, and energetics in hypertrophic cardiomyopathy: insights from positron emission tomography. Eur Heart J Cardiovasc Imaging 2012; 14:95-101. [DOI: 10.1093/ehjci/jes242] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
38
|
Spoladore R, Maron MS, D'Amato R, Camici PG, Olivotto I. Pharmacological treatment options for hypertrophic cardiomyopathy: high time for evidence. Eur Heart J 2012; 33:1724-33. [PMID: 22719025 DOI: 10.1093/eurheartj/ehs150] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic heart disease, affecting over one million individuals in Europe. Hypertrophic cardiomyopathy patients often require pharmacological intervention for control of symptoms, dynamic left ventricular outflow obstruction, supraventricular and ventricular arrhythmias, and microvascular ischaemia. Current treatment strategies in HCM are predicated on the empirical use of long-standing drugs, such as beta-adrenergic and calcium blockers, although with little evidence supporting their clinical benefit in this disease. In the six decades since the original description of the disease, <50 pharmacological studies enrolling little over 2000 HCM patients have been performed, the majority of which were small, non-randomized cohorts. As our understanding of the genetic basis and pathophysiology of HCM improves, the availability of transgenic and preclinical models uncovers clues to novel and promising treatment modalities. Furthermore, the number of patients identified and followed at international referral centres has grown steadily over the decades. As a result, the opportunity now exists to implement adequately designed pharmacological trials in HCM, using established as well as novel drug therapies, to potentially intervene on the complex pathophysiology of the disease and alter its natural course. Therefore, it is timely to review the available evidence for pharmacological therapy of HCM patients, highlight the most relevant gaps in knowledge, and address some of the most promising areas for future pharmacological research, in an effort to move HCM into the era of evidence-based management.
Collapse
Affiliation(s)
- Roberto Spoladore
- Cardiothoracic and Vascular Department, Vita-Salute University, Milan, Italy.
| | | | | | | | | |
Collapse
|
39
|
Predicting the Future in Hypertrophic Cardiomyopathy: From Histopathology To Flow To Function. J Am Soc Echocardiogr 2012; 25:190-3. [DOI: 10.1016/j.echo.2011.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW, Jacobs AK, Smith SC, Anderson JL, Albert NM, Buller CE, Creager MA, Ettinger SM, Guyton RA, Halperin JL, Hochman JS, Krumholz HM, Kushner FG, Nishimura RA, Ohman EM, Page RL, Stevenson WG, Tarkington LG, Yancy CW. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy. J Thorac Cardiovasc Surg 2011; 142:e153-203. [DOI: 10.1016/j.jtcvs.2011.10.020] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in collaboration with the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2011; 58:e212-60. [PMID: 22075469 DOI: 10.1016/j.jacc.2011.06.011] [Citation(s) in RCA: 825] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
42
|
Ranasinghe I, Yeoh T, Yiannikas J. Negative Ionotropic Agents for the Treatment of Left Ventricular Outflow Tract Obstruction Due to Sigmoid Septum and Concentric Left Ventricular Hypertrophy. Heart Lung Circ 2011; 20:579-86. [DOI: 10.1016/j.hlc.2011.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/04/2011] [Accepted: 05/07/2011] [Indexed: 11/15/2022]
|
43
|
Nagueh SF, Bierig SM, Budoff MJ, Desai M, Dilsizian V, Eidem B, Goldstein SA, Hung J, Maron MS, Ommen SR, Woo A. American Society of Echocardiography Clinical Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy. J Am Soc Echocardiogr 2011; 24:473-98. [PMID: 21514501 DOI: 10.1016/j.echo.2011.03.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sherif F Nagueh
- Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Brouwer WP, van Dijk SJ, Stienen GJM, van Rossum AC, van der Velden J, Germans T. The development of familial hypertrophic cardiomyopathy: from mutation to bedside. Eur J Clin Invest 2011; 41:568-78. [PMID: 21158848 DOI: 10.1111/j.1365-2362.2010.02439.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a familial disorder characterized by left ventricular hypertrophy in the absence of other cardiac or systemic disease likely to cause this hypertrophy. HCM is considered a disease of the sarcomere as most causal mutations are identified in genes encoding sarcomeric proteins, although several other disorders have also been linked to the HCM phenotype. The clinical course of HCM is characterized by a large inter- and intrafamilial variability, ranging from severe symptomatic HCM to asymptomatic individuals. The general picture emerges that the underlying pathophysiology of HCM is complex and still scarcely clarified. Recent findings indicated that both functional and morphological (macroscopic and microscopic) changes of the HCM muscle are present before the occurrence of HCM phenotype. This review aims to provide an overview of the myocardial alterations that occur during the gradual process of wall thickening in HCM on a myofilament level, as well as the structural and functional abnormalities that can be observed in genetically affected individuals prior to the development of HCM with state of the art imaging techniques, such as tissue Doppler echocardiography and cardiovascular magnetic resonance imaging. Additionally, present and future therapeutic options will be briefly discussed.
Collapse
Affiliation(s)
- Wessel P Brouwer
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Jamshid Shirani
- Department of Cardiology, Geisinger Medical Center, Danville, PA 17822-2160, USA.
| | | |
Collapse
|
46
|
Dilsizian V, Panza JA, Bonow RO. Myocardial Perfusion Imaging in Hypertrophic Cardiomyopathy. JACC Cardiovasc Imaging 2010; 3:1078-80. [DOI: 10.1016/j.jcmg.2010.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 07/12/2010] [Accepted: 07/15/2010] [Indexed: 11/25/2022]
|
47
|
The case for myocardial ischemia in hypertrophic cardiomyopathy. J Am Coll Cardiol 2009; 54:866-75. [PMID: 19695469 DOI: 10.1016/j.jacc.2009.04.072] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/20/2009] [Accepted: 04/21/2009] [Indexed: 02/07/2023]
Abstract
Since its original description 50 years ago, myocardial ischemia has been a recognized but underappreciated aspect of the pathophysiology of hypertrophic cardiomyopathy (HCM). Nevertheless, the assessment of myocardial ischemia is still not part of routine clinical diagnostic or management strategies. Morphologic abnormalities of the intramural coronary arterioles represent the primary morphologic substrate for microvascular dysfunction and its functional consequence-that is, blunted myocardial blood flow (MBF) during stress. Recently, a number of studies using contemporary cardiovascular imaging modalities such as positron emission tomography (PET) and cardiovascular magnetic resonance (CMR) have led to an enhanced understanding of the role that myocardial ischemia and its sequelae fibrosis play on clinical outcome. In this regard, studies with PET have shown that HCM patients have impaired MBF after dipyridamole infusion and that this blunted MBF is a powerful independent predictor of cardiovascular mortality and adverse LV remodeling associated with LV systolic dysfunction. Stress CMR with late gadolinium enhancement (LGE) has also shown that MBF is reduced in relation to magnitude of wall thickness and in those LV segments occupied by LGE (i.e., fibrosis). These CMR observations show an association between ischemia, myocardial fibrosis, and LV remodeling, providing support that abnormal MBF caused by microvascular dysfunction is responsible for myocardial ischemia-mediated myocyte death, and ultimately replacement fibrosis. Efforts should now focus on detecting myocardial ischemia before adverse LV remodeling begins, so that interventional treatment strategies can be initiated earlier in the clinical course to mitigate ischemia and beneficially alter the natural history of HCM.
Collapse
|
48
|
Chang SM, Hakeem A, Nagueh SF. Predicting clinically unrecognized coronary artery disease: use of two- dimensional echocardiography. Cardiovasc Ultrasound 2009; 7:10. [PMID: 19267918 PMCID: PMC2656458 DOI: 10.1186/1476-7120-7-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/06/2009] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND 2-D Echo is often performed in patients without history of coronary artery disease (CAD). We sought to determine echo features predictive of CAD. METHODS 2-D Echo of 328 patients without known CAD performed within one year prior to stress myocardial SPECT and angiography were reviewed. Echo features examined were left ventricular and atrial enlargement, LV hypertrophy, wall motion abnormality (WMA), LV ejection fraction (EF) < 50%, mitral annular calcification (MAC) and aortic sclerosis/stenosis (AS). High risk myocardial perfusion abnormality (MPA) was defined as >15% LV perfusion defect or multivessel distribution. Severe coronary artery stenosis (CAS) was defined as left main, 3 VD or 2VD involving proximal LAD. RESULTS The mean age was 62 +/- 13 years, 59% men, 29% diabetic (DM) and 148 (45%) had > 2 risk factors. Pharmacologic stress was performed in 109 patients (33%). MPA was present in 200 pts (60%) of which, 137 were high risk. CAS was present in 166 pts (51%), 75 were severe. Of 87 patients with WMA, 83% had MPA and 78% had CAS. Multivariate analysis identified age >65, male, inability to exercise, DM, WMA, MAC and AS as independent predictors of MPA and CAS. Independent predictors of high risk MPA and severe CAS were age, DM, inability to exercise and WMA. 2-D echo findings offered incremental value over clinical information in predicting CAD by angiography. (Chi square: 360 vs. 320 p = 0.02). CONCLUSION 2-D Echo was valuable in predicting presence of physiological and anatomical CAD in addition to clinical information.
Collapse
Affiliation(s)
- Su Min Chang
- Department of Cardiology, DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX, USA.
| | | | | |
Collapse
|
49
|
Kim WS, Minagoe S, Mizukami N, Zhou X, Yoshinaga K, Takasaki K, Yuasa T, Kihara K, Hamasaki S, Otsuji Y, Kisanuki A, Tei C. No reflow-like pattern in intramyocardial coronary artery suggests myocardial ischemia in patients with hypertrophic cardiomyopathy. J Cardiol 2008; 52:7-16. [DOI: 10.1016/j.jjcc.2008.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 03/26/2008] [Accepted: 04/17/2008] [Indexed: 10/21/2022]
|
50
|
Kawasaki T, Azuma A, Kuribayashi T, Akakabe Y, Yamano M, Miki S, Sawada T, Kamitani T, Matsubara H, Sugihara H. Vagal enhancement due to subendocardial ischemia as a cause of abnormal blood pressure response in hypertrophic cardiomyopathy. Int J Cardiol 2007; 129:59-64. [PMID: 17651826 DOI: 10.1016/j.ijcard.2007.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 05/08/2007] [Accepted: 05/30/2007] [Indexed: 12/01/2022]
Abstract
BACKGROUND Patients with hypertrophic cardiomyopathy (HCM) often develop myocardial ischemia in association with abnormal blood pressure response to exercise. Vagal nerves mediate cardioinhibitory stimuli, with little knowledge regarding vagal response to myocardial ischemia in patients with HCM. METHODS Exercise Tc-99m-tetrofosmin myocardial scintigraphy was performed in 59 HCM patients and 39 controls who had no evidence of cardiac disease. We examined how reversible regional perfusion abnormality and transient left ventricular cavity dilation, a parameter of subendocardial ischemia, are related to vagal modulation as assessed by coefficient of high frequency component variance (CCV(HF)) on heart rate variability. We then correlated the results with abnormal blood pressure response to exercise, defined as failed increase >or=25 mm Hg during exercise. RESULTS Regional perfusion abnormality and left ventricular cavity dilation were observed in 26 and 21 HCM patients, respectively. The percentage change of CCV(HF) from before to after exercise was higher in HCM patients with left ventricular cavity dilation than without or controls (5.2+/-9.8%, -23.5+/-5.7%, -14.5+/-5.5%, P=0.004). By contrast, the change of CCV(HF) was similar in HCM patients with regional perfusion abnormality, those without, and controls. The change of CCV(HF) was correlated with exercise-induced increase in systolic blood pressure (rho=-0.64, P<0.001); HCM patients with abnormal blood pressure response were characterized by a higher percentage change in CCV(HF) (50.0+/-18.3%). CONCLUSIONS Subendocardial ischemia provoked vagal enhancement in patients with HCM, which may be related to the development of abnormal blood pressure response to exercise.
Collapse
Affiliation(s)
- Tatsuya Kawasaki
- Department of Cardiology, Matsushita Memorial Hospital, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|