1
|
Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev 2021; 178:113992. [PMID: 34597748 PMCID: PMC8556370 DOI: 10.1016/j.addr.2021.113992] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Drug delivery research pursues many types of carriers including proteins and other macromolecules, natural and synthetic polymeric structures, nanocarriers of diverse compositions and cells. In particular, liposomes and lipid nanoparticles represent arguably the most advanced and popular human-made nanocarriers, already in multiple clinical applications. On the other hand, red blood cells (RBCs) represent attractive natural carriers for the vascular route, featuring at least two distinct compartments for loading pharmacological cargoes, namely inner space enclosed by the plasma membrane and the outer surface of this membrane. Historically, studies of liposomal drug delivery systems (DDS) astronomically outnumbered and surpassed the RBC-based DDS. Nevertheless, these two types of carriers have different profile of advantages and disadvantages. Recent studies showed that RBC-based drug carriers indeed may feature unique pharmacokinetic and biodistribution characteristics favorably changing benefit/risk ratio of some cargo agents. Furthermore, RBC carriage cardinally alters behavior and effect of nanocarriers in the bloodstream, so called RBC hitchhiking (RBC-HH). This article represents an attempt for the comparative analysis of liposomal vs RBC drug delivery, culminating with design of hybrid DDSs enabling mutual collaborative advantages such as RBC-HH and camouflaging nanoparticles by RBC membrane. Finally, we discuss the key current challenges faced by these and other RBC-based DDSs including the issue of potential unintended and adverse effect and contingency measures to ameliorate this and other concerns.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Elizabeth D Hood
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Laura T Ferguson
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Don L Siegel
- Department of Pathology & Laboratory Medicine, Division of Transfusion Medicine & Therapeutic Pathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02138, United States
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States; Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Center for Targeted Therapeutics and Translational Nanomedicine of the Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
2
|
Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Deliv 2015; 6:795-826. [PMID: 26228773 PMCID: PMC4712023 DOI: 10.4155/tde.15.34] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel C Pan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Zaitsev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas B Cines
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Abstract
Studies in animal models have shown that plasminogen activators bound to erythrocytes (RBC-PA) have an extended lifetime in the circulation and are safer than free PAs. RBC-PAs incorporate into nascent thrombi, which are focally lysed from within, an attractive thromboprophylactic option. In static systems, RBC-PAs cleave surrounding fibrin fibers, forming pores larger than the cells themselves, and move around the pore edges, enlarging them until eventual clot dissolution. We hypothesized that under flow in blood vessels, RBC-PAs form functional patent channels before clot dissolution. Here we used perfusion chambers to study clot lysis by RBC-PAs under static versus arterial and venous flow conditions. We found that flow decelerates bulk clot lysis but quickly generates patent channels filled with passing RBCs, via pore enlargement and merging in the direction of flow. Formation of such channels by RBC-PAs may help rescue ischemic tissue before bulk dissolution of potentially occlusive clots.
Collapse
|
4
|
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7:403-27. [PMID: 20192900 DOI: 10.1517/17425241003610633] [Citation(s) in RCA: 281] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
5
|
Ganguly K, Goel MS, Krasik T, Bdeir K, Diamond SL, Cines DB, Muzykantov VR, Murciano JC. Fibrin Affinity of Erythrocyte-Coupled Tissue-Type Plasminogen Activators Endures Hemodynamic Forces and Enhances Fibrinolysis in Vivo. J Pharmacol Exp Ther 2005; 316:1130-6. [PMID: 16284278 DOI: 10.1124/jpet.105.093450] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plasminogen activators (PAs; e.g., tissue-type, tPA) coupled to red blood cells (RBCs) display in vivo features useful for thromboprophylaxis: prolonged circulation, minimal extravasation, and preferential lysis of nascent versus preexisting clots. Yet, factors controlling the activity of RBC-bound PAs in vivo are not defined and may not mirror the profile of soluble PAs. We tested the role of RBC/PA binding to fibrin in fibrinolysis. RBC/tPA and RBC/tPA variant with low fibrin affinity (rPA) bound to and lysed plasminogen-containing fibrin clots in vitro comparably. In contrast, when coinjected in mice with fibrin emboli lodging in pulmonary vasculature, only RBC/tPA accumulated in lungs, which resulted in a more extensive fibrinolysis versus RBC/rPA (p < 0.01). Reconciling this apparent divergence between in vitro and in vivo behaviors, RBC/tPA, but not RBC/rPA perfused over fibrin in vitro at physiological shear stress bound to fibrin clots and caused greater fibrinolysis versus RBC/rPA (p < 0.001). These results indicate that because of high fibrin affinity, RBC/tPA binding to clots endures hemodynamic stress, which enhances fibrinolysis. Behavior of RBC/PAs under hemodynamic pressure is an important predictor of their performance in vivo.
Collapse
Affiliation(s)
- Kumkum Ganguly
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, One John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ganguly K, Krasik T, Medinilla S, Bdeir K, Cines DB, Muzykantov VR, Murciano JC. Blood Clearance and Activity of Erythrocyte-Coupled Fibrinolytics. J Pharmacol Exp Ther 2004; 312:1106-13. [PMID: 15525799 DOI: 10.1124/jpet.104.075770] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conjugating tissue-type plasminogen activator (tPA) to red blood cells (RBCs) endows it with features useful for thromboprophylaxis. However, the optimal intensity and duration of thromboprophylaxis vary among clinical settings. To assess how the intrinsic properties of a plasminogen activator (PA) affect functions of the corresponding RBC/PA conjugate, we coupled equal amounts of tPA or Retavase (rPA; a variant with an extended circulation time, lower fibrin affinity, and greater susceptibility to PA inhibitors). Conjugation to RBC markedly prolonged the circulation of each PA in rats and mice, without detrimental effects on carrier RBC. The initial blood clearance of RBC/tPA was faster than RBC/rPA, yet it exerted greater fibrinolytic activity, in part due to greater resistance of tPA and RBC/tPA to plasma inhibitors versus rPA and RBC/rPA observed in vitro. Soluble and RBC-coupled tPA and rPA exerted the same amidolytic activity, yet RBC/tPA lysed fibrin clots more effectively than RBC/rPA, notwithstanding comparable fibrinolytic activity of their soluble counterparts. Conjugation to RBC suppressed rPA's ability to be activated by fibrin, whereas the fibrin activation of RBC-coupled tPA was not hindered. Therefore, the functional profile of RBC/PA is influenced by: pharmacokinetic features provided by carrier RBC (e.g., prolonged circulation), intrinsic PA features (e.g., clearance rate, resistance to inhibitors), and changes imposed by conjugation to RBC (e.g., loss of cofactor stimulation). These factors, different from those guiding the design of soluble PA for lysis of existing clots, can be exploited in the rational design of RBC/PA tailored for specific prophylactic indications.
Collapse
Affiliation(s)
- Kumkum Ganguly
- IFEM, University of Pennsylvania School of Medicine, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Murciano JC, Medinilla S, Eslin D, Atochina E, Cines DB, Muzykantov VR. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 2003; 21:891-6. [PMID: 12845330 DOI: 10.1038/nbt846] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2003] [Accepted: 05/23/2003] [Indexed: 11/09/2022]
Abstract
A fibrinolytic agent consisting of a tissue-type plasminogen activator (tPA) coupled to the surface of red blood cells (RBCs) can dissolve nascent clots from within the clot, in a Trojan horse-like strategy, while having minimal effects on preexisting hemostatic clots or extravascular tissue. After intravenous injection, the fibrinolytic activity of RBC-tPA persisted in the bloodstream at least tenfold longer than did that of free tPA. In a model of venous thrombosis induced by intravenously injected fibrin microemboli aggregating in pulmonary vasculature, soluble tPA lysed pulmonary clots lodged before but not after tPA injection, whereas the converse was true for RBC-tPA. Free tPA failed to lyse occlusive carotid thrombosis whether injected before or after vascular trauma, whereas RBC-tPA circulating before, but not injected after, thrombus formation restored blood flow. This RBC-based drug delivery strategy alters the fibrinolytic profile of tPA, permitting prophylactic fibrinolysis.
Collapse
Affiliation(s)
- Juan-Carlos Murciano
- Institute for Environmental Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
8
|
Murciano JC, Muro S, Koniaris L, Christofidou-Solomidou M, Harshaw DW, Albelda SM, Granger DN, Cines DB, Muzykantov VR. ICAM-directed vascular immunotargeting of antithrombotic agents to the endothelial luminal surface. Blood 2003; 101:3977-84. [PMID: 12531816 DOI: 10.1182/blood-2002-09-2853] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Drug targeting to a highly expressed, noninternalizable determinant up-regulated on the perturbed endothelium may help to manage inflammation and thrombosis. We tested whether inter-cellular adhesion molecule-1 (ICAM-1) targeting is suitable to deliver antithrombotic drugs to the pulmonary vascular lumen. ICAM-1 antibodies bind to the surface of endothelial cells in culture, in perfused lungs, and in vivo. Proinflammatory cytokines enhance anti-ICAM binding to the endothelium without inducing internalization. (125)I-labeled anti-ICAM and a reporter enzyme (beta-Gal) conjugated to anti-ICAM bind to endothelium and accumulate in the lungs after intravenous administration in rats and mice. Anti-ICAM is seen to localize predominantly on the luminal surface of the pulmonary endothelium by electron microscopy. We studied the pharmacological effect of ICAM-directed targeting of tissue-type plasminogen activator (tPA). Anti-ICAM/tPA, but not control IgG/tPA, conjugate accumulates in the rat lungs, where it exerts plasminogen activator activity and dissolves fibrin microemboli. Therefore, ICAM may serve as a target for drug delivery to endothelium, for example, for pulmonary thromboprophylaxis. Enhanced drug delivery to sites of inflammation and the potential anti-inflammatory effect of blocking ICAM-1 may enhance the benefit of this targeting strategy.
Collapse
Affiliation(s)
- Juan-Carlos Murciano
- Institute of Environmental Medicine, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Murphy TP. Thrombolysis on the Horizon: New Thrombolytic Agents and Strategies. J Vasc Interv Radiol 2003. [DOI: 10.1016/s1051-0443(03)70203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Bode C, Peter K, Nordt T, Kohler B, Moser M, Ruef J, Runge M. New developments in thrombolytic therapy. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0268-9499(97)80033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Maksimenko AV, Tischenko EG, Petrov AD, Petrova ML. Effective enzyme thrombolytic composition on the basis of wild-type and chemically modified plasminogen activators. Ann N Y Acad Sci 1996; 799:146-50. [PMID: 8958085 DOI: 10.1111/j.1749-6632.1996.tb33191.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A V Maksimenko
- Institute of Experimental Cardiology, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
12
|
Maksimenko AV, Tischenko EG, Petrov AD, Petrova ML, Golubykh VL. Venous thrombolysis by tissue-type plasminogen activator in conjunction with the urokinase-fibrinogen covalent conjugate. Effects of potentiation and faster action in dogs. Appl Biochem Biotechnol 1996; 61:123-8. [PMID: 9100350 DOI: 10.1007/bf02785694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conjunctive administration of the tissue-type plasminogen activator (t-PA) and the urokinase-fibrinogen covalent conjugate (UK-Fbg) was studied by the example of venous thrombosis in dogs. Comparing the effect of separate use of the two components, we observed the potentiation of thrombolytic effect induced by an i.v. bolus infusion administration of the tissue-type plasminogen activator (1 and 4 mg, respectively) combined with a bolus administration 15 min after the first injection of the 25,000 IU UK-Fbg. Faster-action and potentiation effects of thrombolysis were observed with the same administration scheme when the t-PA was used as bolus infusion (1 and 1 mg, respectively) combined with a bolus of the 250,000 IU fibrinogen-modified urokinase. The findings indicate an approach to the development of efficient thrombolytic compositions.
Collapse
Affiliation(s)
- A V Maksimenko
- Institute of Experimental Cardiology, Cardiology Research Center, Moscow, Russia
| | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- J S Huston
- Creative BioMolecules, Inc., Hopkinton, Massachusetts 01748, USA
| | | | | |
Collapse
|
14
|
Potentiation and acceleration effects in combined administration of tissue plasminogen activator and fibrinogen-modified urokinase in dogs with modeled venous thrombosis. Bull Exp Biol Med 1996. [DOI: 10.1007/bf02445703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
McEvoy FJ, Edgell TA, Webbon PM, Gaffney PJ. Detection of fibrin in canine neoplasia. THE BRITISH VETERINARY JOURNAL 1996; 152:83-91. [PMID: 8634869 DOI: 10.1016/s0007-1935(96)80088-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A murine monoclonal antibody, designated 1H10, produced using a human fibrin-related immunogen, was shown to bind avidly to dog fibrin, but not to dog fibrinogen. Using immunofluorescence, fibrin was detected in canine gastric adenocarcinoma and in mixed tissue from a mammary tumour. No fibrin could be detected in bronchogenic carcinoma tissue.
Collapse
Affiliation(s)
- F J McEvoy
- Royal Veterinary College, University of London, North Mymms, Hatfield, UK
| | | | | | | |
Collapse
|
16
|
|
17
|
Fears R, Poste G. Obstacles to the development of novel thrombolytic agents for acute myocardial infarction therapy: Is the good the enemy of the best? ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0268-9499(94)90045-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Abstract
Despite their widespread use in patients with acute myocardial infarction, all currently available thrombolytic agents suffer from a number of significant limitations, including resistance to reperfusion, the occurrence of acute coronary reocclusion and bleeding complications. Furthermore, the therapeutic use of plasminogen activators as thrombolytic agents requires intravenous infusion of relatively large amounts of material. Therefore, the quest for thrombolytic agents with a higher thrombolytic potency, specific thrombolytic activity and/or a better fibrin-selectivity continues. Several lines of research towards improvement of thrombolytic agents are being explored, including the construction of mutants and variants of plasminogen activators, chimeric plasminogen activators, conjugates of plasminogen activators with monoclonal antibodies, or plasminogen activators from animal or bacterial origin.
Collapse
Affiliation(s)
- H R Lijnen
- Center for Thrombosis and Vascular Research, University of Leuven, Belgium
| | | |
Collapse
|