1
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
2
|
|
3
|
Radkowski P, Wątor G, Skupien J, Bogdali A, Wołkow P. Analysis of gene expression to predict dynamics of future hypertension incidence in type 2 diabetic patients. BMC Proc 2016; 10:113-117. [PMID: 27980621 PMCID: PMC5133526 DOI: 10.1186/s12919-016-0015-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The main focus of the Genetic Analysis Workshop 19 (GAW19) is identification of genes related to the occurrence of hypertension in the cohort of patients with type 2 diabetes mellitus (T2DM). The aim of our study was to predict dynamics of the future hypertension incidence, based on gene expression profiles, systolic and diastolic blood pressure changes in time, sex, baseline age, and cigarette smoking status. We analyzed data made available to GAW19 participants, which included gene expression profiles of peripheral blood mononuclear cells (PBMCs) from the diabetic members of 20 Mexican American families. METHODS On the basis of mid blood pressure measurements at several time points, the coefficient of regression (slope) was calculated for each individual. We corrected the slope value in patients treated with antihypertensive medications. Feature preprocessing methods were used to remove highly correlated probes and linear dependencies between them. Subsequently, multiple linear regression model was used to associate gene expression with the regression coefficient calculated for each T2DM patient. Tenfold cross-validation was used to validate the model. We used linear mixed effects model and kinship coefficients to account for the family structure. All calculations were performed in R. RESULTS This analysis allowed us to identify 6 well-annotated genes: RTP4, FXYD6, GDF11, IFNAR1, NOX3, and HLA-DQ2, associated with dynamics of future hypertension incidence. Two of them, IFNAR1 and NOX3 were previously implicated in pathogenesis of hypertension. CONCLUSIONS There is no obvious mechanism that links all detected genes with dynamics of hypertension incidence. Identification of possible connection with hypertension needs further investigation.
Collapse
Affiliation(s)
- Piotr Radkowski
- Center for Medical Genomics–OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Gracjan Wątor
- III Chair of Surgery, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Skupien
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bogdali
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Wołkow
- Center for Medical Genomics–OMICRON, Jagiellonian University Medical College, Kraków, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
4
|
Yagil Y, Hessner M, Schulz H, Gosele C, Lebedev L, Barkalifa R, Sapojnikov M, Hubner N, Yagil C. Geno-transcriptomic dissection of proteinuria in the uninephrectomized rat uncovers a molecular complexity with sexual dimorphism. Physiol Genomics 2010; 42A:301-16. [PMID: 20876844 DOI: 10.1152/physiolgenomics.00149.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Investigation of proteinuria, whose pathophysiology remains incompletely understood, is confounded by differences in the phenotype between males and females. We initiated a sex-specific geno-transcriptomic dissection of proteinuria in uninephrectomized male and female Sabra rats that spontaneously develop focal and segmental glomerulosclerosis, testing the hypothesis that different mechanisms might underlie the pathophysiology of proteinuria between the sexes. In the genomic arm, we scanned the genome of 136 male and 111 female uninephrectomized F2 populations derived from crosses between SBH/y and SBN/y. In males, we identified proteinuria-related quantitative trait loci (QTLs) on RNO2 and 20 and protective QTLs on RNO6 and 9. In females, we detected proteinuria-related QTLs on RNO11, 13, and 20. The only QTL overlap between the sexes was on RNO20. Using consomic strains, we confirmed the functional significance of this QTL in both sexes. In the transcriptomic arm, we searched on a genomewide scale for genes that were differentially expressed in kidneys of SBH/y and SBN/y with and without uninephrectomy. These studies identified within each sex differentially expressed genes of relevance to proteinuria. Integrating genomics with transcriptomics, we identified differentially expressed genes that mapped within the boundaries of the proteinuria-related QTLs, singling out 24 transcripts in males and 30 in females, only 4 of which (Tubb5, Ubd, Psmb8, and C2) were common to both sexes. Data mining revealed that these transcripts are involved in multiple molecular mechanisms, including immunity, inflammation, apoptosis, matrix deposition, and protease activity, with no single molecular pathway predominating in either sex. These results suggest that the pathophysiology of proteinuria is highly complex and that some of the underlying mechanisms are shared between the sexes, while others are sex specific and may account for the difference in the proteinuric phenotype between males and females.
Collapse
Affiliation(s)
- Yoram Yagil
- Laboratory for Molecular Medicine and Israeli Rat Genome Center, Faculty of Health Sciences, Ben-Gurion University, Barzilai Medical Center Campus, Ashkelon, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Marques FZ, Campain AE, Yang YHJ, Morris BJ. Meta-analysis of genome-wide gene expression differences in onset and maintenance phases of genetic hypertension. Hypertension 2010; 56:319-24. [PMID: 20585107 DOI: 10.1161/hypertensionaha.110.155366] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gene expression differences accompany both the onset and established phases of hypertension. By an integrated genome-transcriptome approach we performed a meta-analysis of data from 74 microarray experiments available on public databases to identify genes with altered expression in the kidney, adrenal, heart, and artery of spontaneously hypertensive and Lyon hypertensive rats. To identify genes responsible for the onset of hypertension we used a statistical approach that sought to eliminate expression differences that occur during maturation unrelated to hypertension. Based on this adjusted fold-difference statistic, we found 36 genes for which the expression differed between the prehypertensive phase and established hypertension. Genes having possible relevance to hypertension onset included Actn2, Ankrd1, ApoE, Cd36, Csrp3, Me1, Myl3, Nppa, Nppb, Pln, Postn, Spp1, Slc21a4, Slc22a2, Thbs4, and Tnni3. In established hypertension 102 genes exhibited altered expression after Bonferroni correction (P<0.05). These included Atp5o, Ech1, Fabp3, Gnb3, Ldhb, Myh6, Lpl, Pkkaca, Vegfb, Vcam1, and reduced nicotinamide-adenine dinucleotide dehydrogenases. Among the genes identified, there was an overrepresentation of gene ontology terms involved in energy production, fatty acid and lipid metabolism, oxidation, and transport. These could contribute to increases in reactive oxygen species. Our meta-analysis has revealed many new genes for which the expression is altered in hypertension, so pointing to novel potential causative, maintenance, and responsive mechanisms and pathways.
Collapse
Affiliation(s)
- Francine Z Marques
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Rizwan Sarwar
- Medical Research Council Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, Du Cane Rd, London, W12 0NN, UK
| | | |
Collapse
|
7
|
|
8
|
Ardigo D, Gaillard CAJM, Braam B. Application of leukocyte transcriptomes to assess systemic consequences of risk factors for cardiovascular disease. Clin Chem Lab Med 2008; 45:1109-20. [PMID: 17635069 DOI: 10.1515/cclm.2007.261] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prevention of cardiovascular disease (CVD) remains a major health issue in the Western world. The diagnostic and therapeutic approach is currently based on risk factor assessment and treatment, which adequately predicts CVD at population level, but not at the level of a single individual. This may arise from the fact that the stage and activity of complex disease states are not likely to be captured by a single parameter or a small set of markers and thus may need a more complex representation. The aim of this review is to explore the possibility of pursuing the use of high-throughput gene expression profiling as a way to improve diagnosis, prognosis and monitoring of the disease. Novel chip-based techniques such as oligo- and cDNA microarrays can measure the abundance of thousands of mRNA transcripts in parallel and thus provide a comprehensive picture of the cell phenotype. Circulating white blood cells (WBCs), which are exposed to the systemic environment (including the risk factors) and are directly involved in the low-grade chronic inflammation related to CVD, have the potential to be used in this context to improve phenotyping of the patient. The paper reviews conceptual limitations in the use of risk factors and biomarkers, and shows the rationale beyond the possible use of circulating WBCs or subpopulations as representative cells to monitor systemic consequences of CVD. Methodological issues in performing microarray analysis of WBCs are also addressed, including controversies related to the choice of adequate cell populations and reference samples. Reproducibility and challenges occurring in the definition of a disease-specific gene panel are also discussed. The available proofs of principle from the literature presented in the last section of the review further support exploration of the application of circulating cell transcriptomics in CVD.
Collapse
Affiliation(s)
- Diego Ardigo
- Department of Internal Medicine and Biomedical Sciences, University of Parma, Italy
| | | | | |
Collapse
|
9
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Lee NH, Haas BJ, Letwin NE, Frank BC, Luu TV, Sun Q, House CD, Yerga-Woolwine S, Farms P, Manickavasagam E, Joe B. Cross-Talk of Expression Quantitative Trait Loci Within 2 Interacting Blood Pressure Quantitative Trait Loci. Hypertension 2007; 50:1126-33. [DOI: 10.1161/hypertensionaha.107.093138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Norman H. Lee
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Brian J. Haas
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Noah E. Letwin
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bryan C. Frank
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Truong V. Luu
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Qiang Sun
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Carrie D. House
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Shane Yerga-Woolwine
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Phyllis Farms
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Ezhilarasi Manickavasagam
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Bina Joe
- From the Department of Pharmacology and Physiology (N.H.L., N.E.L., B.C.F., T.V.L., C.D.H.), George Washington University, Washington, DC; Department of Functional Genomics (N.H.L., B.J.H., Q.S.), Institute for Genomic Research, Rockville Md; Physiological Genomics Laboratory (S.Y.-W., P.F., E.M., B.J.), Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
11
|
Rogers NL, Cole SA, Lan HC, Crossa A, Demerath EW. New saliva DNA collection method compared to buccal cell collection techniques for epidemiological studies. Am J Hum Biol 2007; 19:319-26. [PMID: 17421001 PMCID: PMC2797479 DOI: 10.1002/ajhb.20586] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epidemiological studies may require noninvasive methods for off-site DNA collection. We compared the DNA yield and quality obtained using a whole-saliva collection device (Oragene DNA collection kit) to those from three established noninvasive methods (cytobrush, foam swab, and oral rinse). Each method was tested on 17 adult volunteers from our center, using a random crossover collection design and analyzed using repeated-measures statistics. DNA yield and quality were assessed via gel electrophoresis, spectophotometry, and polymerase chain reaction (PCR) amplification rate. The whole-saliva method provided a significantly greater DNA yield (mean +/- SD = 154.9 +/- 103.05 microg, median = 181.88) than the other methods (oral rinse = 54.74 +/- 41.72 microg, 36.56; swab = 11.44 +/- 7.39 microg, 10.72; cytobrush = 12.66 +/- 6.19, 13.22 microg) (all pairwise P < 0.05). Oral-rinse and whole-saliva samples provided the best DNA quality, whereas cytobrush and swab samples provided poorer quality DNA, as shown by lower OD(260)/OD(280) and OD(260)/OD(230) ratios. We conclude that both a 10-ml oral-rinse sample and 2-ml whole-saliva sample provide sufficient DNA quantity and better quality DNA for genetic epidemiological studies than do the commonly used buccal swab and brush techniques.
Collapse
Affiliation(s)
- Nikki L Rogers
- Lifespan Health Research Center, Department of Community Health, Wright State University School of Medicine, Dayton, Ohio 45420, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
Genetic studies of human and experimental hypertension provide a means to identify key pathways that predispose individuals to increased blood pressure and associated risk factors for cardiovascular and metabolic diseases. The pathways so identified can then serve as targets for therapeutic intervention. This article discusses genetic studies in animal models of hypertension in which specific genes have been identified that regulate blood pressure and biochemical features of the metabolic syndrome. Consistent with studies in humans with monogenic disorders of blood pressure regulation, studies in rat models have demonstrated that naturally occurring genetic variation in pathways regulating sodium chloride transport can contribute to inherited variation in blood pressure. Such studies have also indicated that naturally occurring variation in genes, such as Cd36, that regulate fatty acid metabolism and ectopic accumulation of fat and fat metabolites can influence both biochemical and hemodynamic features of the metabolic syndrome and mediate the antidiabetic effects of drugs that activate the peroxisome proliferator-activated receptor-gamma. Angiotensin II receptor blockers with the ability to selectively modulate activity of peroxisome proliferator-activated receptor-gamma and expression of genes in these fat metabolism pathways may represent useful prototypes for a new class of transcription modulating drugs aimed at treating patients with hypertension and the metabolic syndrome.
Collapse
Affiliation(s)
- Michal Pravenec
- Institute of Physiology and Center for Applied Genomics, Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
13
|
Deng AY. Positional cloning of quantitative trait Loci for blood pressure: how close are we?: a critical perspective. Hypertension 2007; 49:740-7. [PMID: 17296871 DOI: 10.1161/01.hyp.0000259105.09235.56] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alan Y Deng
- Research Centre, Centre Hospitalier de l'Université de Montréal, l'Université de Montréal Montréal, Québec, Canada.
| |
Collapse
|
14
|
Duong C, Charron S, Deng Y, Xiao C, Ménard A, Roy J, Deng AY. Individual QTLs controlling quantitative variation in blood pressure inherited in a Mendelian mode. Heredity (Edinb) 2006; 98:165-71. [PMID: 17119551 DOI: 10.1038/sj.hdy.6800920] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We studied three possible genotypes at 10 well-defined blood pressure (BP) QTLs using congenic rat lines. The central question was whether the hypertensive or normotensive allele is dominant, or whether there is partial dominance. The congenic strains were employed to investigate the BP effects of alleles originating from normotensive rats in the background of hypertensive Dahl salt-sensitive (DSS) rats. The normotensive alleles at eight QTLs were fully dominant over DSS alleles, which we tentatively interpreted as indicating that DSS rats incurred a loss of function at these loci and that the QTLs produced BP-reducing agents. In contrast, the normotensive allele of only one QTL was recessive over its DSS counterpart, implying a gain of function at this QTL or a null allele involved in generating a BP-elevating agent. Only one locus, C17QTL, had alleles exhibiting partial dominance. These estimates of dominance differ considerably from those obtained by QTL analysis in a F2 cross. This disagreement demonstrates the importance of establishing a cause-effect relationship between a QTL and its phenotypic effect via congenic strains. The dominance relationships suggest pertinent strategies for gene identification and pharmaceutical intervention.
Collapse
Affiliation(s)
- C Duong
- Department of Medicine, Research Centre, Centre hospitalier de l'Université de Montréal (CHUM)-Technopôle Angus, 2901 Rachel Street East, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
15
|
Petretto E, Mangion J, Pravanec M, Hubner N, Aitman TJ. Integrated gene expression profiling and linkage analysis in the rat. Mamm Genome 2006; 17:480-9. [PMID: 16783629 DOI: 10.1007/s00335-005-0181-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 01/24/2006] [Indexed: 12/01/2022]
Abstract
The combined application of genome-wide expression profiling from microarray experiments with genetic linkage analysis enables the mapping of expression quantitative trait loci (eQTLs) which are primary control points for gene expression across the genome. This approach allows for the dissection of primary and secondary genetic determinants of gene expression. The cis-acting eQTLs in practice are easier to investigate than the trans-regulated eQTLs because they are under simpler genetic control and are likely to be due to sequence variants within the gene itself or its neighboring regulatory elements. These genes are therefore candidates both for variation in gene expression and for contributions to whole-body phenotypes, particularly when these are located within known and relevant physiologic QTLs. Multiple trans-acting eQTLs tend to cluster to the same genetic location, implying shared regulatory control mechanisms that may be amenable to network analysis to identify gene clusters within the same metabolic pathway. Such clusters may ultimately underlie development of individual complex, whole-body phenotypes. The combined expression and linkage approach has been applied successfully in several mammalian species, including the rat which has specific features that demonstrate its value as a model for studying complex traits.
Collapse
Affiliation(s)
- Enrico Petretto
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, London W12 0NN, United Kingdom
| | | | | | | | | |
Collapse
|
16
|
Chon H, Verhaar MC, Koomans HA, Joles JA, Braam B. Role of Circulating Karyocytes in the Initiation and Progression of Atherosclerosis. Hypertension 2006; 47:803-10. [PMID: 16520401 DOI: 10.1161/01.hyp.0000210554.61293.90] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is still hard to predict in an individual. The main focus in cardiovascular research has been on endothelial cells and vascular smooth muscle cells of the vessel wall and their interactions with the blood flow. Alterations in the properties of the blood have received a lot of attention in biochemical terms. Interestingly, alterations in the properties of circulating cells have received less attention. We propose that presence of 1 or more risk factors together with normal physiological stimuli induce redox-dependent changes in leukocyte gene transcription with pathophysiological responses. Thus, risk factors render leukocytes hypersensitive to normal stimuli. Risk factors can be subdivided into physical and chemical factors. Superimposed on physiological regulators of leukocyte function, these risk factors promote a cellular pro-oxidative state. Redox-sensitive transcription factors are activated, leading to responses involving inflammation, adhesion, migration, and additional reactive oxygen species generation. As a consequence, monitoring of individual gene expression signatures of these cells could well increase our understanding of the mechanisms by which leukocytes and, in particular, monocytes function. Furthermore, transcriptomes of these cells could be used to investigate the aggressiveness of the atherosclerotic process or to guide treatment in the patient with risk factors for atherosclerosis.
Collapse
Affiliation(s)
- Helena Chon
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review surveys the literature on the search for the genetic basis of hypertension during the 10 months since November 2003. The goals set forth by this search are defined and the highlights of the work accomplished are provided. RECENT FINDINGS The search for the genetic basis of hypertension is ongoing, generating an abundance of new data. These data consist of a large number of candidate genes, association of previously known and novel candidate genes with various facets of hypertension, detection of new quantitative trait loci and identification of genes that mediate susceptibility to hypertension. The renin-zangiotensin-aldosterone system continues to dominate the interest of investigators. Other gene systems are also emerging but a single-gene system cannot be singled out beyond the renin-angiotensin-aldosterone system and the data are mostly sporadic and do not reflect a guided or coordinated effort to resolve unanswered issues. The notion that hypertension is polygenic is reinforced, yet few data are provided as to the actual number of genes involved, gene-gene interaction or gene-environment interaction. Advanced biotechnological tools involving transcriptomics and proteomics are underused. SUMMARY Research on the genetic basis of hypertension has generated over the past year a large number of candidate genes and tied them to various aspects of hypertension. How these genes fit into the complex pathophysiological network that induces hypertension remains unclear. The task of putting together these genes into a cohesive framework still lies ahead, but promises to enlighten us as to the true nature of hypertension, the pathogenic mechanisms involved and improved therapeutic and preventive measures.
Collapse
Affiliation(s)
- Yoram Yagil
- Israel Rat Genome Center and Laboratory for Molecular Medicine, Department of Nephrology and Hypertension, Faculty of Health Sciences, Barzilai Medical Center Campus of the Ben-Gurion University, Ashkelon 78306, Israel.
| | | |
Collapse
|
18
|
Charron S, Duong C, Ménard A, Roy J, Eliopoulos V, Lambert R, Deng AY. Epistasis, Not Numbers, Regulates Functions of Clustered Dahl Rat Quantitative Trait Loci Applicable to Human Hypertension. Hypertension 2005; 46:1300-8. [PMID: 16286573 DOI: 10.1161/01.hyp.0000192024.72367.c3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitative trait loci (QTLs) for blood pressure (BP) were found on chromosome 10 of Dahl salt-sensitive rats and are potentially important to human essential hypertension. But their identities and how they influence BP together were not known. Presently, we first fine mapped existing QTLs, C10QTL1, C10QTL2, and C10QTL3, by constructing congenic strains. In the process, a new QTL, C10QTL4, was identified. Because the intervals harboring C10QTL1 and C10QTL4 contain a maximum of 16 and 10 possible genes, respectively, a limited number of specific gene targets has been identified to be QTLs residing in human homologous regions on chromosome 17. Moreover, because none of these candidates encodes a gene known to influence BP, the 2 QTLs will represent novel genes for BP regulations. Second, we used congenic strains with QTL combinations to analyze the interactions between the QTLs. Consequently, a double combination of C10QTL4 and C10QTL1 possessed the same BP as each of the 2 QTLs alone. BP of a triple combination of C10QTL4, C10QTL1, and C10QTL3 was not different from BP of the C10QTL4 and C10QTL1 double combination. These results demonstrate that C10QTL4, C10QTL1, and C10QTL3 are epistatic to one another in their BP effects. In contrast, when adding C10QTL2 into the triple formation of the 3 QTLs above to create a quadruple QTL combination, BP increased proportionately, indicating that C10QTL2 acts independently of C10QTL4, C10QTL1, and C10QTL3. The epistatic and additive interactions uncovered in the animal model will help elucidate similar interactions playing a role in human essential hypertension.
Collapse
Affiliation(s)
- Sophie Charron
- Research Centre-Centre Hospitalier, Université de Montréal, Hôtel Dieu, 3840 rue St. Urbain, Montréal, Québec, H2W 1T8, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
Joe B, Letwin NE, Garrett MR, Dhindaw S, Frank B, Sultana R, Verratti K, Rapp JP, Lee NH. Transcriptional profiling with a blood pressure QTL interval-specific oligonucleotide array. Physiol Genomics 2005; 23:318-26. [PMID: 16204469 DOI: 10.1152/physiolgenomics.00164.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Although the evidence for a genetic predisposition to human essential hypertension is compelling, the genetic control of blood pressure (BP) is poorly understood. The Dahl salt-sensitive (S) rat is a model for studying the genetic component of BP. Using this model, we previously reported the identification of 16 different genomic regions that contain one or more BP quantitative trait loci (QTLs). The proximal region of rat chromosome 1 contains multiple BP QTLs. Of these, we have localized the BP QTL1b region to a 13.5-cM (20.92 Mb) region. Interestingly, five additional independent studies in rats and four independent studies in humans have reported genetic linkage for BP control by regions homologous to QTL1b. To view the overall renal transcriptional topography of the positional candidate genes for this QTL, we sought a comparative gene expression profiling between a congenic strain containing QTL1b and control S rats by employing 1) a saturated QTL1b interval-specific oligonucleotide array and 2) a whole genome cDNA microarray representing 20,465 unique genes that are positioned outside the QTL. Results indicated that 17 of the 231 positional candidate genes for this QTL are differentially expressed between the two strains tested. Surprisingly, >1,500 genes outside of QTL1b were differentially expressed between the two rat strains. Integrating the results from the two approaches revealed at least one complex network of transcriptional control initiated by the positional candidate Nr2f2. This network appears to account for the majority of gene expression differences occurring outside of the QTL interval. Further substitution mapping is currently underway to test the validity of each of these differentially expressed positional candidate genes. These results demonstrate the importance of using a saturated oligonucleotide array for identifying and prioritizing differentially expressed positional candidate genes of a BP QTL.
Collapse
Affiliation(s)
- Bina Joe
- Department of Physiology and Cardiovascular Genomics, Medical University of Ohio, Toledo, Ohio 43614-5804, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee SJ, Ways JA, Barbato JC, Essig D, Pettee K, DeRaedt SJ, Yang S, Weaver DA, Koch LG, Cicila GT. Gene expression profiling of the left ventricles in a rat model of intrinsic aerobic running capacity. Physiol Genomics 2005; 23:62-71. [PMID: 16033863 DOI: 10.1152/physiolgenomics.00251.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous work found DA rats superior for intrinsic aerobic running capacity (ARC) and several cardiac function indexes compared with Copenhagen (COP) rats, and identified ARC quantitative trait loci (QTLs) on rat chromosomes 16 (RNO16) and 3 (RNO3). The purpose of this study was to use these inbred rat strains as a genetic substrate for differential cardiac gene expression to identify candidate genes for the observed ARC QTLs. RNA expression was examined globally in left ventricles of 15-wk-old DA, F1(COP x DA), and COP rats using microarrays to identify candidate genes for ARC QTLs. We identified 199 differentially expressed probe sets and determined their chromosomal locations. Six differentially expressed genes and expressed sequence tags (ESTs) mapped near ARC QTL regions, including PDZ and LIM domain 3 (Pdlim3). Differential expression of these genes/ESTs was confirmed by quantitative RT-PCR. The Ingenuity Pathways program identified 13 biological networks containing 50 (of the 199) differentially expressed probe sets and 85 additional genes. Four of these eighty-five genes mapped near ARC QTL-containing regions, including insulin receptor substrate 2 (Irs2) and acyl-CoA synthetase long-chain family member 1 (Acsl1). Most (148/199) differentially expressed probe sets showed left ventricular expression patterns consistent with the alleles exerting additive effects, i.e., F1(COP x DA) rat RNA expression was intermediate between DA and COP rats. This study identified several potential ARC QTL candidate genes and molecular networks, one of them related to energy expenditure involving Pik3r1 mRNA expression that may, in part, explain the observed strain differences in ARC and cardiac performance.
Collapse
Affiliation(s)
- Soon Jin Lee
- Department of Physiology and Cardiovascular Genomics, Medical University of Ohio, Toledo, Ohio 43614, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Garrett MR, Meng H, Rapp JP, Joe B. Locating a Blood Pressure Quantitative Trait Locus Within 117 kb on the Rat Genome. Hypertension 2005; 45:451-9. [PMID: 15655120 DOI: 10.1161/01.hyp.0000154678.64340.7f] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Previously, a blood pressure (BP) quantitative trait locus (QTL) on rat chromosome 9 (RNO9) was localized to a <2.4 cM interval using congenic strains generated by introgressing segments of RNO9 from the Dahl salt-resistant (R) rat into the background of the Dahl salt-sensitive (S) rat. Renal gene expression using Affymetrix gene chips was profiled on S and a congenic strain spanning the 2.4-cM BP QTL interval. This analysis identified 20 differentially expressed genes/expressed sequence tags. Of these, the locus with the greatest differential expression (30- to 35-fold) was regulated endocrine-specific protein 18 (
Resp18
), which also mapped in the 2.4-cM BP QTL interval. Additional substitution mapping located the QTL to <0.4 cM or ≈493 kb. This newly defined QTL region still included
Resp18
. Nucleotide variants were identified between S and R genomic DNA of
Resp18
in the coding, 5′ regulatory and 3′ untranslated regions. The coding sequence variation (T/C) occurs in exon 2 and predicts an amino acid change (Ile/Val) in the protein product.
Resp18
was considered a differentially expressed positional candidate for the QTL. To fine-map the BP QTL, we constructed a congenic strain with a smaller introgressed region. Compared with the S rat, this strain (1) had significantly lower BP, (2) did not contain the R form of
Resp18
, and (3) did not retain the rather spectacular differential expression of
Resp18.
Together, these results demonstrate that a BP QTL independent of
Resp18
exists within the newly defined 117-kb QTL region on RNO9.
Collapse
Affiliation(s)
- Michael R Garrett
- Department of Physiology and Cardiovascular Genomics, Medical College of Ohio, Toledo 43614-5804, USA
| | | | | | | |
Collapse
|
22
|
Yagil C, Hubner N, Monti J, Schulz H, Sapojnikov M, Luft FC, Ganten D, Yagil Y. Identification of hypertension-related genes through an integrated genomic-transcriptomic approach. Circ Res 2005; 96:617-25. [PMID: 15731461 DOI: 10.1161/01.res.0000160556.52369.61] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In search for the genetic basis of hypertension, we applied an integrated genomic-transcriptomic approach to identify genes involved in the pathogenesis of hypertension in the Sabra rat model of salt-susceptibility. In the genomic arm of the project, we previously detected in male rats two salt-susceptibility QTLs on chromosome 1, SS1a (D1Mgh2-D1Mit11; span 43.1 cM) and SS1b (D1Mit11-D1Mit4; span 18 cM). In the transcriptomic arm, we studied differential gene expression in kidneys of SBH/y and SBN/y rats that had been fed regular diet or salt-loaded. We used the Affymetrix Rat Genome RAE230 GeneChip and probed >30,000 transcripts. The research algorithm called for an initial genome-wide screen for differentially expressed transcripts between the study groups. This step was followed by cluster analysis based on 2x2 ANOVA to identify transcripts that were of relevance specifically to salt-sensitivity and hypertension and to salt-resistance. The two arms of the project were integrated by identifying those differentially expressed transcripts that showed an allele-specific hypertensive effect on salt-loading and that mapped within the defined boundaries of the salt-susceptibility QTLs on chromosome 1. The differentially expressed transcripts were confirmed by RT-PCR. Of the 2933 genes annotated to rat chromosome 1, 1102 genes were identified within the boundaries of the two blood pressure QTLs. The microarray identified 2470 transcripts that were differentially expressed between the study groups. Cluster analysis identified genome-wide 192 genes that were relevant to salt-susceptibility and/or hypertension, 19 of which mapped to chromosome 1. Eight of these genes mapped within the boundaries of QTLs SS1a and SS1b. RT-PCR confirmed 7 genes, leaving TcTex1, Myadm, Lisch7, Axl-like, Fah, PRC1-like, and Serpinh1. None of these genes has been implicated in hypertension before. These genes become henceforth targets for our continuing search for the genetic basis of hypertension.
Collapse
Affiliation(s)
- Chana Yagil
- Israel Rat Genome Center and Laboratory for Molecular Medicine, Department of Nephrology and Hypertension, Faculty of Health Sciences, Barzilai Medical Center Campus of the Ben-Gurion University, Ashkelon, Israel
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW During the past few years, genomics, proteomics and other "omics" fields have been applied extensively to several areas of biomedical research. This review provides an overview and summarizes the current status of applications of these omics fields to essential and secondary hypertension. Some perspectives of these fields for future hypertension research are discussed. RECENT FINDINGS Genome-wide scans applying to essential hypertension have demonstrated numerous chromosomal regions with significant and/or suggestive evidence of linkage. The consistency of these results among several different studies is, however, problematic; probably because of the variability in number of families, ethnicity, family types, phenotyping strategy, study design and statistical analyses in those studies. Findings from such studies will be more valuable when more-complete sets of data and their integration are available. Proteomics is in its early phase in hypertension research, but has shown some significant data on the pathophysiology of hypoxia-induced and renovascular hypertension. Recently, integrative omics and systems biology have been emerging and seem to be the ideal approach for future hypertension research. SUMMARY Genomics, proteomics and integrative omics have demonstrated their potential in hypertension research to better understand the pathogenesis and pathophysiology of hypertension. In addition, they may contribute to identification of new therapeutic targets, biomarker discovery, prediction of therapeutic response, personalized treatment regimens, better therapeutic outcome and ultimately prevention of the disease.
Collapse
Affiliation(s)
- Visith Thongboonkerd
- Siriraj Proteomics Center, Medical Molecular Biology Unit, Office for Research and Development, Mahidol University, Faculty of Medicine at Siriraj Hospital, 2 Prannok Road, Bangkoknoi, Bangkok 10700, Thailand.
| |
Collapse
|
24
|
Moujahidine M, Lambert R, Dutil J, Palijan A, Sivo Z, Ariyarajah A, Deng AY. Combining congenic coverage with gene profiling in search of candidates for blood pressure quantitative trait loci in Dahl rats. Hypertens Res 2004; 27:203-12. [PMID: 15080379 DOI: 10.1291/hypres.27.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chromosomes (Chr) 10 and 16 of the Dahl salt-sensitive (S) rat harbor quantitative trait loci (QTLs) for blood pressure (BP). To facilitate gene discovery of these QTLs, gene profiling based on microarrays was combined with fine QTL mapping to identify potential candidate genes that are differentially expressed. First, the region harboring the BP QTL on Chr 16 was narrowed by comparative congenic mapping. In this endeavor, a number of new chromosome markers were generated and used to physically define the chromosome interval in question. Second, in an effort to minimize the costs of gene profiling without sacrificing the chance of gene discovery, a combination congenic strain was produced by replacing one segment of Chr 10 along with one segment of Chr 16 of the hypertensive S rat by those of the normotensive Lewis (LEW) rat. Both of these regions are known to contain BP QTLs. Third, kidneys of this combination congenic strain and the S strain were employed for expression profiling studies. Finally, a comparison between the two strains yielded a number of potentially differentially expressed candidates. Six Established Sequence Tags (ESTs)/genes among them were located in Chr 10 regions and 1 was found in a Chr 16 region, and the genetic make-ups of all these regions were shown to be different between S and LEW. However, none of these ESTs/genes identified by gene profiling were located in an interval containing a QTL. Thus, the present study highlights the importance of correlating the results of gene expression profiling with fine congenic mapping.
Collapse
Affiliation(s)
- Myriam Moujahidine
- Research Centre, Centre Hospitalier de l'Université de Montreal (CHUM), Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Ghazalpour A, Doss S, Yang X, Aten J, Toomey EM, Van Nas A, Wang S, Drake TA, Lusis AJ. Thematic review series: The pathogenesis of atherosclerosis. Toward a biological network for atherosclerosis. J Lipid Res 2004; 45:1793-805. [PMID: 15292376 DOI: 10.1194/jlr.r400006-jlr200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The goal of systems biology is to define all of the elements present in a given system and to create an interaction network between these components so that the behavior of the system, as a whole and in parts, can be explained under specified conditions. The elements constituting the network that influences the development of atherosclerosis could be genes, pathways, transcript levels, proteins, or physiologic traits. In this review, we discuss how the integration of genetics and technologies such as transcriptomics and proteomics, combined with mathematical modeling, may lead to an understanding of such networks.
Collapse
Affiliation(s)
- Anatole Ghazalpour
- Department of Human Genetics, Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095-1679, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Triggle DJ. Drug targets in the voltage-gated calcium channel family: why some are and some are not. Assay Drug Dev Technol 2004; 1:719-33. [PMID: 15090244 DOI: 10.1089/154065803770381075] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The L-type calcium channel antagonists have been, and continue to be, a very successful group of therapeutic agents targeted at cardiovascular disorders, notably angina and hypertension. The discovery that the voltage-gated calcium channels are a large and widely distributed family with important roles in both the peripheral and central nervous systems has initiated a major search for drugs active at other calcium channel types directed at disorders of the central nervous system, including pain, epilepsy, and stroke. These efforts have not been therapeutically successful thus far, and small molecule equivalents of the L-type blockers nifedipine, diltiazem, and verapamil directed at non-L-type channels have not been found. The underlying reasons for this are discussed together with suggestions for new directions, including fertility control, oxygen-sensitive channels, and calcium channel activators.
Collapse
Affiliation(s)
- David J Triggle
- School of Pharmacy and Pharmaceutical Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
27
|
Abstract
Studies on Mendelian hypertension have provided great insight into mechanisms causing hypertension. Mineralocorticoid synthesis and degradation, the mineralocorticoid receptor, sodium channel resorptive mechanisms, and regulation of the thiazide-sensitive sodium-chloride cotransporter have been shown to cause hypertension. Aberrant regulation of peripheral vascular resistance and circulatory regulation have not yet been proved but have been strongly implicated in Mendelian hypertension with brachydactyly. Hypertension as a complex genetic trait has proved more difficult because many genes are involved and the genes have much smaller effects. Association studies, linkage analyses, single nucleotide polymorphism analyses, synteny in animal models, and gene expression studies are the current tools and steady progress is being made.
Collapse
Affiliation(s)
- Friedrich C Luft
- Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Wiltberg Strasse 50, 13125 Berlin, Germany.
| |
Collapse
|
28
|
Affiliation(s)
- Robert B Toto
- University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
29
|
Yagil Y, Yagil C. Congenics in the pathway from quantitative trait loci detection to gene identification. J Hypertens 2003; 21:2009-11. [PMID: 14597840 DOI: 10.1097/00004872-200311000-00006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Liang M, Yuan B, Rute E, Greene AS, Olivier M, Cowley AW. Insights into Dahl salt-sensitive hypertension revealed by temporal patterns of renal medullary gene expression. Physiol Genomics 2003; 12:229-37. [PMID: 12488510 DOI: 10.1152/physiolgenomics.00089.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dahl salt-sensitive SS and consomic, salt-resistant SS-13(BN)/Mcw rats possess a highly similar genetic background but exhibit substantial differences in blood pressure salt sensitivity. We used cDNA microarrays to examine sequential changes of mRNA expression of approximately 2,000 currently known rat genes in the renal medulla (a tissue critical for long-term blood pressure regulation) in SS and SS-13(BN)/Mcw rats in response to a high-salt diet (16 h, 3 days, or 2 wk). Differentially expressed genes in each between-group comparison were identified based on a threshold determined experimentally using a reference distribution that was constructed by comparing rats within the same group. A difference analysis of 54 microarrays identified 50 genes that exhibited the most distinct temporal patterns of expression between SS and SS-13(BN)/Mcw rats over the entire time course. Thirty of these genes could be linked to the regulation of arterial blood pressure or renal injury based on their known involvement in functional pathways such as renal tubular transport, metabolism of vasoactive substances, extracellular matrix formation, and apoptosis. Importantly, the majority of the 30 genes exhibited temporal expression patterns that would be expected to lower arterial pressure and reduce renal injury in SS-13(BN)/Mcw compared with SS rats. The phenotypic impact of the other 20 genes was less clear. These 50 genes are widely distributed on chromosome 13 and several other chromosomes. This suggested that primary genetic defects, although important, are unlikely to be solely responsible for the full manifestation of this type of hypertension and associated injury phenotypes. In summary, the results of this study identified a number of pathways potentially important for the amelioration of hypertension and renal injury in SS-13(BN)/Mcw rats, and these results generated a series of testable hypotheses related to the role of the renal medulla in the complex mechanism of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|